/src/gmp-6.2.1/mpn/invertappr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* mpn_invertappr and helper functions. Compute I such that |
2 | | floor((B^{2n}-1)/U - 1 <= I + B^n <= floor((B^{2n}-1)/U. |
3 | | |
4 | | Contributed to the GNU project by Marco Bodrato. |
5 | | |
6 | | The algorithm used here was inspired by ApproximateReciprocal from "Modern |
7 | | Computer Arithmetic", by Richard P. Brent and Paul Zimmermann. Special |
8 | | thanks to Paul Zimmermann for his very valuable suggestions on all the |
9 | | theoretical aspects during the work on this code. |
10 | | |
11 | | THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY |
12 | | SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST |
13 | | GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE. |
14 | | |
15 | | Copyright (C) 2007, 2009, 2010, 2012, 2015, 2016 Free Software |
16 | | Foundation, Inc. |
17 | | |
18 | | This file is part of the GNU MP Library. |
19 | | |
20 | | The GNU MP Library is free software; you can redistribute it and/or modify |
21 | | it under the terms of either: |
22 | | |
23 | | * the GNU Lesser General Public License as published by the Free |
24 | | Software Foundation; either version 3 of the License, or (at your |
25 | | option) any later version. |
26 | | |
27 | | or |
28 | | |
29 | | * the GNU General Public License as published by the Free Software |
30 | | Foundation; either version 2 of the License, or (at your option) any |
31 | | later version. |
32 | | |
33 | | or both in parallel, as here. |
34 | | |
35 | | The GNU MP Library is distributed in the hope that it will be useful, but |
36 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
37 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
38 | | for more details. |
39 | | |
40 | | You should have received copies of the GNU General Public License and the |
41 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
42 | | see https://www.gnu.org/licenses/. */ |
43 | | |
44 | | #include "gmp-impl.h" |
45 | | #include "longlong.h" |
46 | | |
47 | | /* FIXME: The iterative version splits the operand in two slightly unbalanced |
48 | | parts, the use of log_2 (or counting the bits) underestimate the maximum |
49 | | number of iterations. */ |
50 | | |
51 | | #if TUNE_PROGRAM_BUILD |
52 | | #define NPOWS \ |
53 | | ((sizeof(mp_size_t) > 6 ? 48 : 8*sizeof(mp_size_t))) |
54 | | #define MAYBE_dcpi1_divappr 1 |
55 | | #else |
56 | | #define NPOWS \ |
57 | | ((sizeof(mp_size_t) > 6 ? 48 : 8*sizeof(mp_size_t)) - LOG2C (INV_NEWTON_THRESHOLD)) |
58 | | #define MAYBE_dcpi1_divappr \ |
59 | 0 | (INV_NEWTON_THRESHOLD < DC_DIVAPPR_Q_THRESHOLD) |
60 | | #if (INV_NEWTON_THRESHOLD > INV_MULMOD_BNM1_THRESHOLD) && \ |
61 | | (INV_APPR_THRESHOLD > INV_MULMOD_BNM1_THRESHOLD) |
62 | | #undef INV_MULMOD_BNM1_THRESHOLD |
63 | | #define INV_MULMOD_BNM1_THRESHOLD 0 /* always when Newton */ |
64 | | #endif |
65 | | #endif |
66 | | |
67 | | /* All the three functions mpn{,_bc,_ni}_invertappr (ip, dp, n, scratch), take |
68 | | the strictly normalised value {dp,n} (i.e., most significant bit must be set) |
69 | | as an input, and compute {ip,n}: the approximate reciprocal of {dp,n}. |
70 | | |
71 | | Let e = mpn*_invertappr (ip, dp, n, scratch) be the returned value; the |
72 | | following conditions are satisfied by the output: |
73 | | 0 <= e <= 1; |
74 | | {dp,n}*(B^n+{ip,n}) < B^{2n} <= {dp,n}*(B^n+{ip,n}+1+e) . |
75 | | I.e. e=0 means that the result {ip,n} equals the one given by mpn_invert. |
76 | | e=1 means that the result _may_ be one less than expected. |
77 | | |
78 | | The _bc version returns e=1 most of the time. |
79 | | The _ni version should return e=0 most of the time; only about 1% of |
80 | | possible random input should give e=1. |
81 | | |
82 | | When the strict result is needed, i.e., e=0 in the relation above: |
83 | | {dp,n}*(B^n+{ip,n}) < B^{2n} <= {dp,n}*(B^n+{ip,n}+1) ; |
84 | | the function mpn_invert (ip, dp, n, scratch) should be used instead. */ |
85 | | |
86 | | /* Maximum scratch needed by this branch (at xp): 2*n */ |
87 | | static mp_limb_t |
88 | | mpn_bc_invertappr (mp_ptr ip, mp_srcptr dp, mp_size_t n, mp_ptr xp) |
89 | 0 | { |
90 | 0 | ASSERT (n > 0); |
91 | 0 | ASSERT (dp[n-1] & GMP_NUMB_HIGHBIT); |
92 | 0 | ASSERT (! MPN_OVERLAP_P (ip, n, dp, n)); |
93 | 0 | ASSERT (! MPN_OVERLAP_P (ip, n, xp, mpn_invertappr_itch(n))); |
94 | 0 | ASSERT (! MPN_OVERLAP_P (dp, n, xp, mpn_invertappr_itch(n))); |
95 | | |
96 | | /* Compute a base value of r limbs. */ |
97 | 0 | if (n == 1) |
98 | 0 | invert_limb (*ip, *dp); |
99 | 0 | else { |
100 | | /* n > 1 here */ |
101 | 0 | MPN_FILL (xp, n, GMP_NUMB_MAX); |
102 | 0 | mpn_com (xp + n, dp, n); |
103 | | |
104 | | /* Now xp contains B^2n - {dp,n}*B^n - 1 */ |
105 | | |
106 | | /* FIXME: if mpn_*pi1_divappr_q handles n==2, use it! */ |
107 | 0 | if (n == 2) { |
108 | 0 | mpn_divrem_2 (ip, 0, xp, 4, dp); |
109 | 0 | } else { |
110 | 0 | gmp_pi1_t inv; |
111 | 0 | invert_pi1 (inv, dp[n-1], dp[n-2]); |
112 | 0 | if (! MAYBE_dcpi1_divappr |
113 | 0 | || BELOW_THRESHOLD (n, DC_DIVAPPR_Q_THRESHOLD)) |
114 | 0 | mpn_sbpi1_divappr_q (ip, xp, 2 * n, dp, n, inv.inv32); |
115 | 0 | else |
116 | 0 | mpn_dcpi1_divappr_q (ip, xp, 2 * n, dp, n, &inv); |
117 | 0 | MPN_DECR_U(ip, n, CNST_LIMB (1)); |
118 | 0 | return 1; |
119 | 0 | } |
120 | 0 | } |
121 | 0 | return 0; |
122 | 0 | } |
123 | | |
124 | | /* mpn_ni_invertappr: computes the approximate reciprocal using Newton's |
125 | | iterations (at least one). |
126 | | |
127 | | Inspired by Algorithm "ApproximateReciprocal", published in "Modern Computer |
128 | | Arithmetic" by Richard P. Brent and Paul Zimmermann, algorithm 3.5, page 121 |
129 | | in version 0.4 of the book. |
130 | | |
131 | | Some adaptations were introduced, to allow product mod B^m-1 and return the |
132 | | value e. |
133 | | |
134 | | We introduced a correction in such a way that "the value of |
135 | | B^{n+h}-T computed at step 8 cannot exceed B^n-1" (the book reads |
136 | | "2B^n-1"). |
137 | | |
138 | | Maximum scratch needed by this branch <= 2*n, but have to fit 3*rn |
139 | | in the scratch, i.e. 3*rn <= 2*n: we require n>4. |
140 | | |
141 | | We use a wrapped product modulo B^m-1. NOTE: is there any normalisation |
142 | | problem for the [0] class? It shouldn't: we compute 2*|A*X_h - B^{n+h}| < |
143 | | B^m-1. We may get [0] if and only if we get AX_h = B^{n+h}. This can |
144 | | happen only if A=B^{n}/2, but this implies X_h = B^{h}*2-1 i.e., AX_h = |
145 | | B^{n+h} - A, then we get into the "negative" branch, where X_h is not |
146 | | incremented (because A < B^n). |
147 | | |
148 | | FIXME: the scratch for mulmod_bnm1 does not currently fit in the scratch, it |
149 | | is allocated apart. |
150 | | */ |
151 | | |
152 | | mp_limb_t |
153 | | mpn_ni_invertappr (mp_ptr ip, mp_srcptr dp, mp_size_t n, mp_ptr scratch) |
154 | 0 | { |
155 | 0 | mp_limb_t cy; |
156 | 0 | mp_size_t rn, mn; |
157 | 0 | mp_size_t sizes[NPOWS], *sizp; |
158 | 0 | mp_ptr tp; |
159 | 0 | TMP_DECL; |
160 | 0 | #define xp scratch |
161 | |
|
162 | 0 | ASSERT (n > 4); |
163 | 0 | ASSERT (dp[n-1] & GMP_NUMB_HIGHBIT); |
164 | 0 | ASSERT (! MPN_OVERLAP_P (ip, n, dp, n)); |
165 | 0 | ASSERT (! MPN_OVERLAP_P (ip, n, scratch, mpn_invertappr_itch(n))); |
166 | 0 | ASSERT (! MPN_OVERLAP_P (dp, n, scratch, mpn_invertappr_itch(n))); |
167 | | |
168 | | /* Compute the computation precisions from highest to lowest, leaving the |
169 | | base case size in 'rn'. */ |
170 | 0 | sizp = sizes; |
171 | 0 | rn = n; |
172 | 0 | do { |
173 | 0 | *sizp = rn; |
174 | 0 | rn = (rn >> 1) + 1; |
175 | 0 | ++sizp; |
176 | 0 | } while (ABOVE_THRESHOLD (rn, INV_NEWTON_THRESHOLD)); |
177 | | |
178 | | /* We search the inverse of 0.{dp,n}, we compute it as 1.{ip,n} */ |
179 | 0 | dp += n; |
180 | 0 | ip += n; |
181 | | |
182 | | /* Compute a base value of rn limbs. */ |
183 | 0 | mpn_bc_invertappr (ip - rn, dp - rn, rn, scratch); |
184 | |
|
185 | 0 | TMP_MARK; |
186 | |
|
187 | 0 | if (ABOVE_THRESHOLD (n, INV_MULMOD_BNM1_THRESHOLD)) |
188 | 0 | { |
189 | 0 | mn = mpn_mulmod_bnm1_next_size (n + 1); |
190 | 0 | tp = TMP_ALLOC_LIMBS (mpn_mulmod_bnm1_itch (mn, n, (n >> 1) + 1)); |
191 | 0 | } |
192 | | /* Use Newton's iterations to get the desired precision.*/ |
193 | |
|
194 | 0 | while (1) { |
195 | 0 | n = *--sizp; |
196 | | /* |
197 | | v n v |
198 | | +----+--+ |
199 | | ^ rn ^ |
200 | | */ |
201 | | |
202 | | /* Compute i_jd . */ |
203 | 0 | if (BELOW_THRESHOLD (n, INV_MULMOD_BNM1_THRESHOLD) |
204 | 0 | || ((mn = mpn_mulmod_bnm1_next_size (n + 1)) > (n + rn))) { |
205 | | /* FIXME: We do only need {xp,n+1}*/ |
206 | 0 | mpn_mul (xp, dp - n, n, ip - rn, rn); |
207 | 0 | mpn_add_n (xp + rn, xp + rn, dp - n, n - rn + 1); |
208 | 0 | cy = CNST_LIMB(1); /* Remember we truncated, Mod B^(n+1) */ |
209 | | /* We computed (truncated) {xp,n+1} <- 1.{ip,rn} * 0.{dp,n} */ |
210 | 0 | } else { /* Use B^mn-1 wraparound */ |
211 | 0 | mpn_mulmod_bnm1 (xp, mn, dp - n, n, ip - rn, rn, tp); |
212 | | /* We computed {xp,mn} <- {ip,rn} * {dp,n} mod (B^mn-1) */ |
213 | | /* We know that 2*|ip*dp + dp*B^rn - B^{rn+n}| < B^mn-1 */ |
214 | | /* Add dp*B^rn mod (B^mn-1) */ |
215 | 0 | ASSERT (n >= mn - rn); |
216 | 0 | cy = mpn_add_n (xp + rn, xp + rn, dp - n, mn - rn); |
217 | 0 | cy = mpn_add_nc (xp, xp, dp - (n - (mn - rn)), n - (mn - rn), cy); |
218 | | /* Subtract B^{rn+n}, maybe only compensate the carry*/ |
219 | 0 | xp[mn] = CNST_LIMB (1); /* set a limit for DECR_U */ |
220 | 0 | MPN_DECR_U (xp + rn + n - mn, 2 * mn + 1 - rn - n, CNST_LIMB (1) - cy); |
221 | 0 | MPN_DECR_U (xp, mn, CNST_LIMB (1) - xp[mn]); /* if DECR_U eroded xp[mn] */ |
222 | 0 | cy = CNST_LIMB(0); /* Remember we are working Mod B^mn-1 */ |
223 | 0 | } |
224 | | |
225 | 0 | if (xp[n] < CNST_LIMB (2)) { /* "positive" residue class */ |
226 | 0 | cy = xp[n]; /* 0 <= cy <= 1 here. */ |
227 | 0 | #if HAVE_NATIVE_mpn_sublsh1_n |
228 | 0 | if (cy++) { |
229 | 0 | if (mpn_cmp (xp, dp - n, n) > 0) { |
230 | 0 | mp_limb_t chk; |
231 | 0 | chk = mpn_sublsh1_n (xp, xp, dp - n, n); |
232 | 0 | ASSERT (chk == xp[n]); |
233 | 0 | ++ cy; |
234 | 0 | } else |
235 | 0 | ASSERT_CARRY (mpn_sub_n (xp, xp, dp - n, n)); |
236 | 0 | } |
237 | | #else /* no mpn_sublsh1_n*/ |
238 | | if (cy++ && !mpn_sub_n (xp, xp, dp - n, n)) { |
239 | | ASSERT_CARRY (mpn_sub_n (xp, xp, dp - n, n)); |
240 | | ++cy; |
241 | | } |
242 | | #endif |
243 | | /* 1 <= cy <= 3 here. */ |
244 | 0 | #if HAVE_NATIVE_mpn_rsblsh1_n |
245 | 0 | if (mpn_cmp (xp, dp - n, n) > 0) { |
246 | 0 | ASSERT_NOCARRY (mpn_rsblsh1_n (xp + n, xp, dp - n, n)); |
247 | 0 | ++cy; |
248 | 0 | } else |
249 | 0 | ASSERT_NOCARRY (mpn_sub_nc (xp + 2 * n - rn, dp - rn, xp + n - rn, rn, mpn_cmp (xp, dp - n, n - rn) > 0)); |
250 | | #else /* no mpn_rsblsh1_n*/ |
251 | | if (mpn_cmp (xp, dp - n, n) > 0) { |
252 | | ASSERT_NOCARRY (mpn_sub_n (xp, xp, dp - n, n)); |
253 | | ++cy; |
254 | | } |
255 | | ASSERT_NOCARRY (mpn_sub_nc (xp + 2 * n - rn, dp - rn, xp + n - rn, rn, mpn_cmp (xp, dp - n, n - rn) > 0)); |
256 | | #endif |
257 | 0 | MPN_DECR_U(ip - rn, rn, cy); /* 1 <= cy <= 4 here. */ |
258 | 0 | } else { /* "negative" residue class */ |
259 | 0 | ASSERT (xp[n] >= GMP_NUMB_MAX - CNST_LIMB(1)); |
260 | 0 | MPN_DECR_U(xp, n + 1, cy); |
261 | 0 | if (xp[n] != GMP_NUMB_MAX) { |
262 | 0 | MPN_INCR_U(ip - rn, rn, CNST_LIMB (1)); |
263 | 0 | ASSERT_CARRY (mpn_add_n (xp, xp, dp - n, n)); |
264 | 0 | } |
265 | 0 | mpn_com (xp + 2 * n - rn, xp + n - rn, rn); |
266 | 0 | } |
267 | | |
268 | | /* Compute x_ju_j. FIXME:We need {xp+rn,rn}, mulhi? */ |
269 | 0 | mpn_mul_n (xp, xp + 2 * n - rn, ip - rn, rn); |
270 | 0 | cy = mpn_add_n (xp + rn, xp + rn, xp + 2 * n - rn, 2 * rn - n); |
271 | 0 | cy = mpn_add_nc (ip - n, xp + 3 * rn - n, xp + n + rn, n - rn, cy); |
272 | 0 | MPN_INCR_U (ip - rn, rn, cy); |
273 | 0 | if (sizp == sizes) { /* Get out of the cycle */ |
274 | | /* Check for possible carry propagation from below. */ |
275 | 0 | cy = xp[3 * rn - n - 1] > GMP_NUMB_MAX - CNST_LIMB (7); /* Be conservative. */ |
276 | | /* cy = mpn_add_1 (xp + rn, xp + rn, 2*rn - n, 4); */ |
277 | 0 | break; |
278 | 0 | } |
279 | 0 | rn = n; |
280 | 0 | } |
281 | 0 | TMP_FREE; |
282 | |
|
283 | 0 | return cy; |
284 | 0 | #undef xp |
285 | 0 | } |
286 | | |
287 | | mp_limb_t |
288 | | mpn_invertappr (mp_ptr ip, mp_srcptr dp, mp_size_t n, mp_ptr scratch) |
289 | 0 | { |
290 | 0 | ASSERT (n > 0); |
291 | 0 | ASSERT (dp[n-1] & GMP_NUMB_HIGHBIT); |
292 | 0 | ASSERT (! MPN_OVERLAP_P (ip, n, dp, n)); |
293 | 0 | ASSERT (! MPN_OVERLAP_P (ip, n, scratch, mpn_invertappr_itch(n))); |
294 | 0 | ASSERT (! MPN_OVERLAP_P (dp, n, scratch, mpn_invertappr_itch(n))); |
295 | | |
296 | 0 | if (BELOW_THRESHOLD (n, INV_NEWTON_THRESHOLD)) |
297 | 0 | return mpn_bc_invertappr (ip, dp, n, scratch); |
298 | 0 | else |
299 | 0 | return mpn_ni_invertappr (ip, dp, n, scratch); |
300 | 0 | } |