/src/gmp-6.2.1/mpz/stronglucas.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* mpz_stronglucas(n, t1, t2) -- An implementation of the strong Lucas |
2 | | primality test on n, using parameters as suggested by the BPSW test. |
3 | | |
4 | | THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
5 | | CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
6 | | FUTURE GNU MP RELEASES. |
7 | | |
8 | | Copyright 2018 Free Software Foundation, Inc. |
9 | | |
10 | | Contributed by Marco Bodrato. |
11 | | |
12 | | This file is part of the GNU MP Library. |
13 | | |
14 | | The GNU MP Library is free software; you can redistribute it and/or modify |
15 | | it under the terms of either: |
16 | | |
17 | | * the GNU Lesser General Public License as published by the Free |
18 | | Software Foundation; either version 3 of the License, or (at your |
19 | | option) any later version. |
20 | | |
21 | | or |
22 | | |
23 | | * the GNU General Public License as published by the Free Software |
24 | | Foundation; either version 2 of the License, or (at your option) any |
25 | | later version. |
26 | | |
27 | | or both in parallel, as here. |
28 | | |
29 | | The GNU MP Library is distributed in the hope that it will be useful, but |
30 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
31 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
32 | | for more details. |
33 | | |
34 | | You should have received copies of the GNU General Public License and the |
35 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
36 | | see https://www.gnu.org/licenses/. */ |
37 | | |
38 | | #include "gmp-impl.h" |
39 | | #include "longlong.h" |
40 | | |
41 | | /* Returns an approximation of the sqare root of x. |
42 | | * It gives: |
43 | | * limb_apprsqrt (x) ^ 2 <= x < (limb_apprsqrt (x)+1) ^ 2 |
44 | | * or |
45 | | * x <= limb_apprsqrt (x) ^ 2 <= x * 9/8 |
46 | | */ |
47 | | static mp_limb_t |
48 | | limb_apprsqrt (mp_limb_t x) |
49 | 0 | { |
50 | 0 | int s; |
51 | |
|
52 | 0 | ASSERT (x > 2); |
53 | 0 | count_leading_zeros (s, x); |
54 | 0 | s = (GMP_LIMB_BITS - s) >> 1; |
55 | 0 | return ((CNST_LIMB(1) << s) + (x >> s)) >> 1; |
56 | 0 | } |
57 | | |
58 | | /* Performs strong Lucas' test on x, with parameters suggested */ |
59 | | /* for the BPSW test. Qk and V are passed to recycle variables. */ |
60 | | /* Requires GCD (x,6) = 1.*/ |
61 | | int |
62 | | mpz_stronglucas (mpz_srcptr x, mpz_ptr V, mpz_ptr Qk) |
63 | 0 | { |
64 | 0 | mp_bitcnt_t b0; |
65 | 0 | mpz_t n; |
66 | 0 | mp_limb_t D; /* The absolute value is stored. */ |
67 | 0 | long Q; |
68 | 0 | mpz_t T1, T2; |
69 | | |
70 | | /* Test on the absolute value. */ |
71 | 0 | mpz_roinit_n (n, PTR (x), ABSIZ (x)); |
72 | |
|
73 | 0 | ASSERT (mpz_odd_p (n)); |
74 | | /* ASSERT (mpz_gcd_ui (NULL, n, 6) == 1); */ |
75 | 0 | #if GMP_NUMB_BITS % 16 == 0 |
76 | | /* (2^12 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */ |
77 | 0 | D = mpn_mod_34lsub1 (PTR (n), SIZ (n)); |
78 | | /* (2^12 - 1) = 3^2 * 5 * 7 * 13 */ |
79 | 0 | ASSERT (D % 3 != 0 && D % 5 != 0 && D % 7 != 0); |
80 | 0 | if ((D % 5 & 2) != 0) |
81 | | /* (5/n) = -1, iff n = 2 or 3 (mod 5) */ |
82 | | /* D = 5; Q = -1 */ |
83 | 0 | return mpn_strongfibo (PTR (n), SIZ (n), PTR (V)); |
84 | 0 | else if (! POW2_P (D % 7)) |
85 | | /* (-7/n) = -1, iff n = 3,5 or 6 (mod 7) */ |
86 | 0 | D = 7; /* Q = 2 */ |
87 | | /* (9/n) = -1, never: 9 = 3^2 */ |
88 | 0 | else if (mpz_kronecker_ui (n, 11) == -1) |
89 | | /* (-11/n) = (n/11) */ |
90 | 0 | D = 11; /* Q = 3 */ |
91 | 0 | else if ((((D % 13 - (D % 13 >> 3)) & 7) > 4) || |
92 | 0 | (((D % 13 - (D % 13 >> 3)) & 7) == 2)) |
93 | | /* (13/n) = -1, iff n = 2,5,6,7,8 or 11 (mod 13) */ |
94 | 0 | D = 13; /* Q = -3 */ |
95 | 0 | else if (D % 3 == 2) |
96 | | /* (-15/n) = (n/15) = (n/5)*(n/3) */ |
97 | | /* Here, (n/5) = 1, and */ |
98 | | /* (n/3) = -1, iff n = 2 (mod 3) */ |
99 | 0 | D = 15; /* Q = 4 */ |
100 | 0 | #if GMP_NUMB_BITS % 32 == 0 |
101 | | /* (2^24 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */ |
102 | | /* (2^24 - 1) = (2^12 - 1) * 17 * 241 */ |
103 | 0 | else if (! POW2_P (D % 17) && ! POW2_P (17 - D % 17)) |
104 | 0 | D = 17; /* Q = -4 */ |
105 | 0 | #endif |
106 | | #else |
107 | | if (mpz_kronecker_ui (n, 5) == -1) |
108 | | return mpn_strongfibo (PTR (n), SIZ (n), PTR (V)); |
109 | | #endif |
110 | 0 | else |
111 | 0 | { |
112 | 0 | mp_limb_t tl; |
113 | 0 | mp_limb_t maxD; |
114 | 0 | int jac_bit1; |
115 | |
|
116 | 0 | if (UNLIKELY (mpz_perfect_square_p (n))) |
117 | 0 | return 0; /* A square is composite. */ |
118 | | |
119 | | /* Check Ds up to square root (in case, n is prime) |
120 | | or avoid overflows */ |
121 | 0 | if (SIZ (n) == 1) |
122 | 0 | maxD = limb_apprsqrt (* PTR (n)); |
123 | 0 | else if (BITS_PER_ULONG >= GMP_NUMB_BITS && SIZ (n) == 2) |
124 | 0 | mpn_sqrtrem (&maxD, (mp_ptr) NULL, PTR (n), 2); |
125 | 0 | else |
126 | 0 | maxD = GMP_NUMB_MAX; |
127 | 0 | maxD = MIN (maxD, ULONG_MAX); |
128 | |
|
129 | 0 | D = GMP_NUMB_BITS % 16 == 0 ? (GMP_NUMB_BITS % 32 == 0 ? 17 : 15) : 5; |
130 | | |
131 | | /* Search a D such that (D/n) = -1 in the sequence 5,-7,9,-11,.. */ |
132 | | /* For those Ds we have (D/n) = (n/|D|) */ |
133 | | /* FIXME: Should we loop only on prime Ds? */ |
134 | | /* The only interesting composite D is 15. */ |
135 | 0 | do |
136 | 0 | { |
137 | 0 | if (UNLIKELY (D >= maxD)) |
138 | 0 | return 1; |
139 | 0 | D += 2; |
140 | 0 | jac_bit1 = 0; |
141 | 0 | JACOBI_MOD_OR_MODEXACT_1_ODD (jac_bit1, tl, PTR (n), SIZ (n), D); |
142 | 0 | if (UNLIKELY (tl == 0)) |
143 | 0 | return 0; |
144 | 0 | } |
145 | 0 | while (mpn_jacobi_base (tl, D, jac_bit1) == 1); |
146 | 0 | } |
147 | | |
148 | | /* D= P^2 - 4Q; P = 1; Q = (1-D)/4 */ |
149 | 0 | Q = (D & 2) ? (D >> 2) + 1 : -(long) (D >> 2); |
150 | | /* ASSERT (mpz_si_kronecker ((D & 2) ? NEG_CAST (long, D) : D, n) == -1); */ |
151 | | |
152 | | /* n-(D/n) = n+1 = d*2^{b0}, with d = (n>>b0) | 1 */ |
153 | 0 | b0 = mpz_scan0 (n, 0); |
154 | |
|
155 | 0 | mpz_init (T1); |
156 | 0 | mpz_init (T2); |
157 | | |
158 | | /* If Ud != 0 && Vd != 0 */ |
159 | 0 | if (mpz_lucas_mod (V, Qk, Q, b0, n, T1, T2) == 0) |
160 | 0 | if (LIKELY (--b0 != 0)) |
161 | 0 | do |
162 | 0 | { |
163 | | /* V_{2k} <- V_k ^ 2 - 2Q^k */ |
164 | 0 | mpz_mul (T2, V, V); |
165 | 0 | mpz_submul_ui (T2, Qk, 2); |
166 | 0 | mpz_tdiv_r (V, T2, n); |
167 | 0 | if (SIZ (V) == 0 || UNLIKELY (--b0 == 0)) |
168 | 0 | break; |
169 | | /* Q^{2k} = (Q^k)^2 */ |
170 | 0 | mpz_mul (T2, Qk, Qk); |
171 | 0 | mpz_tdiv_r (Qk, T2, n); |
172 | 0 | } while (1); |
173 | | |
174 | 0 | mpz_clear (T1); |
175 | 0 | mpz_clear (T2); |
176 | |
|
177 | 0 | return (b0 != 0); |
178 | 0 | } |