/src/gmp-6.2.1/mpn/powm.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mpn_powm -- Compute R = U^E mod M.  | 
2  |  |  | 
3  |  |    Contributed to the GNU project by Torbjorn Granlund.  | 
4  |  |  | 
5  |  |    THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY  | 
6  |  |    SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST  | 
7  |  |    GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
8  |  |  | 
9  |  | Copyright 2007-2012, 2019 Free Software Foundation, Inc.  | 
10  |  |  | 
11  |  | This file is part of the GNU MP Library.  | 
12  |  |  | 
13  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
14  |  | it under the terms of either:  | 
15  |  |  | 
16  |  |   * the GNU Lesser General Public License as published by the Free  | 
17  |  |     Software Foundation; either version 3 of the License, or (at your  | 
18  |  |     option) any later version.  | 
19  |  |  | 
20  |  | or  | 
21  |  |  | 
22  |  |   * the GNU General Public License as published by the Free Software  | 
23  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
24  |  |     later version.  | 
25  |  |  | 
26  |  | or both in parallel, as here.  | 
27  |  |  | 
28  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
29  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
30  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
31  |  | for more details.  | 
32  |  |  | 
33  |  | You should have received copies of the GNU General Public License and the  | 
34  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
35  |  | see https://www.gnu.org/licenses/.  */  | 
36  |  |  | 
37  |  |  | 
38  |  | /*  | 
39  |  |   BASIC ALGORITHM, Compute U^E mod M, where M < B^n is odd.  | 
40  |  |  | 
41  |  |   1. W <- U  | 
42  |  |  | 
43  |  |   2. T <- (B^n * U) mod M                Convert to REDC form  | 
44  |  |  | 
45  |  |   3. Compute table U^1, U^3, U^5... of E-dependent size  | 
46  |  |  | 
47  |  |   4. While there are more bits in E  | 
48  |  |        W <- power left-to-right base-k  | 
49  |  |  | 
50  |  |  | 
51  |  |   TODO:  | 
52  |  |  | 
53  |  |    * Make getbits a macro, thereby allowing it to update the index operand.  | 
54  |  |      That will simplify the code using getbits.  (Perhaps make getbits' sibling  | 
55  |  |      getbit then have similar form, for symmetry.)  | 
56  |  |  | 
57  |  |    * Write an itch function.  Or perhaps get rid of tp parameter since the huge  | 
58  |  |      pp area is allocated locally anyway?  | 
59  |  |  | 
60  |  |    * Choose window size without looping.  (Superoptimize or think(tm).)  | 
61  |  |  | 
62  |  |    * Handle small bases with initial, reduction-free exponentiation.  | 
63  |  |  | 
64  |  |    * Call new division functions, not mpn_tdiv_qr.  | 
65  |  |  | 
66  |  |    * Consider special code for one-limb M.  | 
67  |  |  | 
68  |  |    * How should we handle the redc1/redc2/redc_n choice?  | 
69  |  |      - redc1:  T(binvert_1limb)  + e * (n)   * (T(mullo-1x1) + n*T(addmul_1))  | 
70  |  |      - redc2:  T(binvert_2limbs) + e * (n/2) * (T(mullo-2x2) + n*T(addmul_2))  | 
71  |  |      - redc_n: T(binvert_nlimbs) + e * (T(mullo-nxn) + T(M(n)))  | 
72  |  |      This disregards the addmul_N constant term, but we could think of  | 
73  |  |      that as part of the respective mullo.  | 
74  |  |  | 
75  |  |    * When U (the base) is small, we should start the exponentiation with plain  | 
76  |  |      operations, then convert that partial result to REDC form.  | 
77  |  |  | 
78  |  |    * When U is just one limb, should it be handled without the k-ary tricks?  | 
79  |  |      We could keep a factor of B^n in W, but use U' = BU as base.  After  | 
80  |  |      multiplying by this (pseudo two-limb) number, we need to multiply by 1/B  | 
81  |  |      mod M.  | 
82  |  | */  | 
83  |  |  | 
84  |  | #include "gmp-impl.h"  | 
85  |  | #include "longlong.h"  | 
86  |  |  | 
87  |  | #undef MPN_REDC_0  | 
88  |  | #define MPN_REDC_0(rp, up, mp, invm)          \  | 
89  | 0  |   do {                 \ | 
90  | 0  |     mp_limb_t p1, r0, u0, _dummy;         \  | 
91  | 0  |     u0 = *(up);               \  | 
92  | 0  |     umul_ppmm (p1, _dummy, *(mp), (u0 * (invm)) & GMP_NUMB_MASK);  \  | 
93  | 0  |     ASSERT (((u0 + _dummy) & GMP_NUMB_MASK) == 0);      \  | 
94  | 0  |     p1 += (u0 != 0);              \  | 
95  | 0  |     r0 = (up)[1] + p1;              \  | 
96  | 0  |     if (p1 > r0)             \  | 
97  | 0  |       r0 -= *(mp);             \  | 
98  | 0  |     *(rp) = r0;               \  | 
99  | 0  |   } while (0)  | 
100  |  |  | 
101  |  | #undef MPN_REDC_1  | 
102  |  | #if HAVE_NATIVE_mpn_sbpi1_bdiv_r  | 
103  |  | #define MPN_REDC_1(rp, up, mp, n, invm)         \  | 
104  |  |   do {                  \ | 
105  |  |     mp_limb_t cy;             \  | 
106  |  |     cy = mpn_sbpi1_bdiv_r (up, 2 * n, mp, n, invm);     \  | 
107  |  |     if (cy != 0)              \  | 
108  |  |       mpn_sub_n (rp, up + n, mp, n);          \  | 
109  |  |     else                \  | 
110  |  |       MPN_COPY (rp, up + n, n);           \  | 
111  |  |   } while (0)  | 
112  |  | #else  | 
113  |  | #define MPN_REDC_1(rp, up, mp, n, invm)         \  | 
114  | 0  |   do {                 \ | 
115  | 0  |     mp_limb_t cy;             \  | 
116  | 0  |     cy = mpn_redc_1 (rp, up, mp, n, invm);       \  | 
117  | 0  |     if (cy != 0)             \  | 
118  | 0  |       mpn_sub_n (rp, rp, mp, n);         \  | 
119  | 0  |   } while (0)  | 
120  |  | #endif  | 
121  |  |  | 
122  |  | #undef MPN_REDC_2  | 
123  |  | #define MPN_REDC_2(rp, up, mp, n, mip)          \  | 
124  | 0  |   do {                 \ | 
125  | 0  |     mp_limb_t cy;             \  | 
126  | 0  |     cy = mpn_redc_2 (rp, up, mp, n, mip);        \  | 
127  | 0  |     if (cy != 0)             \  | 
128  | 0  |       mpn_sub_n (rp, rp, mp, n);         \  | 
129  | 0  |   } while (0)  | 
130  |  |  | 
131  |  | #if HAVE_NATIVE_mpn_addmul_2 || HAVE_NATIVE_mpn_redc_2  | 
132  |  | #define WANT_REDC_2 1  | 
133  |  | #endif  | 
134  |  |  | 
135  |  | #define getbit(p,bi) \  | 
136  | 0  |   ((p[(bi - 1) / GMP_LIMB_BITS] >> (bi - 1) % GMP_LIMB_BITS) & 1)  | 
137  |  |  | 
138  |  | static inline mp_limb_t  | 
139  |  | getbits (const mp_limb_t *p, mp_bitcnt_t bi, int nbits)  | 
140  | 0  | { | 
141  | 0  |   int nbits_in_r;  | 
142  | 0  |   mp_limb_t r;  | 
143  | 0  |   mp_size_t i;  | 
144  |  | 
  | 
145  | 0  |   if (bi < nbits)  | 
146  | 0  |     { | 
147  | 0  |       return p[0] & (((mp_limb_t) 1 << bi) - 1);  | 
148  | 0  |     }  | 
149  | 0  |   else  | 
150  | 0  |     { | 
151  | 0  |       bi -= nbits;      /* bit index of low bit to extract */  | 
152  | 0  |       i = bi / GMP_NUMB_BITS;   /* word index of low bit to extract */  | 
153  | 0  |       bi %= GMP_NUMB_BITS;   /* bit index in low word */  | 
154  | 0  |       r = p[i] >> bi;     /* extract (low) bits */  | 
155  | 0  |       nbits_in_r = GMP_NUMB_BITS - bi;  /* number of bits now in r */  | 
156  | 0  |       if (nbits_in_r < nbits)   /* did we get enough bits? */  | 
157  | 0  |   r += p[i + 1] << nbits_in_r; /* prepend bits from higher word */  | 
158  | 0  |       return r & (((mp_limb_t) 1 << nbits) - 1);  | 
159  | 0  |     }  | 
160  | 0  | }  | 
161  |  |  | 
162  |  | static inline int  | 
163  |  | win_size (mp_bitcnt_t eb)  | 
164  | 0  | { | 
165  | 0  |   int k;  | 
166  | 0  |   static mp_bitcnt_t x[] = {0,7,25,81,241,673,1793,4609,11521,28161,~(mp_bitcnt_t)0}; | 
167  | 0  |   for (k = 1; eb > x[k]; k++)  | 
168  | 0  |     ;  | 
169  | 0  |   return k;  | 
170  | 0  | }  | 
171  |  |  | 
172  |  | /* Convert U to REDC form, U_r = B^n * U mod M */  | 
173  |  | static void  | 
174  |  | redcify (mp_ptr rp, mp_srcptr up, mp_size_t un, mp_srcptr mp, mp_size_t n)  | 
175  | 0  | { | 
176  | 0  |   mp_ptr tp, qp;  | 
177  | 0  |   TMP_DECL;  | 
178  | 0  |   TMP_MARK;  | 
179  |  | 
  | 
180  | 0  |   TMP_ALLOC_LIMBS_2 (tp, un + n, qp, un + 1);  | 
181  |  | 
  | 
182  | 0  |   MPN_ZERO (tp, n);  | 
183  | 0  |   MPN_COPY (tp + n, up, un);  | 
184  | 0  |   mpn_tdiv_qr (qp, rp, 0L, tp, un + n, mp, n);  | 
185  | 0  |   TMP_FREE;  | 
186  | 0  | }  | 
187  |  |  | 
188  |  | /* rp[n-1..0] = bp[bn-1..0] ^ ep[en-1..0] mod mp[n-1..0]  | 
189  |  |    Requires that mp[n-1..0] is odd.  | 
190  |  |    Requires that ep[en-1..0] is > 1.  | 
191  |  |    Uses scratch space at tp of MAX(mpn_binvert_itch(n),2n) limbs.  */  | 
192  |  | void  | 
193  |  | mpn_powm (mp_ptr rp, mp_srcptr bp, mp_size_t bn,  | 
194  |  |     mp_srcptr ep, mp_size_t en,  | 
195  |  |     mp_srcptr mp, mp_size_t n, mp_ptr tp)  | 
196  | 0  | { | 
197  | 0  |   mp_limb_t ip[2], *mip;  | 
198  | 0  |   int cnt;  | 
199  | 0  |   mp_bitcnt_t ebi;  | 
200  | 0  |   int windowsize, this_windowsize;  | 
201  | 0  |   mp_limb_t expbits;  | 
202  | 0  |   mp_ptr pp, this_pp;  | 
203  | 0  |   long i;  | 
204  | 0  |   TMP_DECL;  | 
205  |  | 
  | 
206  | 0  |   ASSERT (en > 1 || (en == 1 && ep[0] > 1));  | 
207  | 0  |   ASSERT (n >= 1 && ((mp[0] & 1) != 0));  | 
208  |  |  | 
209  | 0  |   TMP_MARK;  | 
210  |  | 
  | 
211  | 0  |   MPN_SIZEINBASE_2EXP(ebi, ep, en, 1);  | 
212  |  |  | 
213  |  | #if 0  | 
214  |  |   if (bn < n)  | 
215  |  |     { | 
216  |  |       /* Do the first few exponent bits without mod reductions,  | 
217  |  |    until the result is greater than the mod argument.  */  | 
218  |  |       for (;;)  | 
219  |  |   { | 
220  |  |     mpn_sqr (tp, this_pp, tn);  | 
221  |  |     tn = tn * 2 - 1,  tn += tp[tn] != 0;  | 
222  |  |     if (getbit (ep, ebi) != 0)  | 
223  |  |       mpn_mul (..., tp, tn, bp, bn);  | 
224  |  |     ebi--;  | 
225  |  |   }  | 
226  |  |     }  | 
227  |  | #endif  | 
228  |  |  | 
229  | 0  |   windowsize = win_size (ebi);  | 
230  |  | 
  | 
231  | 0  | #if WANT_REDC_2  | 
232  | 0  |   if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))  | 
233  | 0  |     { | 
234  | 0  |       mip = ip;  | 
235  | 0  |       binvert_limb (mip[0], mp[0]);  | 
236  | 0  |       mip[0] = -mip[0];  | 
237  | 0  |     }  | 
238  | 0  |   else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))  | 
239  | 0  |     { | 
240  | 0  |       mip = ip;  | 
241  | 0  |       mpn_binvert (mip, mp, 2, tp);  | 
242  | 0  |       mip[0] = -mip[0]; mip[1] = ~mip[1];  | 
243  | 0  |     }  | 
244  |  | #else  | 
245  |  |   if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))  | 
246  |  |     { | 
247  |  |       mip = ip;  | 
248  |  |       binvert_limb (mip[0], mp[0]);  | 
249  |  |       mip[0] = -mip[0];  | 
250  |  |     }  | 
251  |  | #endif  | 
252  | 0  |   else  | 
253  | 0  |     { | 
254  | 0  |       mip = TMP_ALLOC_LIMBS (n);  | 
255  | 0  |       mpn_binvert (mip, mp, n, tp);  | 
256  | 0  |     }  | 
257  |  |  | 
258  | 0  |   pp = TMP_ALLOC_LIMBS (n << (windowsize - 1));  | 
259  |  | 
  | 
260  | 0  |   this_pp = pp;  | 
261  | 0  |   redcify (this_pp, bp, bn, mp, n);  | 
262  |  |  | 
263  |  |   /* Store b^2 at rp.  */  | 
264  | 0  |   mpn_sqr (tp, this_pp, n);  | 
265  |  | #if 0  | 
266  |  |   if (n == 1) { | 
267  |  |     MPN_REDC_0 (rp, tp, mp, mip[0]);  | 
268  |  |   } else  | 
269  |  | #endif  | 
270  | 0  | #if WANT_REDC_2  | 
271  | 0  |   if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))  | 
272  | 0  |     MPN_REDC_1 (rp, tp, mp, n, mip[0]);  | 
273  | 0  |   else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))  | 
274  | 0  |     MPN_REDC_2 (rp, tp, mp, n, mip);  | 
275  |  | #else  | 
276  |  |   if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))  | 
277  |  |     MPN_REDC_1 (rp, tp, mp, n, mip[0]);  | 
278  |  | #endif  | 
279  | 0  |   else  | 
280  | 0  |     mpn_redc_n (rp, tp, mp, n, mip);  | 
281  |  |  | 
282  |  |   /* Precompute odd powers of b and put them in the temporary area at pp.  */  | 
283  | 0  |   for (i = (1 << (windowsize - 1)) - 1; i > 0; i--)  | 
284  | 0  | #if 1  | 
285  | 0  |     if (n == 1) { | 
286  | 0  |       umul_ppmm((tp)[1], *(tp), *(this_pp), *(rp));  | 
287  | 0  |       ++this_pp ;  | 
288  | 0  |       MPN_REDC_0 (this_pp, tp, mp, mip[0]);  | 
289  | 0  |     } else  | 
290  | 0  | #endif  | 
291  | 0  |     { | 
292  | 0  |       mpn_mul_n (tp, this_pp, rp, n);  | 
293  | 0  |       this_pp += n;  | 
294  | 0  | #if WANT_REDC_2  | 
295  | 0  |       if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))  | 
296  | 0  |   MPN_REDC_1 (this_pp, tp, mp, n, mip[0]);  | 
297  | 0  |       else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))  | 
298  | 0  |   MPN_REDC_2 (this_pp, tp, mp, n, mip);  | 
299  |  | #else  | 
300  |  |       if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))  | 
301  |  |   MPN_REDC_1 (this_pp, tp, mp, n, mip[0]);  | 
302  |  | #endif  | 
303  | 0  |       else  | 
304  | 0  |   mpn_redc_n (this_pp, tp, mp, n, mip);  | 
305  | 0  |     }  | 
306  |  |  | 
307  | 0  |   expbits = getbits (ep, ebi, windowsize);  | 
308  | 0  |   if (ebi < windowsize)  | 
309  | 0  |     ebi = 0;  | 
310  | 0  |   else  | 
311  | 0  |     ebi -= windowsize;  | 
312  |  | 
  | 
313  | 0  |   count_trailing_zeros (cnt, expbits);  | 
314  | 0  |   ebi += cnt;  | 
315  | 0  |   expbits >>= cnt;  | 
316  |  | 
  | 
317  | 0  |   MPN_COPY (rp, pp + n * (expbits >> 1), n);  | 
318  |  |  | 
319  | 0  | #define INNERLOOP             \  | 
320  | 0  |   while (ebi != 0)             \  | 
321  | 0  |     {                 \ | 
322  | 0  |       while (getbit (ep, ebi) == 0)         \  | 
323  | 0  |   {               \ | 
324  | 0  |     MPN_SQR (tp, rp, n);           \  | 
325  | 0  |     MPN_REDUCE (rp, tp, mp, n, mip);        \  | 
326  | 0  |     if (--ebi == 0)           \  | 
327  | 0  |       goto done;             \  | 
328  | 0  |   }               \  | 
329  | 0  |                   \  | 
330  |  |       /* The next bit of the exponent is 1.  Now extract the largest  \  | 
331  |  |    block of bits <= windowsize, and such that the least   \  | 
332  |  |    significant bit is 1.  */          \  | 
333  | 0  |                   \  | 
334  | 0  |       expbits = getbits (ep, ebi, windowsize);        \  | 
335  | 0  |       this_windowsize = windowsize;         \  | 
336  | 0  |       if (ebi < windowsize)           \  | 
337  | 0  |   {               \ | 
338  | 0  |     this_windowsize -= windowsize - ebi;        \  | 
339  | 0  |     ebi = 0;              \  | 
340  | 0  |   }                \  | 
341  | 0  |       else                \  | 
342  | 0  |         ebi -= windowsize;           \  | 
343  | 0  |                   \  | 
344  | 0  |       count_trailing_zeros (cnt, expbits);        \  | 
345  | 0  |       this_windowsize -= cnt;           \  | 
346  | 0  |       ebi += cnt;             \  | 
347  | 0  |       expbits >>= cnt;              \  | 
348  | 0  |                   \  | 
349  | 0  |       do                \  | 
350  | 0  |   {               \ | 
351  | 0  |     MPN_SQR (tp, rp, n);           \  | 
352  | 0  |     MPN_REDUCE (rp, tp, mp, n, mip);        \  | 
353  | 0  |   }               \  | 
354  | 0  |       while (--this_windowsize != 0);          \  | 
355  | 0  |                   \  | 
356  | 0  |       MPN_MUL_N (tp, rp, pp + n * (expbits >> 1), n);      \  | 
357  | 0  |       MPN_REDUCE (rp, tp, mp, n, mip);          \  | 
358  | 0  |     }  | 
359  |  |  | 
360  |  |  | 
361  | 0  |   if (n == 1)  | 
362  | 0  |     { | 
363  | 0  | #undef MPN_MUL_N  | 
364  | 0  | #undef MPN_SQR  | 
365  | 0  | #undef MPN_REDUCE  | 
366  | 0  | #define MPN_MUL_N(r,a,b,n)    umul_ppmm((r)[1], *(r), *(a), *(b))  | 
367  | 0  | #define MPN_SQR(r,a,n)      umul_ppmm((r)[1], *(r), *(a), *(a))  | 
368  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_0(rp, tp, mp, mip[0])  | 
369  | 0  |       INNERLOOP;  | 
370  | 0  |     }  | 
371  | 0  |   else  | 
372  | 0  | #if WANT_REDC_2  | 
373  | 0  |   if (REDC_1_TO_REDC_2_THRESHOLD < MUL_TOOM22_THRESHOLD)  | 
374  | 0  |     { | 
375  | 0  |       if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))  | 
376  | 0  |   { | 
377  | 0  |     if (REDC_1_TO_REDC_2_THRESHOLD < SQR_BASECASE_THRESHOLD  | 
378  | 0  |         || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))  | 
379  | 0  |       { | 
380  | 0  | #undef MPN_MUL_N  | 
381  | 0  | #undef MPN_SQR  | 
382  | 0  | #undef MPN_REDUCE  | 
383  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
384  | 0  | #define MPN_SQR(r,a,n)      mpn_mul_basecase (r,a,n,a,n)  | 
385  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1 (rp, tp, mp, n, mip[0])  | 
386  | 0  |         INNERLOOP;  | 
387  | 0  |       }  | 
388  | 0  |     else  | 
389  | 0  |       { | 
390  | 0  | #undef MPN_MUL_N  | 
391  | 0  | #undef MPN_SQR  | 
392  | 0  | #undef MPN_REDUCE  | 
393  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
394  | 0  | #define MPN_SQR(r,a,n)      mpn_sqr_basecase (r,a,n)  | 
395  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1 (rp, tp, mp, n, mip[0])  | 
396  | 0  |         INNERLOOP;  | 
397  | 0  |       }  | 
398  | 0  |   }  | 
399  | 0  |       else if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD))  | 
400  | 0  |   { | 
401  | 0  |     if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD  | 
402  | 0  |         || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))  | 
403  | 0  |       { | 
404  | 0  | #undef MPN_MUL_N  | 
405  | 0  | #undef MPN_SQR  | 
406  | 0  | #undef MPN_REDUCE  | 
407  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
408  | 0  | #define MPN_SQR(r,a,n)      mpn_mul_basecase (r,a,n,a,n)  | 
409  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_2 (rp, tp, mp, n, mip)  | 
410  | 0  |         INNERLOOP;  | 
411  | 0  |       }  | 
412  | 0  |     else  | 
413  | 0  |       { | 
414  | 0  | #undef MPN_MUL_N  | 
415  | 0  | #undef MPN_SQR  | 
416  | 0  | #undef MPN_REDUCE  | 
417  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
418  | 0  | #define MPN_SQR(r,a,n)      mpn_sqr_basecase (r,a,n)  | 
419  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_2 (rp, tp, mp, n, mip)  | 
420  | 0  |         INNERLOOP;  | 
421  | 0  |       }  | 
422  | 0  |   }  | 
423  | 0  |       else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))  | 
424  | 0  |   { | 
425  | 0  | #undef MPN_MUL_N  | 
426  | 0  | #undef MPN_SQR  | 
427  | 0  | #undef MPN_REDUCE  | 
428  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_n (r,a,b,n)  | 
429  | 0  | #define MPN_SQR(r,a,n)      mpn_sqr (r,a,n)  | 
430  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_2 (rp, tp, mp, n, mip)  | 
431  | 0  |     INNERLOOP;  | 
432  | 0  |   }  | 
433  | 0  |       else  | 
434  | 0  |   { | 
435  | 0  | #undef MPN_MUL_N  | 
436  | 0  | #undef MPN_SQR  | 
437  | 0  | #undef MPN_REDUCE  | 
438  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_n (r,a,b,n)  | 
439  | 0  | #define MPN_SQR(r,a,n)      mpn_sqr (r,a,n)  | 
440  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  mpn_redc_n (rp, tp, mp, n, mip)  | 
441  | 0  |     INNERLOOP;  | 
442  | 0  |   }  | 
443  | 0  |     }  | 
444  | 0  |   else  | 
445  | 0  |     { | 
446  | 0  |       if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD))  | 
447  | 0  |   { | 
448  | 0  |     if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD  | 
449  | 0  |         || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))  | 
450  | 0  |       { | 
451  | 0  | #undef MPN_MUL_N  | 
452  | 0  | #undef MPN_SQR  | 
453  | 0  | #undef MPN_REDUCE  | 
454  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
455  | 0  | #define MPN_SQR(r,a,n)      mpn_mul_basecase (r,a,n,a,n)  | 
456  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1 (rp, tp, mp, n, mip[0])  | 
457  | 0  |         INNERLOOP;  | 
458  | 0  |       }  | 
459  | 0  |     else  | 
460  | 0  |       { | 
461  | 0  | #undef MPN_MUL_N  | 
462  | 0  | #undef MPN_SQR  | 
463  | 0  | #undef MPN_REDUCE  | 
464  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
465  | 0  | #define MPN_SQR(r,a,n)      mpn_sqr_basecase (r,a,n)  | 
466  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1 (rp, tp, mp, n, mip[0])  | 
467  | 0  |         INNERLOOP;  | 
468  | 0  |       }  | 
469  | 0  |   }  | 
470  | 0  |       else if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))  | 
471  | 0  |   { | 
472  | 0  | #undef MPN_MUL_N  | 
473  | 0  | #undef MPN_SQR  | 
474  | 0  | #undef MPN_REDUCE  | 
475  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_n (r,a,b,n)  | 
476  | 0  | #define MPN_SQR(r,a,n)      mpn_sqr (r,a,n)  | 
477  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1 (rp, tp, mp, n, mip[0])  | 
478  | 0  |     INNERLOOP;  | 
479  | 0  |   }  | 
480  | 0  |       else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))  | 
481  | 0  |   { | 
482  | 0  | #undef MPN_MUL_N  | 
483  | 0  | #undef MPN_SQR  | 
484  | 0  | #undef MPN_REDUCE  | 
485  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_n (r,a,b,n)  | 
486  | 0  | #define MPN_SQR(r,a,n)      mpn_sqr (r,a,n)  | 
487  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_2 (rp, tp, mp, n, mip)  | 
488  | 0  |     INNERLOOP;  | 
489  | 0  |   }  | 
490  | 0  |       else  | 
491  | 0  |   { | 
492  | 0  | #undef MPN_MUL_N  | 
493  | 0  | #undef MPN_SQR  | 
494  | 0  | #undef MPN_REDUCE  | 
495  | 0  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_n (r,a,b,n)  | 
496  | 0  | #define MPN_SQR(r,a,n)      mpn_sqr (r,a,n)  | 
497  | 0  | #define MPN_REDUCE(rp,tp,mp,n,mip)  mpn_redc_n (rp, tp, mp, n, mip)  | 
498  | 0  |     INNERLOOP;  | 
499  | 0  |   }  | 
500  | 0  |     }  | 
501  |  |  | 
502  |  | #else  /* WANT_REDC_2 */  | 
503  |  |  | 
504  |  |   if (REDC_1_TO_REDC_N_THRESHOLD < MUL_TOOM22_THRESHOLD)  | 
505  |  |     { | 
506  |  |       if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))  | 
507  |  |   { | 
508  |  |     if (REDC_1_TO_REDC_N_THRESHOLD < SQR_BASECASE_THRESHOLD  | 
509  |  |         || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))  | 
510  |  |       { | 
511  |  | #undef MPN_MUL_N  | 
512  |  | #undef MPN_SQR  | 
513  |  | #undef MPN_REDUCE  | 
514  |  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
515  |  | #define MPN_SQR(r,a,n)      mpn_mul_basecase (r,a,n,a,n)  | 
516  |  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1 (rp, tp, mp, n, mip[0])  | 
517  |  |         INNERLOOP;  | 
518  |  |       }  | 
519  |  |     else  | 
520  |  |       { | 
521  |  | #undef MPN_MUL_N  | 
522  |  | #undef MPN_SQR  | 
523  |  | #undef MPN_REDUCE  | 
524  |  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
525  |  | #define MPN_SQR(r,a,n)      mpn_sqr_basecase (r,a,n)  | 
526  |  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1 (rp, tp, mp, n, mip[0])  | 
527  |  |         INNERLOOP;  | 
528  |  |       }  | 
529  |  |   }  | 
530  |  |       else if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD))  | 
531  |  |   { | 
532  |  |     if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD  | 
533  |  |         || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))  | 
534  |  |       { | 
535  |  | #undef MPN_MUL_N  | 
536  |  | #undef MPN_SQR  | 
537  |  | #undef MPN_REDUCE  | 
538  |  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
539  |  | #define MPN_SQR(r,a,n)      mpn_mul_basecase (r,a,n,a,n)  | 
540  |  | #define MPN_REDUCE(rp,tp,mp,n,mip)  mpn_redc_n (rp, tp, mp, n, mip)  | 
541  |  |         INNERLOOP;  | 
542  |  |       }  | 
543  |  |     else  | 
544  |  |       { | 
545  |  | #undef MPN_MUL_N  | 
546  |  | #undef MPN_SQR  | 
547  |  | #undef MPN_REDUCE  | 
548  |  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
549  |  | #define MPN_SQR(r,a,n)      mpn_sqr_basecase (r,a,n)  | 
550  |  | #define MPN_REDUCE(rp,tp,mp,n,mip)  mpn_redc_n (rp, tp, mp, n, mip)  | 
551  |  |         INNERLOOP;  | 
552  |  |       }  | 
553  |  |   }  | 
554  |  |       else  | 
555  |  |   { | 
556  |  | #undef MPN_MUL_N  | 
557  |  | #undef MPN_SQR  | 
558  |  | #undef MPN_REDUCE  | 
559  |  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_n (r,a,b,n)  | 
560  |  | #define MPN_SQR(r,a,n)      mpn_sqr (r,a,n)  | 
561  |  | #define MPN_REDUCE(rp,tp,mp,n,mip)  mpn_redc_n (rp, tp, mp, n, mip)  | 
562  |  |     INNERLOOP;  | 
563  |  |   }  | 
564  |  |     }  | 
565  |  |   else  | 
566  |  |     { | 
567  |  |       if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD))  | 
568  |  |   { | 
569  |  |     if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD  | 
570  |  |         || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD))  | 
571  |  |       { | 
572  |  | #undef MPN_MUL_N  | 
573  |  | #undef MPN_SQR  | 
574  |  | #undef MPN_REDUCE  | 
575  |  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
576  |  | #define MPN_SQR(r,a,n)      mpn_mul_basecase (r,a,n,a,n)  | 
577  |  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1 (rp, tp, mp, n, mip[0])  | 
578  |  |         INNERLOOP;  | 
579  |  |       }  | 
580  |  |     else  | 
581  |  |       { | 
582  |  | #undef MPN_MUL_N  | 
583  |  | #undef MPN_SQR  | 
584  |  | #undef MPN_REDUCE  | 
585  |  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_basecase (r,a,n,b,n)  | 
586  |  | #define MPN_SQR(r,a,n)      mpn_sqr_basecase (r,a,n)  | 
587  |  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1 (rp, tp, mp, n, mip[0])  | 
588  |  |         INNERLOOP;  | 
589  |  |       }  | 
590  |  |   }  | 
591  |  |       else if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))  | 
592  |  |   { | 
593  |  | #undef MPN_MUL_N  | 
594  |  | #undef MPN_SQR  | 
595  |  | #undef MPN_REDUCE  | 
596  |  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_n (r,a,b,n)  | 
597  |  | #define MPN_SQR(r,a,n)      mpn_sqr (r,a,n)  | 
598  |  | #define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1 (rp, tp, mp, n, mip[0])  | 
599  |  |     INNERLOOP;  | 
600  |  |   }  | 
601  |  |       else  | 
602  |  |   { | 
603  |  | #undef MPN_MUL_N  | 
604  |  | #undef MPN_SQR  | 
605  |  | #undef MPN_REDUCE  | 
606  |  | #define MPN_MUL_N(r,a,b,n)    mpn_mul_n (r,a,b,n)  | 
607  |  | #define MPN_SQR(r,a,n)      mpn_sqr (r,a,n)  | 
608  |  | #define MPN_REDUCE(rp,tp,mp,n,mip)  mpn_redc_n (rp, tp, mp, n, mip)  | 
609  |  |     INNERLOOP;  | 
610  |  |   }  | 
611  |  |     }  | 
612  |  | #endif  /* WANT_REDC_2 */  | 
613  |  |  | 
614  | 0  |  done:  | 
615  |  | 
  | 
616  | 0  |   MPN_COPY (tp, rp, n);  | 
617  | 0  |   MPN_ZERO (tp + n, n);  | 
618  |  |  | 
619  | 0  | #if WANT_REDC_2  | 
620  | 0  |   if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))  | 
621  | 0  |     MPN_REDC_1 (rp, tp, mp, n, mip[0]);  | 
622  | 0  |   else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD))  | 
623  | 0  |     MPN_REDC_2 (rp, tp, mp, n, mip);  | 
624  |  | #else  | 
625  |  |   if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD))  | 
626  |  |     MPN_REDC_1 (rp, tp, mp, n, mip[0]);  | 
627  |  | #endif  | 
628  | 0  |   else  | 
629  | 0  |     mpn_redc_n (rp, tp, mp, n, mip);  | 
630  |  | 
  | 
631  | 0  |   if (mpn_cmp (rp, mp, n) >= 0)  | 
632  | 0  |     mpn_sub_n (rp, rp, mp, n);  | 
633  |  | 
  | 
634  | 0  |   TMP_FREE;  | 
635  | 0  | }  |