/src/gmp-6.2.1/mpz/millerrabin.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* mpz_millerrabin(n,reps) -- An implementation of the probabilistic primality  | 
2  |  |    test found in Knuth's Seminumerical Algorithms book.  If the function  | 
3  |  |    mpz_millerrabin() returns 0 then n is not prime.  If it returns 1, then n is  | 
4  |  |    'probably' prime.  The probability of a false positive is (1/4)**reps, where  | 
5  |  |    reps is the number of internal passes of the probabilistic algorithm.  Knuth  | 
6  |  |    indicates that 25 passes are reasonable.  | 
7  |  |  | 
8  |  |    With the current implementation, the first 24 MR-tests are substituted by a  | 
9  |  |    Baillie-PSW probable prime test.  | 
10  |  |  | 
11  |  |    This implementation the Baillie-PSW test was checked up to 31*2^46,  | 
12  |  |    for smaller values no MR-test is performed, regardless of reps, and  | 
13  |  |    2 ("surely prime") is returned if the number was not proved composite. | 
14  |  |  | 
15  |  |    If GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS is defined as non-zero,  | 
16  |  |    the code assumes that the Baillie-PSW test was checked up to 2^64.  | 
17  |  |  | 
18  |  |    THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY.  THEY'RE ALMOST  | 
19  |  |    CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN  | 
20  |  |    FUTURE GNU MP RELEASES.  | 
21  |  |  | 
22  |  | Copyright 1991, 1993, 1994, 1996-2002, 2005, 2014, 2018, 2019 Free  | 
23  |  | Software Foundation, Inc.  | 
24  |  |  | 
25  |  | Contributed by John Amanatides.  | 
26  |  |  | 
27  |  | This file is part of the GNU MP Library.  | 
28  |  |  | 
29  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
30  |  | it under the terms of either:  | 
31  |  |  | 
32  |  |   * the GNU Lesser General Public License as published by the Free  | 
33  |  |     Software Foundation; either version 3 of the License, or (at your  | 
34  |  |     option) any later version.  | 
35  |  |  | 
36  |  | or  | 
37  |  |  | 
38  |  |   * the GNU General Public License as published by the Free Software  | 
39  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
40  |  |     later version.  | 
41  |  |  | 
42  |  | or both in parallel, as here.  | 
43  |  |  | 
44  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
45  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
46  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
47  |  | for more details.  | 
48  |  |  | 
49  |  | You should have received copies of the GNU General Public License and the  | 
50  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
51  |  | see https://www.gnu.org/licenses/.  */  | 
52  |  |  | 
53  |  | #include "gmp-impl.h"  | 
54  |  |  | 
55  |  | #ifndef GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS  | 
56  |  | #define GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS 0  | 
57  |  | #endif  | 
58  |  |  | 
59  |  | static int millerrabin (mpz_srcptr,  | 
60  |  |       mpz_ptr, mpz_ptr,  | 
61  |  |       mpz_srcptr, unsigned long int);  | 
62  |  |  | 
63  |  | int  | 
64  |  | mpz_millerrabin (mpz_srcptr n, int reps)  | 
65  | 0  | { | 
66  | 0  |   mpz_t nm, x, y, q;  | 
67  | 0  |   unsigned long int k;  | 
68  | 0  |   gmp_randstate_t rstate;  | 
69  | 0  |   int is_prime;  | 
70  | 0  |   TMP_DECL;  | 
71  | 0  |   TMP_MARK;  | 
72  |  | 
  | 
73  | 0  |   ASSERT (SIZ (n) > 0);  | 
74  | 0  |   MPZ_TMP_INIT (nm, SIZ (n) + 1);  | 
75  | 0  |   mpz_tdiv_q_2exp (nm, n, 1);  | 
76  |  | 
  | 
77  | 0  |   MPZ_TMP_INIT (x, SIZ (n) + 1);  | 
78  | 0  |   MPZ_TMP_INIT (y, 2 * SIZ (n)); /* mpz_powm_ui needs excessive memory!!! */  | 
79  | 0  |   MPZ_TMP_INIT (q, SIZ (n));  | 
80  |  |  | 
81  |  |   /* Find q and k, where q is odd and n = 1 + 2**k * q.  */  | 
82  | 0  |   k = mpz_scan1 (nm, 0L);  | 
83  | 0  |   mpz_tdiv_q_2exp (q, nm, k);  | 
84  | 0  |   ++k;  | 
85  |  |  | 
86  |  |   /* BPSW test */  | 
87  | 0  |   mpz_set_ui (x, 2);  | 
88  | 0  |   is_prime = millerrabin (n, x, y, q, k) && mpz_stronglucas (n, x, y);  | 
89  |  | 
  | 
90  | 0  |   if (is_prime)  | 
91  | 0  |     { | 
92  | 0  |       if (  | 
93  |  | #if GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS  | 
94  |  |     /* Consider numbers up to 2^64 that pass the BPSW test as primes. */  | 
95  |  | #if GMP_NUMB_BITS <= 64  | 
96  |  |     SIZ (n) <= 64 / GMP_NUMB_BITS  | 
97  |  | #else  | 
98  |  |     0  | 
99  |  | #endif  | 
100  |  | #if 64 % GMP_NUMB_BITS != 0  | 
101  |  |     || SIZ (n) - 64 / GMP_NUMB_BITS == (PTR (n) [64 / GMP_NUMB_BITS] < CNST_LIMB(1) << 64 % GMP_NUMB_BITS)  | 
102  |  | #endif  | 
103  |  | #else  | 
104  |  |     /* Consider numbers up to 31*2^46 that pass the BPSW test as primes.  | 
105  |  |        This implementation was tested up to 31*2^46 */  | 
106  |  |     /* 2^4 < 31 = 0b11111 < 2^5 */  | 
107  | 0  | #define GMP_BPSW_LIMB_CONST CNST_LIMB(31)  | 
108  | 0  | #define GMP_BPSW_BITS_CONST (LOG2C(31) - 1)  | 
109  | 0  | #define GMP_BPSW_BITS_LIMIT (46 + GMP_BPSW_BITS_CONST)  | 
110  |  | 
  | 
111  | 0  | #define GMP_BPSW_LIMBS_LIMIT (GMP_BPSW_BITS_LIMIT / GMP_NUMB_BITS)  | 
112  | 0  | #define GMP_BPSW_BITS_MOD (GMP_BPSW_BITS_LIMIT % GMP_NUMB_BITS)  | 
113  |  | 
  | 
114  |  | #if GMP_NUMB_BITS <=  GMP_BPSW_BITS_LIMIT  | 
115  |  |     SIZ (n) <= GMP_BPSW_LIMBS_LIMIT  | 
116  |  | #else  | 
117  | 0  |     0  | 
118  | 0  | #endif  | 
119  | 0  | #if GMP_BPSW_BITS_MOD >=  GMP_BPSW_BITS_CONST  | 
120  | 0  |     || SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST << (GMP_BPSW_BITS_MOD - GMP_BPSW_BITS_CONST))  | 
121  |  | #else  | 
122  |  | #if GMP_BPSW_BITS_MOD != 0  | 
123  |  |     || SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST >> (GMP_BPSW_BITS_CONST -  GMP_BPSW_BITS_MOD))  | 
124  |  | #else  | 
125  |  | #if GMP_NUMB_BITS > GMP_BPSW_BITS_CONST  | 
126  |  |     || SIZ (nm) - GMP_BPSW_LIMBS_LIMIT + 1 == (PTR (nm) [GMP_BPSW_LIMBS_LIMIT - 1] < GMP_BPSW_LIMB_CONST << (GMP_NUMB_BITS - 1 - GMP_BPSW_BITS_CONST))  | 
127  |  | #endif  | 
128  |  | #endif  | 
129  |  | #endif  | 
130  |  | 
  | 
131  | 0  | #undef GMP_BPSW_BITS_LIMIT  | 
132  | 0  | #undef GMP_BPSW_LIMB_CONST  | 
133  | 0  | #undef GMP_BPSW_BITS_CONST  | 
134  | 0  | #undef GMP_BPSW_LIMBS_LIMIT  | 
135  | 0  | #undef GMP_BPSW_BITS_MOD  | 
136  |  | 
  | 
137  | 0  | #endif  | 
138  | 0  |     )  | 
139  | 0  |   is_prime = 2;  | 
140  | 0  |       else  | 
141  | 0  |   { | 
142  | 0  |     reps -= 24;  | 
143  | 0  |     if (reps > 0)  | 
144  | 0  |       { | 
145  |  |         /* (n-5)/2 */  | 
146  | 0  |         mpz_sub_ui (nm, nm, 2L);  | 
147  | 0  |         ASSERT (mpz_cmp_ui (nm, 1L) >= 0);  | 
148  |  |  | 
149  | 0  |         gmp_randinit_default (rstate);  | 
150  |  | 
  | 
151  | 0  |         do  | 
152  | 0  |     { | 
153  |  |       /* 3 to (n-1)/2 inclusive, don't want 1, 0 or 2 */  | 
154  | 0  |       mpz_urandomm (x, rstate, nm);  | 
155  | 0  |       mpz_add_ui (x, x, 3L);  | 
156  |  | 
  | 
157  | 0  |       is_prime = millerrabin (n, x, y, q, k);  | 
158  | 0  |     } while (--reps > 0 && is_prime);  | 
159  |  | 
  | 
160  | 0  |         gmp_randclear (rstate);  | 
161  | 0  |       }  | 
162  | 0  |   }  | 
163  | 0  |     }  | 
164  | 0  |   TMP_FREE;  | 
165  | 0  |   return is_prime;  | 
166  | 0  | }  | 
167  |  |  | 
168  |  | static int  | 
169  |  | mod_eq_m1 (mpz_srcptr x, mpz_srcptr m)  | 
170  | 0  | { | 
171  | 0  |   mp_size_t ms;  | 
172  | 0  |   mp_srcptr mp, xp;  | 
173  |  | 
  | 
174  | 0  |   ms = SIZ (m);  | 
175  | 0  |   if (SIZ (x) != ms)  | 
176  | 0  |     return 0;  | 
177  | 0  |   ASSERT (ms > 0);  | 
178  |  |  | 
179  | 0  |   mp = PTR (m);  | 
180  | 0  |   xp = PTR (x);  | 
181  | 0  |   ASSERT ((mp[0] - 1) == (mp[0] ^ 1)); /* n is odd */  | 
182  |  |  | 
183  | 0  |   if ((*xp ^ CNST_LIMB(1) ^ *mp) != CNST_LIMB(0)) /* xp[0] != mp[0] - 1 */  | 
184  | 0  |     return 0;  | 
185  | 0  |   else  | 
186  | 0  |     { | 
187  | 0  |       int cmp;  | 
188  |  | 
  | 
189  | 0  |       --ms;  | 
190  | 0  |       ++xp;  | 
191  | 0  |       ++mp;  | 
192  |  | 
  | 
193  | 0  |       MPN_CMP (cmp, xp, mp, ms);  | 
194  |  | 
  | 
195  | 0  |       return cmp == 0;  | 
196  | 0  |     }  | 
197  | 0  | }  | 
198  |  |  | 
199  |  | static int  | 
200  |  | millerrabin (mpz_srcptr n, mpz_ptr x, mpz_ptr y,  | 
201  |  |        mpz_srcptr q, unsigned long int k)  | 
202  | 0  | { | 
203  | 0  |   unsigned long int i;  | 
204  |  | 
  | 
205  | 0  |   mpz_powm (y, x, q, n);  | 
206  |  | 
  | 
207  | 0  |   if (mpz_cmp_ui (y, 1L) == 0 || mod_eq_m1 (y, n))  | 
208  | 0  |     return 1;  | 
209  |  |  | 
210  | 0  |   for (i = 1; i < k; i++)  | 
211  | 0  |     { | 
212  | 0  |       mpz_powm_ui (y, y, 2L, n);  | 
213  | 0  |       if (mod_eq_m1 (y, n))  | 
214  | 0  |   return 1;  | 
215  |  |       /* y == 1 means that the previous y was a non-trivial square root  | 
216  |  |    of 1 (mod n). y == 0 means that n is a power of the base.  | 
217  |  |    In either case, n is not prime. */  | 
218  | 0  |       if (mpz_cmp_ui (y, 1L) <= 0)  | 
219  | 0  |   return 0;  | 
220  | 0  |     }  | 
221  | 0  |   return 0;  | 
222  | 0  | }  |