/src/gmp-6.2.1/primesieve.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* primesieve (BIT_ARRAY, N) -- Fills the BIT_ARRAY with a mask for primes up to N.  | 
2  |  |  | 
3  |  | Contributed to the GNU project by Marco Bodrato.  | 
4  |  |  | 
5  |  | THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.  | 
6  |  | IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.  | 
7  |  | IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR  | 
8  |  | DISAPPEAR IN A FUTURE GNU MP RELEASE.  | 
9  |  |  | 
10  |  | Copyright 2010-2012, 2015, 2016 Free Software Foundation, Inc.  | 
11  |  |  | 
12  |  | This file is part of the GNU MP Library.  | 
13  |  |  | 
14  |  | The GNU MP Library is free software; you can redistribute it and/or modify  | 
15  |  | it under the terms of either:  | 
16  |  |  | 
17  |  |   * the GNU Lesser General Public License as published by the Free  | 
18  |  |     Software Foundation; either version 3 of the License, or (at your  | 
19  |  |     option) any later version.  | 
20  |  |  | 
21  |  | or  | 
22  |  |  | 
23  |  |   * the GNU General Public License as published by the Free Software  | 
24  |  |     Foundation; either version 2 of the License, or (at your option) any  | 
25  |  |     later version.  | 
26  |  |  | 
27  |  | or both in parallel, as here.  | 
28  |  |  | 
29  |  | The GNU MP Library is distributed in the hope that it will be useful, but  | 
30  |  | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
31  |  | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
32  |  | for more details.  | 
33  |  |  | 
34  |  | You should have received copies of the GNU General Public License and the  | 
35  |  | GNU Lesser General Public License along with the GNU MP Library.  If not,  | 
36  |  | see https://www.gnu.org/licenses/.  */  | 
37  |  |  | 
38  |  | #include "gmp-impl.h"  | 
39  |  |  | 
40  |  | #if 0  | 
41  |  | static mp_limb_t  | 
42  |  | bit_to_n (mp_limb_t bit) { return (bit*3+4)|1; } | 
43  |  | #endif  | 
44  |  |  | 
45  |  | /* id_to_n (x) = bit_to_n (x-1) = (id*3+1)|1*/  | 
46  |  | static mp_limb_t  | 
47  | 0  | id_to_n  (mp_limb_t id)  { return id*3+1+(id&1); } | 
48  |  |  | 
49  |  | /* n_to_bit (n) = ((n-1)&(-CNST_LIMB(2)))/3U-1 */  | 
50  |  | static mp_limb_t  | 
51  | 0  | n_to_bit (mp_limb_t n) { return ((n-5)|1)/3U; } | 
52  |  |  | 
53  |  | #if 0  | 
54  |  | static mp_size_t  | 
55  |  | primesieve_size (mp_limb_t n) { return n_to_bit(n) / GMP_LIMB_BITS + 1; } | 
56  |  | #endif  | 
57  |  |  | 
58  |  | #if GMP_LIMB_BITS > 61  | 
59  | 0  | #define SIEVE_SEED CNST_LIMB(0x3294C9E069128480)  | 
60  |  | #if GMP_LIMB_BITS == 64  | 
61  |  | /* 110bits pre-sieved mask for primes 5, 11*/  | 
62  | 0  | #define SIEVE_MASK1 CNST_LIMB(0x81214a1204892058)  | 
63  | 0  | #define SIEVE_MASKT CNST_LIMB(0xc8130681244)  | 
64  |  | /* 182bits pre-sieved mask for primes 7, 13*/  | 
65  | 0  | #define SIEVE_2MSK1 CNST_LIMB(0x9402180c40230184)  | 
66  | 0  | #define SIEVE_2MSK2 CNST_LIMB(0x0285021088402120)  | 
67  | 0  | #define SIEVE_2MSKT CNST_LIMB(0xa41210084421)  | 
68  | 0  | #define SEED_LIMIT 210  | 
69  |  | #else  | 
70  |  | #define SEED_LIMIT 202  | 
71  |  | #endif  | 
72  |  | #else  | 
73  |  | #if GMP_LIMB_BITS > 30  | 
74  |  | #define SIEVE_SEED CNST_LIMB(0x69128480)  | 
75  |  | #if GMP_LIMB_BITS == 32  | 
76  |  | /* 70bits pre-sieved mask for primes 5, 7*/  | 
77  |  | #define SIEVE_MASK1 CNST_LIMB(0x12148960)  | 
78  |  | #define SIEVE_MASK2 CNST_LIMB(0x44a120cc)  | 
79  |  | #define SIEVE_MASKT CNST_LIMB(0x1a)  | 
80  |  | #define SEED_LIMIT 120  | 
81  |  | #else  | 
82  |  | #define SEED_LIMIT 114  | 
83  |  | #endif  | 
84  |  | #else  | 
85  |  | #if GMP_LIMB_BITS > 15  | 
86  |  | #define SIEVE_SEED CNST_LIMB(0x8480)  | 
87  |  | #define SEED_LIMIT 54  | 
88  |  | #else  | 
89  |  | #if GMP_LIMB_BITS > 7  | 
90  |  | #define SIEVE_SEED CNST_LIMB(0x80)  | 
91  |  | #define SEED_LIMIT 34  | 
92  |  | #else  | 
93  |  | #define SIEVE_SEED CNST_LIMB(0x0)  | 
94  |  | #define SEED_LIMIT 24  | 
95  |  | #endif /* 7 */  | 
96  |  | #endif /* 15 */  | 
97  |  | #endif /* 30 */  | 
98  |  | #endif /* 61 */  | 
99  |  |  | 
100  |  | #define SET_OFF1(m1, m2, M1, M2, off, BITS)   \  | 
101  | 0  |   if (off) {           \ | 
102  | 0  |     if (off < GMP_LIMB_BITS) {       \ | 
103  | 0  |       m1 = (M1 >> off) | (M2 << (GMP_LIMB_BITS - off)); \  | 
104  | 0  |       if (off <= BITS - GMP_LIMB_BITS) {   \ | 
105  | 0  |   m2 = M1 << (BITS - GMP_LIMB_BITS - off)   \  | 
106  | 0  |     | M2 >> off;          \  | 
107  | 0  |       } else {           \ | 
108  | 0  |   m1 |= M1 << (BITS - off);     \  | 
109  | 0  |   m2 = M1 >> (off + GMP_LIMB_BITS - BITS); \  | 
110  | 0  |       }             \  | 
111  | 0  |     } else {           \ | 
112  | 0  |       m1 = M1 << (BITS - off)       \  | 
113  | 0  |   | M2 >> (off - GMP_LIMB_BITS);      \  | 
114  | 0  |       m2 = M2 << (BITS - off)       \  | 
115  | 0  |   | M1 >> (off + GMP_LIMB_BITS - BITS);   \  | 
116  | 0  |     }             \  | 
117  | 0  |   } else {           \ | 
118  | 0  |     m1 = M1; m2 = M2;         \  | 
119  | 0  |   }  | 
120  |  |  | 
121  |  | #define SET_OFF2(m1, m2, m3, M1, M2, M3, off, BITS) \  | 
122  | 0  |   if (off) {           \ | 
123  | 0  |     if (off <= GMP_LIMB_BITS) {       \ | 
124  | 0  |       m1 = M2 << (GMP_LIMB_BITS - off);      \  | 
125  | 0  |       m2 = M3 << (GMP_LIMB_BITS - off);      \  | 
126  | 0  |       if (off != GMP_LIMB_BITS) {     \ | 
127  | 0  |   m1 |= (M1 >> off);        \  | 
128  | 0  |   m2 |= (M2 >> off);        \  | 
129  | 0  |       }              \  | 
130  | 0  |       if (off <= BITS - 2 * GMP_LIMB_BITS) {   \ | 
131  | 0  |   m3 = M1 << (BITS - 2 * GMP_LIMB_BITS - off) \  | 
132  | 0  |     | M3 >> off;          \  | 
133  | 0  |       } else {           \ | 
134  | 0  |   m2 |= M1 << (BITS - GMP_LIMB_BITS - off);  \  | 
135  | 0  |   m3 = M1 >> (off + 2 * GMP_LIMB_BITS - BITS); \  | 
136  | 0  |       }             \  | 
137  | 0  |     } else if (off < 2 *GMP_LIMB_BITS) {   \ | 
138  | 0  |       m1 = M2 >> (off - GMP_LIMB_BITS)     \  | 
139  | 0  |   | M3 << (2 * GMP_LIMB_BITS - off);    \  | 
140  | 0  |       if (off <= BITS - GMP_LIMB_BITS) {   \ | 
141  | 0  |   m2 = M3 >> (off - GMP_LIMB_BITS)   \  | 
142  | 0  |     | M1 << (BITS - GMP_LIMB_BITS - off);    \  | 
143  | 0  |   m3 = M2 << (BITS - GMP_LIMB_BITS - off);  \  | 
144  | 0  |   if (off != BITS - GMP_LIMB_BITS) {   \ | 
145  | 0  |     m3 |= M1 >> (off + 2 * GMP_LIMB_BITS - BITS); \  | 
146  | 0  |   }           \  | 
147  | 0  |       } else {           \ | 
148  | 0  |   m1 |= M1 << (BITS - off);     \  | 
149  | 0  |   m2 = M2 << (BITS - off)       \  | 
150  | 0  |     | M1 >> (GMP_LIMB_BITS - BITS + off);   \  | 
151  | 0  |   m3 = M2 >> (GMP_LIMB_BITS - BITS + off); \  | 
152  | 0  |       }             \  | 
153  | 0  |     } else {           \ | 
154  | 0  |       m1 = M1 << (BITS - off)       \  | 
155  | 0  |   | M3 >> (off - 2 * GMP_LIMB_BITS);    \  | 
156  | 0  |       m2 = M2 << (BITS - off)       \  | 
157  | 0  |   | M1 >> (off + GMP_LIMB_BITS - BITS);   \  | 
158  | 0  |       m3 = M3 << (BITS - off)       \  | 
159  | 0  |   | M2 >> (off + GMP_LIMB_BITS - BITS);   \  | 
160  | 0  |     }             \  | 
161  | 0  |   } else {           \ | 
162  | 0  |     m1 = M1; m2 = M2; m3 = M3;        \  | 
163  | 0  |   }  | 
164  |  |  | 
165  |  | #define ROTATE1(m1, m2, BITS)     \  | 
166  | 0  |   do {           \ | 
167  | 0  |     mp_limb_t __tmp;        \  | 
168  | 0  |     __tmp = m1 >> (2 * GMP_LIMB_BITS - BITS); \  | 
169  | 0  |     m1 = (m1 << (BITS - GMP_LIMB_BITS)) | m2;  \  | 
170  | 0  |     m2 = __tmp;         \  | 
171  | 0  |   } while (0)  | 
172  |  |  | 
173  |  | #define ROTATE2(m1, m2, m3, BITS)   \  | 
174  | 0  |   do {           \ | 
175  | 0  |     mp_limb_t __tmp;        \  | 
176  | 0  |     __tmp = m2 >> (3 * GMP_LIMB_BITS - BITS); \  | 
177  | 0  |     m2 = m2 << (BITS - GMP_LIMB_BITS * 2) \  | 
178  | 0  |       | m1 >> (3 * GMP_LIMB_BITS - BITS); \  | 
179  | 0  |     m1 = m1 << (BITS - GMP_LIMB_BITS * 2) | m3; \  | 
180  | 0  |     m3 = __tmp;         \  | 
181  | 0  |   } while (0)  | 
182  |  |  | 
183  |  | static mp_limb_t  | 
184  |  | fill_bitpattern (mp_ptr bit_array, mp_size_t limbs, mp_limb_t offset)  | 
185  | 0  | { | 
186  | 0  | #ifdef SIEVE_2MSK2  | 
187  | 0  |   mp_limb_t m11, m12, m21, m22, m23;  | 
188  |  | 
  | 
189  | 0  |   if (offset == 0) { /* This branch is not needed. */ | 
190  | 0  |     m11 = SIEVE_MASK1;  | 
191  | 0  |     m12 = SIEVE_MASKT;  | 
192  | 0  |     m21 = SIEVE_2MSK1;  | 
193  | 0  |     m22 = SIEVE_2MSK2;  | 
194  | 0  |     m23 = SIEVE_2MSKT;  | 
195  | 0  |   } else { /* correctly handle offset == 0... */ | 
196  | 0  |     m21 = offset % 110;  | 
197  | 0  |     SET_OFF1 (m11, m12, SIEVE_MASK1, SIEVE_MASKT, m21, 110);  | 
198  | 0  |     offset %= 182;  | 
199  | 0  |     SET_OFF2 (m21, m22, m23, SIEVE_2MSK1, SIEVE_2MSK2, SIEVE_2MSKT, offset, 182);  | 
200  | 0  |   }  | 
201  |  |   /* THINK: Consider handling odd values of 'limbs' outside the loop,  | 
202  |  |      to have a single exit condition. */  | 
203  | 0  |   do { | 
204  | 0  |     bit_array[0] = m11 | m21;  | 
205  | 0  |     if (--limbs == 0)  | 
206  | 0  |       break;  | 
207  | 0  |     ROTATE1 (m11, m12, 110);  | 
208  | 0  |     bit_array[1] = m11 | m22;  | 
209  | 0  |     bit_array += 2;  | 
210  | 0  |     ROTATE1 (m11, m12, 110);  | 
211  | 0  |     ROTATE2 (m21, m22, m23, 182);  | 
212  | 0  |   } while (--limbs != 0);  | 
213  | 0  |   return 4;  | 
214  |  | #else  | 
215  |  | #ifdef SIEVE_MASK2  | 
216  |  |   mp_limb_t mask, mask2, tail;  | 
217  |  |  | 
218  |  |   if (offset == 0) { /* This branch is not needed. */ | 
219  |  |     mask = SIEVE_MASK1;  | 
220  |  |     mask2 = SIEVE_MASK2;  | 
221  |  |     tail = SIEVE_MASKT;  | 
222  |  |   } else { /* correctly handle offset == 0... */ | 
223  |  |     offset %= 70;  | 
224  |  |     SET_OFF2 (mask, mask2, tail, SIEVE_MASK1, SIEVE_MASK2, SIEVE_MASKT, offset, 70);  | 
225  |  |   }  | 
226  |  |   /* THINK: Consider handling odd values of 'limbs' outside the loop,  | 
227  |  |      to have a single exit condition. */  | 
228  |  |   do { | 
229  |  |     bit_array[0] = mask;  | 
230  |  |     if (--limbs == 0)  | 
231  |  |       break;  | 
232  |  |     bit_array[1] = mask2;  | 
233  |  |     bit_array += 2;  | 
234  |  |     ROTATE2 (mask, mask2, tail, 70);  | 
235  |  |   } while (--limbs != 0);  | 
236  |  |   return 2;  | 
237  |  | #else  | 
238  |  |   MPN_FILL (bit_array, limbs, CNST_LIMB(0));  | 
239  |  |   return 0;  | 
240  |  | #endif  | 
241  |  | #endif  | 
242  | 0  | }  | 
243  |  |  | 
244  |  | static void  | 
245  |  | first_block_primesieve (mp_ptr bit_array, mp_limb_t n)  | 
246  | 0  | { | 
247  | 0  |   mp_size_t bits, limbs;  | 
248  | 0  |   mp_limb_t i;  | 
249  |  | 
  | 
250  | 0  |   ASSERT (n > 4);  | 
251  |  |  | 
252  | 0  |   bits  = n_to_bit(n);  | 
253  | 0  |   limbs = bits / GMP_LIMB_BITS;  | 
254  |  | 
  | 
255  | 0  |   if (limbs != 0)  | 
256  | 0  |     i = fill_bitpattern (bit_array + 1, limbs, 0);  | 
257  | 0  |   bit_array[0] = SIEVE_SEED;  | 
258  |  | 
  | 
259  | 0  |   if ((bits + 1) % GMP_LIMB_BITS != 0)  | 
260  | 0  |     bit_array[limbs] |= MP_LIMB_T_MAX << ((bits + 1) % GMP_LIMB_BITS);  | 
261  |  | 
  | 
262  | 0  |   if (n > SEED_LIMIT) { | 
263  | 0  |     mp_limb_t mask, index;  | 
264  |  | 
  | 
265  | 0  |     ASSERT (i < GMP_LIMB_BITS);  | 
266  |  |  | 
267  | 0  |     if (n_to_bit (SEED_LIMIT + 1) < GMP_LIMB_BITS)  | 
268  | 0  |       i = 0;  | 
269  | 0  |     mask = CNST_LIMB(1) << i;  | 
270  | 0  |     index = 0;  | 
271  | 0  |     do { | 
272  | 0  |       ++i;  | 
273  | 0  |       if ((bit_array[index] & mask) == 0)  | 
274  | 0  |   { | 
275  | 0  |     mp_size_t step, lindex;  | 
276  | 0  |     mp_limb_t lmask;  | 
277  | 0  |     unsigned  maskrot;  | 
278  |  | 
  | 
279  | 0  |     step = id_to_n(i);  | 
280  |  | /*    lindex = n_to_bit(id_to_n(i)*id_to_n(i)); */  | 
281  | 0  |     lindex = i*(step+1)-1+(-(i&1)&(i+1));  | 
282  |  | /*    lindex = i*(step+1+(i&1))-1+(i&1); */  | 
283  | 0  |     if (lindex > bits)  | 
284  | 0  |       break;  | 
285  |  |  | 
286  | 0  |     step <<= 1;  | 
287  | 0  |     maskrot = step % GMP_LIMB_BITS;  | 
288  |  | 
  | 
289  | 0  |     lmask = CNST_LIMB(1) << (lindex % GMP_LIMB_BITS);  | 
290  | 0  |     do { | 
291  | 0  |       bit_array[lindex / GMP_LIMB_BITS] |= lmask;  | 
292  | 0  |       lmask = lmask << maskrot | lmask >> (GMP_LIMB_BITS - maskrot);  | 
293  | 0  |       lindex += step;  | 
294  | 0  |     } while (lindex <= bits);  | 
295  |  |  | 
296  |  | /*    lindex = n_to_bit(id_to_n(i)*bit_to_n(i)); */  | 
297  | 0  |     lindex = i*(i*3+6)+(i&1);  | 
298  |  | 
  | 
299  | 0  |     lmask = CNST_LIMB(1) << (lindex % GMP_LIMB_BITS);  | 
300  | 0  |     for ( ; lindex <= bits; lindex += step) { | 
301  | 0  |       bit_array[lindex / GMP_LIMB_BITS] |= lmask;  | 
302  | 0  |       lmask = lmask << maskrot | lmask >> (GMP_LIMB_BITS - maskrot);  | 
303  | 0  |     };  | 
304  | 0  |   }  | 
305  | 0  |       mask = mask << 1 | mask >> (GMP_LIMB_BITS-1);  | 
306  | 0  |       index += mask & 1;  | 
307  | 0  |     } while (1);  | 
308  | 0  |   }  | 
309  | 0  | }  | 
310  |  |  | 
311  |  | static void  | 
312  |  | block_resieve (mp_ptr bit_array, mp_size_t limbs, mp_limb_t offset,  | 
313  |  |          mp_srcptr sieve)  | 
314  | 0  | { | 
315  | 0  |   mp_size_t bits, off = offset;  | 
316  | 0  |   mp_limb_t mask, index, i;  | 
317  |  | 
  | 
318  | 0  |   ASSERT (limbs > 0);  | 
319  | 0  |   ASSERT (offset >= GMP_LIMB_BITS);  | 
320  |  |  | 
321  | 0  |   bits = limbs * GMP_LIMB_BITS - 1;  | 
322  |  | 
  | 
323  | 0  |   i = fill_bitpattern (bit_array, limbs, offset - GMP_LIMB_BITS);  | 
324  |  | 
  | 
325  | 0  |   ASSERT (i < GMP_LIMB_BITS);  | 
326  |  |  | 
327  | 0  |   mask = CNST_LIMB(1) << i;  | 
328  | 0  |   index = 0;  | 
329  | 0  |   do { | 
330  | 0  |     ++i;  | 
331  | 0  |     if ((sieve[index] & mask) == 0)  | 
332  | 0  |       { | 
333  | 0  |   mp_size_t step, lindex;  | 
334  | 0  |   mp_limb_t lmask;  | 
335  | 0  |   unsigned  maskrot;  | 
336  |  | 
  | 
337  | 0  |   step = id_to_n(i);  | 
338  |  |  | 
339  |  | /*  lindex = n_to_bit(id_to_n(i)*id_to_n(i)); */  | 
340  | 0  |   lindex = i*(step+1)-1+(-(i&1)&(i+1));  | 
341  |  | /*  lindex = i*(step+1+(i&1))-1+(i&1); */  | 
342  | 0  |   if (lindex > bits + off)  | 
343  | 0  |     break;  | 
344  |  |  | 
345  | 0  |   step <<= 1;  | 
346  | 0  |   maskrot = step % GMP_LIMB_BITS;  | 
347  |  | 
  | 
348  | 0  |   if (lindex < off)  | 
349  | 0  |     lindex += step * ((off - lindex - 1) / step + 1);  | 
350  |  | 
  | 
351  | 0  |   lindex -= off;  | 
352  |  | 
  | 
353  | 0  |   lmask = CNST_LIMB(1) << (lindex % GMP_LIMB_BITS);  | 
354  | 0  |   for ( ; lindex <= bits; lindex += step) { | 
355  | 0  |     bit_array[lindex / GMP_LIMB_BITS] |= lmask;  | 
356  | 0  |     lmask = lmask << maskrot | lmask >> (GMP_LIMB_BITS - maskrot);  | 
357  | 0  |   };  | 
358  |  |  | 
359  |  | /*  lindex = n_to_bit(id_to_n(i)*bit_to_n(i)); */  | 
360  | 0  |   lindex = i*(i*3+6)+(i&1);  | 
361  |  | 
  | 
362  | 0  |   if (lindex < off)  | 
363  | 0  |     lindex += step * ((off - lindex - 1) / step + 1);  | 
364  |  | 
  | 
365  | 0  |   lindex -= off;  | 
366  |  | 
  | 
367  | 0  |   lmask = CNST_LIMB(1) << (lindex % GMP_LIMB_BITS);  | 
368  | 0  |   for ( ; lindex <= bits; lindex += step) { | 
369  | 0  |     bit_array[lindex / GMP_LIMB_BITS] |= lmask;  | 
370  | 0  |     lmask = lmask << maskrot | lmask >> (GMP_LIMB_BITS - maskrot);  | 
371  | 0  |   };  | 
372  | 0  |       }  | 
373  | 0  |       mask = mask << 1 | mask >> (GMP_LIMB_BITS-1);  | 
374  | 0  |       index += mask & 1;  | 
375  | 0  |   } while (1);  | 
376  | 0  | }  | 
377  |  |  | 
378  | 0  | #define BLOCK_SIZE 2048  | 
379  |  |  | 
380  |  | /* Fills bit_array with the characteristic function of composite  | 
381  |  |    numbers up to the parameter n. I.e. a bit set to "1" represent a  | 
382  |  |    composite, a "0" represent a prime.  | 
383  |  |  | 
384  |  |    The primesieve_size(n) limbs pointed to by bit_array are  | 
385  |  |    overwritten. The returned value counts prime integers in the  | 
386  |  |    interval [4, n]. Note that n > 4.  | 
387  |  |  | 
388  |  |    Even numbers and multiples of 3 are excluded "a priori", only  | 
389  |  |    numbers equivalent to +/- 1 mod 6 have their bit in the array.  | 
390  |  |  | 
391  |  |    Once sieved, if the bit b is ZERO it represent a prime, the  | 
392  |  |    represented prime is bit_to_n(b), if the LSbit is bit 0, or  | 
393  |  |    id_to_n(b), if you call "1" the first bit.  | 
394  |  |  */  | 
395  |  |  | 
396  |  | mp_limb_t  | 
397  |  | gmp_primesieve (mp_ptr bit_array, mp_limb_t n)  | 
398  | 0  | { | 
399  | 0  |   mp_size_t size;  | 
400  | 0  |   mp_limb_t bits;  | 
401  |  | 
  | 
402  | 0  |   ASSERT (n > 4);  | 
403  |  |  | 
404  | 0  |   bits = n_to_bit(n);  | 
405  | 0  |   size = bits / GMP_LIMB_BITS + 1;  | 
406  |  | 
  | 
407  | 0  |   if (size > BLOCK_SIZE * 2) { | 
408  | 0  |     mp_size_t off;  | 
409  | 0  |     off = BLOCK_SIZE + (size % BLOCK_SIZE);  | 
410  | 0  |     first_block_primesieve (bit_array, id_to_n (off * GMP_LIMB_BITS));  | 
411  | 0  |     do { | 
412  | 0  |       block_resieve (bit_array + off, BLOCK_SIZE, off * GMP_LIMB_BITS, bit_array);  | 
413  | 0  |     } while ((off += BLOCK_SIZE) < size);  | 
414  | 0  |   } else { | 
415  | 0  |     first_block_primesieve (bit_array, n);  | 
416  | 0  |   }  | 
417  |  | 
  | 
418  | 0  |   if ((bits + 1) % GMP_LIMB_BITS != 0)  | 
419  | 0  |     bit_array[size-1] |= MP_LIMB_T_MAX << ((bits + 1) % GMP_LIMB_BITS);  | 
420  |  | 
  | 
421  | 0  |   return size * GMP_LIMB_BITS - mpn_popcount (bit_array, size);  | 
422  | 0  | }  | 
423  |  |  | 
424  |  | #undef BLOCK_SIZE  | 
425  |  | #undef SEED_LIMIT  | 
426  |  | #undef SIEVE_SEED  | 
427  |  | #undef SIEVE_MASK1  | 
428  |  | #undef SIEVE_MASK2  | 
429  |  | #undef SIEVE_MASKT  | 
430  |  | #undef SIEVE_2MSK1  | 
431  |  | #undef SIEVE_2MSK2  | 
432  |  | #undef SIEVE_2MSKT  | 
433  |  | #undef SET_OFF1  | 
434  |  | #undef SET_OFF2  | 
435  |  | #undef ROTATE1  | 
436  |  | #undef ROTATE2  |