Coverage Report

Created: 2024-06-28 06:19

/src/botan/src/lib/modes/aead/ocb/ocb.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
* OCB Mode
3
* (C) 2013,2017 Jack Lloyd
4
* (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
5
*
6
* Botan is released under the Simplified BSD License (see license.txt)
7
*/
8
9
#include <botan/internal/ocb.h>
10
11
#include <botan/block_cipher.h>
12
#include <botan/internal/bit_ops.h>
13
#include <botan/internal/ct_utils.h>
14
#include <botan/internal/poly_dbl.h>
15
16
namespace Botan {
17
18
// Has to be in Botan namespace so unique_ptr can reference it
19
class L_computer final {
20
   public:
21
      explicit L_computer(const BlockCipher& cipher) :
22
0
            m_BS(cipher.block_size()), m_max_blocks(cipher.parallel_bytes() / m_BS) {
23
0
         m_L_star.resize(m_BS);
24
0
         cipher.encrypt(m_L_star);
25
0
         m_L_dollar = poly_double(star());
26
27
         // Preallocate the m_L vector to the maximum expected size to avoid
28
         // re-allocations during runtime. This had caused a use-after-free in
29
         // earlier versions, due to references into this buffer becoming stale
30
         // in `compute_offset()`, after calling `get()` in the hot path.
31
         //
32
         // Note, that the list member won't be pre-allocated, so the expected
33
         // memory overhead is negligible.
34
         //
35
         // See also https://github.com/randombit/botan/issues/3812
36
0
         m_L.reserve(31);
37
0
         m_L.push_back(poly_double(dollar()));
38
39
0
         while(m_L.size() < 8) {
40
0
            m_L.push_back(poly_double(m_L.back()));
41
0
         }
42
43
0
         m_offset_buf.resize(m_BS * m_max_blocks);
44
0
      }
45
46
0
      void init(const secure_vector<uint8_t>& offset) { m_offset = offset; }
47
48
0
      bool initialized() const { return m_offset.empty() == false; }
49
50
0
      const secure_vector<uint8_t>& star() const { return m_L_star; }
51
52
0
      const secure_vector<uint8_t>& dollar() const { return m_L_dollar; }
53
54
0
      const secure_vector<uint8_t>& offset() const { return m_offset; }
55
56
0
      const secure_vector<uint8_t>& get(size_t i) const {
57
0
         while(m_L.size() <= i) {
58
0
            m_L.push_back(poly_double(m_L.back()));
59
0
         }
60
61
0
         return m_L[i];
62
0
      }
63
64
0
      const uint8_t* compute_offsets(size_t block_index, size_t blocks) {
65
0
         BOTAN_ASSERT(blocks <= m_max_blocks, "OCB offsets");
66
67
0
         uint8_t* offsets = m_offset_buf.data();
68
69
0
         if(block_index % 4 == 0) {
70
0
            const secure_vector<uint8_t>& L0 = get(0);
71
0
            const secure_vector<uint8_t>& L1 = get(1);
72
73
0
            while(blocks >= 4) {
74
               // ntz(4*i+1) == 0
75
               // ntz(4*i+2) == 1
76
               // ntz(4*i+3) == 0
77
0
               block_index += 4;
78
0
               const size_t ntz4 = var_ctz32(static_cast<uint32_t>(block_index));
79
80
0
               xor_buf(offsets, m_offset.data(), L0.data(), m_BS);
81
0
               offsets += m_BS;
82
83
0
               xor_buf(offsets, offsets - m_BS, L1.data(), m_BS);
84
0
               offsets += m_BS;
85
86
0
               xor_buf(m_offset.data(), L1.data(), m_BS);
87
0
               copy_mem(offsets, m_offset.data(), m_BS);
88
0
               offsets += m_BS;
89
90
0
               xor_buf(m_offset.data(), get(ntz4).data(), m_BS);
91
0
               copy_mem(offsets, m_offset.data(), m_BS);
92
0
               offsets += m_BS;
93
94
0
               blocks -= 4;
95
0
            }
96
0
         }
97
98
0
         for(size_t i = 0; i != blocks; ++i) {  // could be done in parallel
99
0
            const size_t ntz = var_ctz32(static_cast<uint32_t>(block_index + i + 1));
100
0
            xor_buf(m_offset.data(), get(ntz).data(), m_BS);
101
0
            copy_mem(offsets, m_offset.data(), m_BS);
102
0
            offsets += m_BS;
103
0
         }
104
105
0
         return m_offset_buf.data();
106
0
      }
107
108
   private:
109
0
      static secure_vector<uint8_t> poly_double(const secure_vector<uint8_t>& in) {
110
0
         secure_vector<uint8_t> out(in.size());
111
0
         poly_double_n(out.data(), in.data(), out.size());
112
0
         return out;
113
0
      }
114
115
      const size_t m_BS, m_max_blocks;
116
      secure_vector<uint8_t> m_L_dollar, m_L_star;
117
      secure_vector<uint8_t> m_offset;
118
      mutable std::vector<secure_vector<uint8_t>> m_L;
119
      secure_vector<uint8_t> m_offset_buf;
120
};
121
122
namespace {
123
124
/*
125
* OCB's HASH
126
*/
127
0
secure_vector<uint8_t> ocb_hash(const L_computer& L, const BlockCipher& cipher, const uint8_t ad[], size_t ad_len) {
128
0
   const size_t BS = cipher.block_size();
129
0
   secure_vector<uint8_t> sum(BS);
130
0
   secure_vector<uint8_t> offset(BS);
131
132
0
   secure_vector<uint8_t> buf(BS);
133
134
0
   const size_t ad_blocks = (ad_len / BS);
135
0
   const size_t ad_remainder = (ad_len % BS);
136
137
0
   for(size_t i = 0; i != ad_blocks; ++i) {
138
      // this loop could run in parallel
139
0
      offset ^= L.get(var_ctz32(static_cast<uint32_t>(i + 1)));
140
0
      buf = offset;
141
0
      xor_buf(buf.data(), &ad[BS * i], BS);
142
0
      cipher.encrypt(buf);
143
0
      sum ^= buf;
144
0
   }
145
146
0
   if(ad_remainder) {
147
0
      offset ^= L.star();
148
0
      buf = offset;
149
0
      xor_buf(buf.data(), &ad[BS * ad_blocks], ad_remainder);
150
0
      buf[ad_remainder] ^= 0x80;
151
0
      cipher.encrypt(buf);
152
0
      sum ^= buf;
153
0
   }
154
155
0
   return sum;
156
0
}
157
158
}  // namespace
159
160
OCB_Mode::OCB_Mode(std::unique_ptr<BlockCipher> cipher, size_t tag_size) :
161
      m_cipher(std::move(cipher)),
162
      m_checksum(m_cipher->parallel_bytes()),
163
      m_ad_hash(m_cipher->block_size()),
164
      m_tag_size(tag_size),
165
      m_block_size(m_cipher->block_size()),
166
0
      m_par_blocks(m_cipher->parallel_bytes() / m_block_size) {
167
0
   const size_t BS = block_size();
168
169
   /*
170
   * draft-krovetz-ocb-wide-d1 specifies OCB for several other block
171
   * sizes but only 128, 192, 256 and 512 bit are currently supported
172
   * by this implementation.
173
   */
174
0
   BOTAN_ARG_CHECK(BS == 16 || BS == 24 || BS == 32 || BS == 64, "Invalid block size for OCB");
175
176
0
   BOTAN_ARG_CHECK(m_tag_size % 4 == 0 && m_tag_size >= 8 && m_tag_size <= BS && m_tag_size <= 32,
177
0
                   "Invalid OCB tag length");
178
0
}
179
180
0
OCB_Mode::~OCB_Mode() = default;
181
182
0
void OCB_Mode::clear() {
183
0
   m_cipher->clear();
184
0
   m_L.reset();  // add clear here?
185
0
   reset();
186
0
}
187
188
0
void OCB_Mode::reset() {
189
0
   m_block_index = 0;
190
0
   zeroise(m_ad_hash);
191
0
   zeroise(m_checksum);
192
0
   m_last_nonce.clear();
193
0
   m_stretch.clear();
194
0
}
195
196
0
bool OCB_Mode::valid_nonce_length(size_t length) const {
197
0
   if(length == 0) {
198
0
      return false;
199
0
   }
200
0
   if(block_size() == 16) {
201
0
      return length < 16;
202
0
   } else {
203
0
      return length < (block_size() - 1);
204
0
   }
205
0
}
206
207
0
std::string OCB_Mode::name() const {
208
0
   return m_cipher->name() + "/OCB";  // include tag size?
209
0
}
210
211
0
size_t OCB_Mode::update_granularity() const {
212
0
   return block_size();
213
0
}
214
215
0
size_t OCB_Mode::ideal_granularity() const {
216
0
   return (m_par_blocks * block_size());
217
0
}
218
219
0
Key_Length_Specification OCB_Mode::key_spec() const {
220
0
   return m_cipher->key_spec();
221
0
}
222
223
0
bool OCB_Mode::has_keying_material() const {
224
0
   return m_cipher->has_keying_material();
225
0
}
226
227
0
void OCB_Mode::key_schedule(std::span<const uint8_t> key) {
228
0
   m_cipher->set_key(key);
229
0
   m_L = std::make_unique<L_computer>(*m_cipher);
230
0
}
231
232
0
void OCB_Mode::set_associated_data_n(size_t idx, std::span<const uint8_t> ad) {
233
0
   BOTAN_ARG_CHECK(idx == 0, "OCB: cannot handle non-zero index in set_associated_data_n");
234
0
   assert_key_material_set();
235
0
   m_ad_hash = ocb_hash(*m_L, *m_cipher, ad.data(), ad.size());
236
0
}
237
238
0
const secure_vector<uint8_t>& OCB_Mode::update_nonce(const uint8_t nonce[], size_t nonce_len) {
239
0
   const size_t BS = block_size();
240
241
0
   BOTAN_ASSERT(BS == 16 || BS == 24 || BS == 32 || BS == 64, "OCB block size is supported");
242
243
   // NOLINTNEXTLINE(readability-avoid-nested-conditional-operator)
244
0
   const size_t MASKLEN = (BS == 16 ? 6 : ((BS == 24) ? 7 : 8));
245
246
0
   const uint8_t BOTTOM_MASK = static_cast<uint8_t>((static_cast<uint16_t>(1) << MASKLEN) - 1);
247
248
0
   m_nonce_buf.resize(BS);
249
0
   clear_mem(&m_nonce_buf[0], m_nonce_buf.size());
250
251
0
   copy_mem(&m_nonce_buf[BS - nonce_len], nonce, nonce_len);
252
0
   m_nonce_buf[0] = static_cast<uint8_t>(((tag_size() * 8) % (BS * 8)) << (BS <= 16 ? 1 : 0));
253
254
0
   m_nonce_buf[BS - nonce_len - 1] ^= 1;
255
256
0
   const uint8_t bottom = m_nonce_buf[BS - 1] & BOTTOM_MASK;
257
0
   m_nonce_buf[BS - 1] &= ~BOTTOM_MASK;
258
259
0
   const bool need_new_stretch = (m_last_nonce != m_nonce_buf);
260
261
0
   if(need_new_stretch) {
262
0
      m_last_nonce = m_nonce_buf;
263
264
0
      m_cipher->encrypt(m_nonce_buf);
265
266
      /*
267
      The loop bounds (BS vs BS/2) are derived from the relation
268
      between the block size and the MASKLEN. Using the terminology
269
      of draft-krovetz-ocb-wide, we have to derive enough bits in
270
      ShiftedKtop to read up to BLOCKLEN+bottom bits from Stretch.
271
272
                 +----------+---------+-------+---------+
273
                 | BLOCKLEN | RESIDUE | SHIFT | MASKLEN |
274
                 +----------+---------+-------+---------+
275
                 |       32 |     141 |    17 |    4    |
276
                 |       64 |      27 |    25 |    5    |
277
                 |       96 |    1601 |    33 |    6    |
278
                 |      128 |     135 |     8 |    6    |
279
                 |      192 |     135 |    40 |    7    |
280
                 |      256 |    1061 |     1 |    8    |
281
                 |      384 |    4109 |    80 |    8    |
282
                 |      512 |     293 |   176 |    8    |
283
                 |     1024 |  524355 |   352 |    9    |
284
                 +----------+---------+-------+---------+
285
      */
286
0
      if(BS == 16) {
287
0
         for(size_t i = 0; i != BS / 2; ++i) {
288
0
            m_nonce_buf.push_back(m_nonce_buf[i] ^ m_nonce_buf[i + 1]);
289
0
         }
290
0
      } else if(BS == 24) {
291
0
         for(size_t i = 0; i != 16; ++i) {
292
0
            m_nonce_buf.push_back(m_nonce_buf[i] ^ m_nonce_buf[i + 5]);
293
0
         }
294
0
      } else if(BS == 32) {
295
0
         for(size_t i = 0; i != BS; ++i) {
296
0
            m_nonce_buf.push_back(m_nonce_buf[i] ^ (m_nonce_buf[i] << 1) ^ (m_nonce_buf[i + 1] >> 7));
297
0
         }
298
0
      } else if(BS == 64) {
299
0
         for(size_t i = 0; i != BS / 2; ++i) {
300
0
            m_nonce_buf.push_back(m_nonce_buf[i] ^ m_nonce_buf[i + 22]);
301
0
         }
302
0
      }
303
304
0
      m_stretch = m_nonce_buf;
305
0
   }
306
307
   // now set the offset from stretch and bottom
308
0
   const size_t shift_bytes = bottom / 8;
309
0
   const size_t shift_bits = bottom % 8;
310
311
0
   BOTAN_ASSERT(m_stretch.size() >= BS + shift_bytes + 1, "Size ok");
312
313
0
   m_offset.resize(BS);
314
0
   for(size_t i = 0; i != BS; ++i) {
315
0
      m_offset[i] = (m_stretch[i + shift_bytes] << shift_bits);
316
0
      m_offset[i] |= (m_stretch[i + shift_bytes + 1] >> (8 - shift_bits));
317
0
   }
318
319
0
   return m_offset;
320
0
}
321
322
0
void OCB_Mode::start_msg(const uint8_t nonce[], size_t nonce_len) {
323
0
   if(!valid_nonce_length(nonce_len)) {
324
0
      throw Invalid_IV_Length(name(), nonce_len);
325
0
   }
326
327
0
   assert_key_material_set();
328
329
0
   m_L->init(update_nonce(nonce, nonce_len));
330
0
   zeroise(m_checksum);
331
0
   m_block_index = 0;
332
0
}
333
334
0
void OCB_Encryption::encrypt(uint8_t buffer[], size_t blocks) {
335
0
   assert_key_material_set();
336
0
   BOTAN_STATE_CHECK(m_L->initialized());
337
338
0
   const size_t BS = block_size();
339
340
0
   while(blocks) {
341
0
      const size_t proc_blocks = std::min(blocks, par_blocks());
342
0
      const size_t proc_bytes = proc_blocks * BS;
343
344
0
      const uint8_t* offsets = m_L->compute_offsets(m_block_index, proc_blocks);
345
346
0
      xor_buf(m_checksum.data(), buffer, proc_bytes);
347
348
0
      m_cipher->encrypt_n_xex(buffer, offsets, proc_blocks);
349
350
0
      buffer += proc_bytes;
351
0
      blocks -= proc_blocks;
352
0
      m_block_index += proc_blocks;
353
0
   }
354
0
}
355
356
0
size_t OCB_Encryption::process_msg(uint8_t buf[], size_t sz) {
357
0
   BOTAN_ARG_CHECK(sz % update_granularity() == 0, "Invalid OCB input size");
358
0
   encrypt(buf, sz / block_size());
359
0
   return sz;
360
0
}
361
362
0
void OCB_Encryption::finish_msg(secure_vector<uint8_t>& buffer, size_t offset) {
363
0
   assert_key_material_set();
364
0
   BOTAN_STATE_CHECK(m_L->initialized());
365
366
0
   const size_t BS = block_size();
367
368
0
   BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");
369
0
   const size_t sz = buffer.size() - offset;
370
0
   uint8_t* buf = buffer.data() + offset;
371
372
0
   secure_vector<uint8_t> mac(BS);
373
374
0
   if(sz) {
375
0
      const size_t final_full_blocks = sz / BS;
376
0
      const size_t remainder_bytes = sz - (final_full_blocks * BS);
377
378
0
      encrypt(buf, final_full_blocks);
379
0
      mac = m_L->offset();
380
381
0
      if(remainder_bytes) {
382
0
         BOTAN_ASSERT(remainder_bytes < BS, "Only a partial block left");
383
0
         uint8_t* remainder = &buf[sz - remainder_bytes];
384
385
0
         xor_buf(m_checksum.data(), remainder, remainder_bytes);
386
0
         m_checksum[remainder_bytes] ^= 0x80;
387
388
         // Offset_*
389
0
         mac ^= m_L->star();
390
391
0
         secure_vector<uint8_t> pad(BS);
392
0
         m_cipher->encrypt(mac, pad);
393
0
         xor_buf(remainder, pad.data(), remainder_bytes);
394
0
      }
395
0
   } else {
396
0
      mac = m_L->offset();
397
0
   }
398
399
   // now compute the tag
400
401
   // fold checksum
402
0
   for(size_t i = 0; i != m_checksum.size(); i += BS) {
403
0
      xor_buf(mac.data(), m_checksum.data() + i, BS);
404
0
   }
405
406
0
   xor_buf(mac.data(), m_L->dollar().data(), BS);
407
0
   m_cipher->encrypt(mac);
408
0
   xor_buf(mac.data(), m_ad_hash.data(), BS);
409
410
0
   buffer += std::make_pair(mac.data(), tag_size());
411
412
0
   zeroise(m_checksum);
413
0
   m_block_index = 0;
414
0
}
415
416
0
void OCB_Decryption::decrypt(uint8_t buffer[], size_t blocks) {
417
0
   assert_key_material_set();
418
0
   BOTAN_STATE_CHECK(m_L->initialized());
419
420
0
   const size_t BS = block_size();
421
422
0
   while(blocks) {
423
0
      const size_t proc_blocks = std::min(blocks, par_blocks());
424
0
      const size_t proc_bytes = proc_blocks * BS;
425
426
0
      const uint8_t* offsets = m_L->compute_offsets(m_block_index, proc_blocks);
427
428
0
      m_cipher->decrypt_n_xex(buffer, offsets, proc_blocks);
429
430
0
      xor_buf(m_checksum.data(), buffer, proc_bytes);
431
432
0
      buffer += proc_bytes;
433
0
      blocks -= proc_blocks;
434
0
      m_block_index += proc_blocks;
435
0
   }
436
0
}
437
438
0
size_t OCB_Decryption::process_msg(uint8_t buf[], size_t sz) {
439
0
   BOTAN_ARG_CHECK(sz % update_granularity() == 0, "Invalid OCB input size");
440
0
   decrypt(buf, sz / block_size());
441
0
   return sz;
442
0
}
443
444
0
void OCB_Decryption::finish_msg(secure_vector<uint8_t>& buffer, size_t offset) {
445
0
   assert_key_material_set();
446
0
   BOTAN_STATE_CHECK(m_L->initialized());
447
448
0
   const size_t BS = block_size();
449
450
0
   BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");
451
0
   const size_t sz = buffer.size() - offset;
452
0
   uint8_t* buf = buffer.data() + offset;
453
454
0
   BOTAN_ARG_CHECK(sz >= tag_size(), "input did not include the tag");
455
456
0
   const size_t remaining = sz - tag_size();
457
458
0
   secure_vector<uint8_t> mac(BS);
459
460
0
   if(remaining) {
461
0
      const size_t final_full_blocks = remaining / BS;
462
0
      const size_t final_bytes = remaining - (final_full_blocks * BS);
463
464
0
      decrypt(buf, final_full_blocks);
465
0
      mac ^= m_L->offset();
466
467
0
      if(final_bytes) {
468
0
         BOTAN_ASSERT(final_bytes < BS, "Only a partial block left");
469
470
0
         uint8_t* remainder = &buf[remaining - final_bytes];
471
472
0
         mac ^= m_L->star();
473
0
         secure_vector<uint8_t> pad(BS);
474
0
         m_cipher->encrypt(mac, pad);  // P_*
475
0
         xor_buf(remainder, pad.data(), final_bytes);
476
477
0
         xor_buf(m_checksum.data(), remainder, final_bytes);
478
0
         m_checksum[final_bytes] ^= 0x80;
479
0
      }
480
0
   } else {
481
0
      mac = m_L->offset();
482
0
   }
483
484
   // compute the mac
485
486
   // fold checksum
487
0
   for(size_t i = 0; i != m_checksum.size(); i += BS) {
488
0
      xor_buf(mac.data(), m_checksum.data() + i, BS);
489
0
   }
490
491
0
   mac ^= m_L->dollar();
492
0
   m_cipher->encrypt(mac);
493
0
   mac ^= m_ad_hash;
494
495
   // reset state
496
0
   zeroise(m_checksum);
497
0
   m_block_index = 0;
498
499
   // compare mac
500
0
   const uint8_t* included_tag = &buf[remaining];
501
502
0
   if(!CT::is_equal(mac.data(), included_tag, tag_size()).as_bool()) {
503
0
      throw Invalid_Authentication_Tag("OCB tag check failed");
504
0
   }
505
506
   // remove tag from end of message
507
0
   buffer.resize(remaining + offset);
508
0
}
509
510
}  // namespace Botan