/src/gmp-6.2.1/mpn/sbpi1_div_q.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mpn_sbpi1_div_q -- Schoolbook division using the Möller-Granlund 3/2  | 
2  |  |    division algorithm.  | 
3  |  |  | 
4  |  |    Contributed to the GNU project by Torbjorn Granlund.  | 
5  |  |  | 
6  |  |    THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY  | 
7  |  |    SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST  | 
8  |  |    GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE.  | 
9  |  |  | 
10  |  | Copyright 2007, 2009 Free Software Foundation, Inc.  | 
11  |  |  | 
12  |  | This file is part of the GNU MP Library.  | 
13  |  |  | 
14  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
15  |  | it under the terms of either:  | 
16  |  |  | 
17  |  |   * the GNU Lesser General Public License as published by the Free  | 
18  |  |     Software Foundation; either version 3 of the License, or (at your  | 
19  |  |     option) any later version.  | 
20  |  |  | 
21  |  | or  | 
22  |  |  | 
23  |  |   * the GNU General Public License as published by the Free Software  | 
24  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
25  |  |     later version.  | 
26  |  |  | 
27  |  | or both in parallel, as here.  | 
28  |  |  | 
29  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
30  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
31  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
32  |  | for more details.  | 
33  |  |  | 
34  |  | You should have received copies of the GNU General Public License and the  | 
35  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
36  |  | see https://www.gnu.org/licenses/.  */  | 
37  |  |  | 
38  |  |  | 
39  |  | #include "gmp-impl.h"  | 
40  |  | #include "longlong.h"  | 
41  |  |  | 
42  |  | mp_limb_t  | 
43  |  | mpn_sbpi1_div_q (mp_ptr qp,  | 
44  |  |      mp_ptr np, mp_size_t nn,  | 
45  |  |      mp_srcptr dp, mp_size_t dn,  | 
46  |  |      mp_limb_t dinv)  | 
47  | 0  | { | 
48  | 0  |   mp_limb_t qh;  | 
49  | 0  |   mp_size_t qn, i;  | 
50  | 0  |   mp_limb_t n1, n0;  | 
51  | 0  |   mp_limb_t d1, d0;  | 
52  | 0  |   mp_limb_t cy, cy1;  | 
53  | 0  |   mp_limb_t q;  | 
54  | 0  |   mp_limb_t flag;  | 
55  |  | 
  | 
56  | 0  |   mp_size_t dn_orig = dn;  | 
57  | 0  |   mp_srcptr dp_orig = dp;  | 
58  | 0  |   mp_ptr np_orig = np;  | 
59  |  | 
  | 
60  | 0  |   ASSERT (dn > 2);  | 
61  | 0  |   ASSERT (nn >= dn);  | 
62  | 0  |   ASSERT ((dp[dn-1] & GMP_NUMB_HIGHBIT) != 0);  | 
63  |  |  | 
64  | 0  |   np += nn;  | 
65  |  | 
  | 
66  | 0  |   qn = nn - dn;  | 
67  | 0  |   if (qn + 1 < dn)  | 
68  | 0  |     { | 
69  | 0  |       dp += dn - (qn + 1);  | 
70  | 0  |       dn = qn + 1;  | 
71  | 0  |     }  | 
72  |  | 
  | 
73  | 0  |   qh = mpn_cmp (np - dn, dp, dn) >= 0;  | 
74  | 0  |   if (qh != 0)  | 
75  | 0  |     mpn_sub_n (np - dn, np - dn, dp, dn);  | 
76  |  | 
  | 
77  | 0  |   qp += qn;  | 
78  |  | 
  | 
79  | 0  |   dn -= 2;      /* offset dn by 2 for main division loops,  | 
80  |  |            saving two iterations in mpn_submul_1.  */  | 
81  | 0  |   d1 = dp[dn + 1];  | 
82  | 0  |   d0 = dp[dn + 0];  | 
83  |  | 
  | 
84  | 0  |   np -= 2;  | 
85  |  | 
  | 
86  | 0  |   n1 = np[1];  | 
87  |  | 
  | 
88  | 0  |   for (i = qn - (dn + 2); i >= 0; i--)  | 
89  | 0  |     { | 
90  | 0  |       np--;  | 
91  | 0  |       if (UNLIKELY (n1 == d1) && np[1] == d0)  | 
92  | 0  |   { | 
93  | 0  |     q = GMP_NUMB_MASK;  | 
94  | 0  |     mpn_submul_1 (np - dn, dp, dn + 2, q);  | 
95  | 0  |     n1 = np[1];   /* update n1, last loop's value will now be invalid */  | 
96  | 0  |   }  | 
97  | 0  |       else  | 
98  | 0  |   { | 
99  | 0  |     udiv_qr_3by2 (q, n1, n0, n1, np[1], np[0], d1, d0, dinv);  | 
100  |  | 
  | 
101  | 0  |     cy = mpn_submul_1 (np - dn, dp, dn, q);  | 
102  |  | 
  | 
103  | 0  |     cy1 = n0 < cy;  | 
104  | 0  |     n0 = (n0 - cy) & GMP_NUMB_MASK;  | 
105  | 0  |     cy = n1 < cy1;  | 
106  | 0  |     n1 -= cy1;  | 
107  | 0  |     np[0] = n0;  | 
108  |  | 
  | 
109  | 0  |     if (UNLIKELY (cy != 0))  | 
110  | 0  |       { | 
111  | 0  |         n1 += d1 + mpn_add_n (np - dn, np - dn, dp, dn + 1);  | 
112  | 0  |         q--;  | 
113  | 0  |       }  | 
114  | 0  |   }  | 
115  |  | 
  | 
116  | 0  |       *--qp = q;  | 
117  | 0  |     }  | 
118  |  | 
  | 
119  | 0  |   flag = ~CNST_LIMB(0);  | 
120  |  | 
  | 
121  | 0  |   if (dn >= 0)  | 
122  | 0  |     { | 
123  | 0  |       for (i = dn; i > 0; i--)  | 
124  | 0  |   { | 
125  | 0  |     np--;  | 
126  | 0  |     if (UNLIKELY (n1 >= (d1 & flag)))  | 
127  | 0  |       { | 
128  | 0  |         q = GMP_NUMB_MASK;  | 
129  | 0  |         cy = mpn_submul_1 (np - dn, dp, dn + 2, q);  | 
130  |  | 
  | 
131  | 0  |         if (UNLIKELY (n1 != cy))  | 
132  | 0  |     { | 
133  | 0  |       if (n1 < (cy & flag))  | 
134  | 0  |         { | 
135  | 0  |           q--;  | 
136  | 0  |           mpn_add_n (np - dn, np - dn, dp, dn + 2);  | 
137  | 0  |         }  | 
138  | 0  |       else  | 
139  | 0  |         flag = 0;  | 
140  | 0  |     }  | 
141  | 0  |         n1 = np[1];  | 
142  | 0  |       }  | 
143  | 0  |     else  | 
144  | 0  |       { | 
145  | 0  |         udiv_qr_3by2 (q, n1, n0, n1, np[1], np[0], d1, d0, dinv);  | 
146  |  | 
  | 
147  | 0  |         cy = mpn_submul_1 (np - dn, dp, dn, q);  | 
148  |  | 
  | 
149  | 0  |         cy1 = n0 < cy;  | 
150  | 0  |         n0 = (n0 - cy) & GMP_NUMB_MASK;  | 
151  | 0  |         cy = n1 < cy1;  | 
152  | 0  |         n1 -= cy1;  | 
153  | 0  |         np[0] = n0;  | 
154  |  | 
  | 
155  | 0  |         if (UNLIKELY (cy != 0))  | 
156  | 0  |     { | 
157  | 0  |       n1 += d1 + mpn_add_n (np - dn, np - dn, dp, dn + 1);  | 
158  | 0  |       q--;  | 
159  | 0  |     }  | 
160  | 0  |       }  | 
161  |  | 
  | 
162  | 0  |     *--qp = q;  | 
163  |  |  | 
164  |  |     /* Truncate operands.  */  | 
165  | 0  |     dn--;  | 
166  | 0  |     dp++;  | 
167  | 0  |   }  | 
168  |  | 
  | 
169  | 0  |       np--;  | 
170  | 0  |       if (UNLIKELY (n1 >= (d1 & flag)))  | 
171  | 0  |   { | 
172  | 0  |     q = GMP_NUMB_MASK;  | 
173  | 0  |     cy = mpn_submul_1 (np, dp, 2, q);  | 
174  |  | 
  | 
175  | 0  |     if (UNLIKELY (n1 != cy))  | 
176  | 0  |       { | 
177  | 0  |         if (n1 < (cy & flag))  | 
178  | 0  |     { | 
179  | 0  |       q--;  | 
180  | 0  |       add_ssaaaa (np[1], np[0], np[1], np[0], dp[1], dp[0]);  | 
181  | 0  |     }  | 
182  | 0  |         else  | 
183  | 0  |     flag = 0;  | 
184  | 0  |       }  | 
185  | 0  |     n1 = np[1];  | 
186  | 0  |   }  | 
187  | 0  |       else  | 
188  | 0  |   { | 
189  | 0  |     udiv_qr_3by2 (q, n1, n0, n1, np[1], np[0], d1, d0, dinv);  | 
190  |  | 
  | 
191  | 0  |     np[0] = n0;  | 
192  | 0  |     np[1] = n1;  | 
193  | 0  |   }  | 
194  |  | 
  | 
195  | 0  |       *--qp = q;  | 
196  | 0  |     }  | 
197  | 0  |   ASSERT_ALWAYS (np[1] == n1);  | 
198  | 0  |   np += 2;  | 
199  |  |  | 
200  |  | 
  | 
201  | 0  |   dn = dn_orig;  | 
202  | 0  |   if (UNLIKELY (n1 < (dn & flag)))  | 
203  | 0  |     { | 
204  | 0  |       mp_limb_t q, x;  | 
205  |  |  | 
206  |  |       /* The quotient may be too large if the remainder is small.  Recompute  | 
207  |  |    for above ignored operand parts, until the remainder spills.  | 
208  |  |  | 
209  |  |    FIXME: The quality of this code isn't the same as the code above.  | 
210  |  |    1. We don't compute things in an optimal order, high-to-low, in order  | 
211  |  |       to terminate as quickly as possible.  | 
212  |  |    2. We mess with pointers and sizes, adding and subtracting and  | 
213  |  |       adjusting to get things right.  It surely could be streamlined.  | 
214  |  |    3. The only termination criteria are that we determine that the  | 
215  |  |       quotient needs to be adjusted, or that we have recomputed  | 
216  |  |       everything.  We should stop when the remainder is so large  | 
217  |  |       that no additional subtracting could make it spill.  | 
218  |  |    4. If nothing else, we should not do two loops of submul_1 over the  | 
219  |  |       data, instead handle both the triangularization and chopping at  | 
220  |  |       once.  */  | 
221  |  | 
  | 
222  | 0  |       x = n1;  | 
223  |  | 
  | 
224  | 0  |       if (dn > 2)  | 
225  | 0  |   { | 
226  |  |     /* Compensate for triangularization.  */  | 
227  | 0  |     mp_limb_t y;  | 
228  |  | 
  | 
229  | 0  |     dp = dp_orig;  | 
230  | 0  |     if (qn + 1 < dn)  | 
231  | 0  |       { | 
232  | 0  |         dp += dn - (qn + 1);  | 
233  | 0  |         dn = qn + 1;  | 
234  | 0  |       }  | 
235  |  | 
  | 
236  | 0  |     y = np[-2];  | 
237  |  | 
  | 
238  | 0  |     for (i = dn - 3; i >= 0; i--)  | 
239  | 0  |       { | 
240  | 0  |         q = qp[i];  | 
241  | 0  |         cy = mpn_submul_1 (np - (dn - i), dp, dn - i - 2, q);  | 
242  |  | 
  | 
243  | 0  |         if (y < cy)  | 
244  | 0  |     { | 
245  | 0  |       if (x == 0)  | 
246  | 0  |         { | 
247  | 0  |           cy = mpn_sub_1 (qp, qp, qn, 1);  | 
248  | 0  |           ASSERT_ALWAYS (cy == 0);  | 
249  | 0  |           return qh - cy;  | 
250  | 0  |         }  | 
251  | 0  |       x--;  | 
252  | 0  |     }  | 
253  | 0  |         y -= cy;  | 
254  | 0  |       }  | 
255  | 0  |     np[-2] = y;  | 
256  | 0  |   }  | 
257  |  |  | 
258  | 0  |       dn = dn_orig;  | 
259  | 0  |       if (qn + 1 < dn)  | 
260  | 0  |   { | 
261  |  |     /* Compensate for ignored dividend and divisor tails.  */  | 
262  |  | 
  | 
263  | 0  |     dp = dp_orig;  | 
264  | 0  |     np = np_orig;  | 
265  |  | 
  | 
266  | 0  |     if (qh != 0)  | 
267  | 0  |       { | 
268  | 0  |         cy = mpn_sub_n (np + qn, np + qn, dp, dn - (qn + 1));  | 
269  | 0  |         if (cy != 0)  | 
270  | 0  |     { | 
271  | 0  |       if (x == 0)  | 
272  | 0  |         { | 
273  | 0  |           if (qn != 0)  | 
274  | 0  |       cy = mpn_sub_1 (qp, qp, qn, 1);  | 
275  | 0  |           return qh - cy;  | 
276  | 0  |         }  | 
277  | 0  |       x--;  | 
278  | 0  |     }  | 
279  | 0  |       }  | 
280  |  |  | 
281  | 0  |     if (qn == 0)  | 
282  | 0  |       return qh;  | 
283  |  |  | 
284  | 0  |     for (i = dn - qn - 2; i >= 0; i--)  | 
285  | 0  |       { | 
286  | 0  |         cy = mpn_submul_1 (np + i, qp, qn, dp[i]);  | 
287  | 0  |         cy = mpn_sub_1 (np + qn + i, np + qn + i, dn - qn - i - 1, cy);  | 
288  | 0  |         if (cy != 0)  | 
289  | 0  |     { | 
290  | 0  |       if (x == 0)  | 
291  | 0  |         { | 
292  | 0  |           cy = mpn_sub_1 (qp, qp, qn, 1);  | 
293  | 0  |           return qh;  | 
294  | 0  |         }  | 
295  | 0  |       x--;  | 
296  | 0  |     }  | 
297  | 0  |       }  | 
298  | 0  |   }  | 
299  | 0  |     }  | 
300  |  |  | 
301  | 0  |   return qh;  | 
302  | 0  | }  |