/src/gmp-6.2.1/mpn/toom_interpolate_8pts.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mpn_toom_interpolate_8pts -- Interpolate for toom54, 63, 72.  | 
2  |  |  | 
3  |  |    Contributed to the GNU project by Marco Bodrato.  | 
4  |  |  | 
5  |  |    THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  IT IS ONLY  | 
6  |  |    SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST  | 
7  |  |    GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
8  |  |  | 
9  |  | Copyright 2009, 2011, 2012 Free Software Foundation, Inc.  | 
10  |  |  | 
11  |  | This file is part of the GNU MP Library.  | 
12  |  |  | 
13  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
14  |  | it under the terms of either:  | 
15  |  |  | 
16  |  |   * the GNU Lesser General Public License as published by the Free  | 
17  |  |     Software Foundation; either version 3 of the License, or (at your  | 
18  |  |     option) any later version.  | 
19  |  |  | 
20  |  | or  | 
21  |  |  | 
22  |  |   * the GNU General Public License as published by the Free Software  | 
23  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
24  |  |     later version.  | 
25  |  |  | 
26  |  | or both in parallel, as here.  | 
27  |  |  | 
28  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
29  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
30  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
31  |  | for more details.  | 
32  |  |  | 
33  |  | You should have received copies of the GNU General Public License and the  | 
34  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
35  |  | see https://www.gnu.org/licenses/.  */  | 
36  |  |  | 
37  |  | #include "gmp-impl.h"  | 
38  |  |  | 
39  | 0  | #define BINVERT_3 MODLIMB_INVERSE_3  | 
40  |  |  | 
41  |  | #define BINVERT_15 \  | 
42  | 0  |   ((((GMP_NUMB_MAX >> (GMP_NUMB_BITS % 4)) / 15) * 14 * 16 & GMP_NUMB_MAX) + 15)  | 
43  |  |  | 
44  | 0  | #define BINVERT_45 ((BINVERT_15 * BINVERT_3) & GMP_NUMB_MASK)  | 
45  |  |  | 
46  |  | #ifndef mpn_divexact_by3  | 
47  |  | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1  | 
48  |  | #define mpn_divexact_by3(dst,src,size) mpn_pi1_bdiv_q_1(dst,src,size,3,BINVERT_3,0)  | 
49  |  | #else  | 
50  |  | #define mpn_divexact_by3(dst,src,size) mpn_divexact_1(dst,src,size,3)  | 
51  |  | #endif  | 
52  |  | #endif  | 
53  |  |  | 
54  |  | #ifndef mpn_divexact_by45  | 
55  |  | #if GMP_NUMB_BITS % 12 == 0  | 
56  |  | #define mpn_divexact_by45(dst,src,size) \  | 
57  |  |   (63 & 19 * mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 45)))  | 
58  |  | #else  | 
59  |  | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1  | 
60  | 0  | #define mpn_divexact_by45(dst,src,size) mpn_pi1_bdiv_q_1(dst,src,size,45,BINVERT_45,0)  | 
61  |  | #else  | 
62  |  | #define mpn_divexact_by45(dst,src,size) mpn_divexact_1(dst,src,size,45)  | 
63  |  | #endif  | 
64  |  | #endif  | 
65  |  | #endif  | 
66  |  |  | 
67  |  | #if HAVE_NATIVE_mpn_sublsh2_n_ip1  | 
68  |  | #define DO_mpn_sublsh2_n(dst,src,n,ws) mpn_sublsh2_n_ip1(dst,src,n)  | 
69  |  | #else  | 
70  |  | #define DO_mpn_sublsh2_n(dst,src,n,ws) DO_mpn_sublsh_n(dst,src,n,2,ws)  | 
71  |  | #endif  | 
72  |  |  | 
73  |  | #if HAVE_NATIVE_mpn_sublsh_n  | 
74  |  | #define DO_mpn_sublsh_n(dst,src,n,s,ws) mpn_sublsh_n (dst,dst,src,n,s)  | 
75  |  | #else  | 
76  |  | static mp_limb_t  | 
77  |  | DO_mpn_sublsh_n (mp_ptr dst, mp_srcptr src, mp_size_t n, unsigned int s, mp_ptr ws)  | 
78  | 0  | { | 
79  |  | #if USE_MUL_1 && 0  | 
80  |  |   return mpn_submul_1(dst,src,n,CNST_LIMB(1) <<(s));  | 
81  |  | #else  | 
82  | 0  |   mp_limb_t __cy;  | 
83  | 0  |   __cy = mpn_lshift (ws,src,n,s);  | 
84  | 0  |   return __cy + mpn_sub_n (dst,dst,ws,n);  | 
85  | 0  | #endif  | 
86  | 0  | }  | 
87  |  | #endif  | 
88  |  |  | 
89  |  |  | 
90  |  | #if HAVE_NATIVE_mpn_subrsh  | 
91  |  | #define DO_mpn_subrsh(dst,nd,src,ns,s,ws) mpn_subrsh (dst,nd,src,ns,s)  | 
92  |  | #else  | 
93  |  | /* This is not a correct definition, it assumes no carry */  | 
94  | 0  | #define DO_mpn_subrsh(dst,nd,src,ns,s,ws)       \  | 
95  | 0  | do {                 \ | 
96  | 0  |   mp_limb_t __cy;             \  | 
97  | 0  |   MPN_DECR_U (dst, nd, src[0] >> s);          \  | 
98  | 0  |   __cy = DO_mpn_sublsh_n (dst, src + 1, ns - 1, GMP_NUMB_BITS - s, ws);  \  | 
99  | 0  |   MPN_DECR_U (dst + ns - 1, nd - ns + 1, __cy);       \  | 
100  | 0  | } while (0)  | 
101  |  | #endif  | 
102  |  |  | 
103  |  | /* Interpolation for Toom-4.5 (or Toom-4), using the evaluation  | 
104  |  |    points: infinity(4.5 only), 4, -4, 2, -2, 1, -1, 0. More precisely,  | 
105  |  |    we want to compute f(2^(GMP_NUMB_BITS * n)) for a polynomial f of  | 
106  |  |    degree 7 (or 6), given the 8 (rsp. 7) values:  | 
107  |  |  | 
108  |  |      r1 = limit at infinity of f(x) / x^7,  | 
109  |  |      r2 = f(4),  | 
110  |  |      r3 = f(-4),  | 
111  |  |      r4 = f(2),  | 
112  |  |      r5 = f(-2),  | 
113  |  |      r6 = f(1),  | 
114  |  |      r7 = f(-1),  | 
115  |  |      r8 = f(0).  | 
116  |  |  | 
117  |  |    All couples of the form f(n),f(-n) must be already mixed with  | 
118  |  |    toom_couple_handling(f(n),...,f(-n),...)  | 
119  |  |  | 
120  |  |    The result is stored in {pp, spt + 7*n (or 6*n)}. | 
121  |  |    At entry, r8 is stored at {pp, 2n}, | 
122  |  |    r5 is stored at {pp + 3n, 3n + 1}. | 
123  |  |  | 
124  |  |    The other values are 2n+... limbs each (with most significant limbs small).  | 
125  |  |  | 
126  |  |    All intermediate results are positive.  | 
127  |  |    Inputs are destroyed.  | 
128  |  | */  | 
129  |  |  | 
130  |  | void  | 
131  |  | mpn_toom_interpolate_8pts (mp_ptr pp, mp_size_t n,  | 
132  |  |          mp_ptr r3, mp_ptr r7,  | 
133  |  |          mp_size_t spt, mp_ptr ws)  | 
134  | 0  | { | 
135  | 0  |   mp_limb_signed_t cy;  | 
136  | 0  |   mp_ptr r5, r1;  | 
137  | 0  |   r5 = (pp + 3 * n);      /* 3n+1 */  | 
138  | 0  |   r1 = (pp + 7 * n);      /* spt */  | 
139  |  |  | 
140  |  |   /******************************* interpolation *****************************/  | 
141  |  | 
  | 
142  | 0  |   DO_mpn_subrsh(r3+n, 2 * n + 1, pp, 2 * n, 4, ws);  | 
143  | 0  |   cy = DO_mpn_sublsh_n (r3, r1, spt, 12, ws);  | 
144  | 0  |   MPN_DECR_U (r3 + spt, 3 * n + 1 - spt, cy);  | 
145  |  |  | 
146  | 0  |   DO_mpn_subrsh(r5+n, 2 * n + 1, pp, 2 * n, 2, ws);  | 
147  | 0  |   cy = DO_mpn_sublsh_n (r5, r1, spt, 6, ws);  | 
148  | 0  |   MPN_DECR_U (r5 + spt, 3 * n + 1 - spt, cy);  | 
149  |  |  | 
150  | 0  |   r7[3*n] -= mpn_sub_n (r7+n, r7+n, pp, 2 * n);  | 
151  | 0  |   cy = mpn_sub_n (r7, r7, r1, spt);  | 
152  | 0  |   MPN_DECR_U (r7 + spt, 3 * n + 1 - spt, cy);  | 
153  |  |  | 
154  | 0  |   ASSERT_NOCARRY(mpn_sub_n (r3, r3, r5, 3 * n + 1));  | 
155  | 0  |   ASSERT_NOCARRY(mpn_rshift(r3, r3, 3 * n + 1, 2));  | 
156  |  |  | 
157  | 0  |   ASSERT_NOCARRY(mpn_sub_n (r5, r5, r7, 3 * n + 1));  | 
158  |  |  | 
159  | 0  |   ASSERT_NOCARRY(mpn_sub_n (r3, r3, r5, 3 * n + 1));  | 
160  |  |  | 
161  | 0  |   mpn_divexact_by45 (r3, r3, 3 * n + 1);  | 
162  |  | 
  | 
163  | 0  |   ASSERT_NOCARRY(mpn_divexact_by3 (r5, r5, 3 * n + 1));  | 
164  |  |  | 
165  | 0  |   ASSERT_NOCARRY(DO_mpn_sublsh2_n (r5, r3, 3 * n + 1, ws));  | 
166  |  |  | 
167  |  |   /* last interpolation steps... */  | 
168  |  |   /* ... are mixed with recomposition */  | 
169  |  |  | 
170  |  |   /***************************** recomposition *******************************/  | 
171  |  |   /*  | 
172  |  |     pp[] prior to operations:  | 
173  |  |      |_H r1|_L r1|____||_H r5|_M_r5|_L r5|_____|_H r8|_L r8|pp  | 
174  |  |  | 
175  |  |     summation scheme for remaining operations:  | 
176  |  |      |____8|n___7|n___6|n___5|n___4|n___3|n___2|n____|n____|pp  | 
177  |  |      |_H r1|_L r1|____||_H*r5|_M r5|_L r5|_____|_H_r8|_L r8|pp  | 
178  |  |     ||_H r3|_M r3|_L*r3|  | 
179  |  |           ||_H_r7|_M_r7|_L_r7|  | 
180  |  |           ||-H r3|-M r3|-L*r3|  | 
181  |  |           ||-H*r5|-M_r5|-L_r5|  | 
182  |  |   */  | 
183  |  |  | 
184  | 0  |   cy = mpn_add_n (pp + n, pp + n, r7, n); /* Hr8+Lr7-Lr5 */  | 
185  | 0  |   cy-= mpn_sub_n (pp + n, pp + n, r5, n);  | 
186  | 0  |   if (cy > 0) { | 
187  | 0  |     MPN_INCR_U (r7 + n, 2*n + 1, 1);  | 
188  | 0  |     cy = 0;  | 
189  | 0  |   }  | 
190  |  |  | 
191  | 0  |   cy = mpn_sub_nc (pp + 2*n, r7 + n, r5 + n, n, -cy); /* Mr7-Mr5 */  | 
192  | 0  |   MPN_DECR_U (r7 + 2*n, n + 1, cy);  | 
193  |  |  | 
194  | 0  |   cy = mpn_add_n (pp + 3*n, r5, r7+ 2*n, n+1); /* Hr7+Lr5 */  | 
195  | 0  |   r5[3*n]+= mpn_add_n (r5 + 2*n, r5 + 2*n, r3, n); /* Hr5+Lr3 */  | 
196  | 0  |   cy-= mpn_sub_n (pp + 3*n, pp + 3*n, r5 + 2*n, n+1); /* Hr7-Hr5+Lr5-Lr3 */  | 
197  | 0  |   if (UNLIKELY(0 > cy))  | 
198  | 0  |     MPN_DECR_U (r5 + n + 1, 2*n, 1);  | 
199  | 0  |   else  | 
200  | 0  |     MPN_INCR_U (r5 + n + 1, 2*n, cy);  | 
201  |  |  | 
202  | 0  |   ASSERT_NOCARRY(mpn_sub_n(pp + 4*n, r5 + n, r3 + n, 2*n +1)); /* Mr5-Mr3,Hr5-Hr3 */  | 
203  |  |  | 
204  | 0  |   cy = mpn_add_1 (pp + 6*n, r3 + n, n, pp[6*n]);  | 
205  | 0  |   MPN_INCR_U (r3 + 2*n, n + 1, cy);  | 
206  | 0  |   cy = mpn_add_n (pp + 7*n, pp + 7*n, r3 + 2*n, n);  | 
207  | 0  |   if (LIKELY(spt != n))  | 
208  | 0  |     MPN_INCR_U (pp + 8*n, spt - n, cy + r3[3*n]);  | 
209  | 0  |   else  | 
210  | 0  |     ASSERT (r3[3*n] + cy == 0);  | 
211  | 0  | }  |