Coverage Report

Created: 2025-04-11 06:45

/src/gmp-6.2.1/mpn/sec_powm.c
Line
Count
Source (jump to first uncovered line)
1
/* mpn_sec_powm -- Compute R = U^E mod M.  Secure variant, side-channel silent
2
   under the assumption that the multiply instruction is side channel silent.
3
4
   Contributed to the GNU project by Torbjörn Granlund.
5
6
Copyright 2007-2009, 2011-2014, 2018-2019 Free Software Foundation, Inc.
7
8
This file is part of the GNU MP Library.
9
10
The GNU MP Library is free software; you can redistribute it and/or modify
11
it under the terms of either:
12
13
  * the GNU Lesser General Public License as published by the Free
14
    Software Foundation; either version 3 of the License, or (at your
15
    option) any later version.
16
17
or
18
19
  * the GNU General Public License as published by the Free Software
20
    Foundation; either version 2 of the License, or (at your option) any
21
    later version.
22
23
or both in parallel, as here.
24
25
The GNU MP Library is distributed in the hope that it will be useful, but
26
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
27
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
28
for more details.
29
30
You should have received copies of the GNU General Public License and the
31
GNU Lesser General Public License along with the GNU MP Library.  If not,
32
see https://www.gnu.org/licenses/.  */
33
34
35
/*
36
  BASIC ALGORITHM, Compute U^E mod M, where M < B^n is odd.
37
38
  1. T <- (B^n * U) mod M; convert to REDC form
39
40
  2. Compute table U^0, U^1, U^2... of floor(log(E))-dependent size
41
42
  3. While there are more bits in E
43
       W <- power left-to-right base-k
44
45
  The article "Defeating modexp side-channel attacks with data-independent
46
  execution traces", https://gmplib.org/~tege/modexp-silent.pdf, has details.
47
48
49
  TODO:
50
51
   * Make getbits a macro, thereby allowing it to update the index operand.
52
     That will simplify the code using getbits.  (Perhaps make getbits' sibling
53
     getbit then have similar form, for symmetry.)
54
55
   * Choose window size without looping.  (Superoptimize or think(tm).)
56
57
   * REDC_1_TO_REDC_2_THRESHOLD might actually represent the cutoff between
58
     redc_1 and redc_n.  On such systems, we will switch to redc_2 causing
59
     slowdown.
60
*/
61
62
#include "gmp-impl.h"
63
#include "longlong.h"
64
65
#undef MPN_REDC_1_SEC
66
#if HAVE_NATIVE_mpn_sbpi1_bdiv_r
67
#define MPN_REDC_1_SEC(rp, up, mp, n, invm)       \
68
  do {                  \
69
    mp_limb_t cy;             \
70
    cy = mpn_sbpi1_bdiv_r (up, 2 * n, mp, n, invm);     \
71
    mpn_cnd_sub_n (cy, rp, up + n, mp, n);        \
72
  } while (0)
73
#else
74
#define MPN_REDC_1_SEC(rp, up, mp, n, invm)       \
75
170k
  do {                 \
76
170k
    mp_limb_t cy;             \
77
170k
    cy = mpn_redc_1 (rp, up, mp, n, invm);       \
78
170k
    mpn_cnd_sub_n (cy, rp, rp, mp, n);         \
79
170k
  } while (0)
80
#endif
81
82
#if HAVE_NATIVE_mpn_addmul_2 || HAVE_NATIVE_mpn_redc_2
83
#undef MPN_REDC_2_SEC
84
#define MPN_REDC_2_SEC(rp, up, mp, n, mip)        \
85
110k
  do {                 \
86
110k
    mp_limb_t cy;             \
87
110k
    cy = mpn_redc_2 (rp, up, mp, n, mip);        \
88
110k
    mpn_cnd_sub_n (cy, rp, rp, mp, n);         \
89
110k
  } while (0)
90
#else
91
#define MPN_REDC_2_SEC(rp, up, mp, n, mip) /* empty */
92
#undef REDC_1_TO_REDC_2_THRESHOLD
93
#define REDC_1_TO_REDC_2_THRESHOLD MP_SIZE_T_MAX
94
#endif
95
96
/* Define our own mpn squaring function.  We do this since we cannot use a
97
   native mpn_sqr_basecase over TUNE_SQR_TOOM2_MAX, or a non-native one over
98
   SQR_TOOM2_THRESHOLD.  This is so because of fixed size stack allocations
99
   made inside mpn_sqr_basecase.  */
100
101
#if ! HAVE_NATIVE_mpn_sqr_basecase
102
/* The limit of the generic code is SQR_TOOM2_THRESHOLD.  */
103
#define SQR_BASECASE_LIM  SQR_TOOM2_THRESHOLD
104
#endif
105
106
#if HAVE_NATIVE_mpn_sqr_basecase
107
#ifdef TUNE_SQR_TOOM2_MAX
108
/* We slightly abuse TUNE_SQR_TOOM2_MAX here.  If it is set for an assembly
109
   mpn_sqr_basecase, it comes from SQR_TOOM2_THRESHOLD_MAX in the assembly
110
   file.  An assembly mpn_sqr_basecase that does not define it should allow
111
   any size.  */
112
#define SQR_BASECASE_LIM  SQR_TOOM2_THRESHOLD
113
#endif
114
#endif
115
116
#ifdef WANT_FAT_BINARY
117
/* For fat builds, we use SQR_TOOM2_THRESHOLD which will expand to a read from
118
   __gmpn_cpuvec.  Perhaps any possible sqr_basecase.asm allow any size, and we
119
   limit the use unnecessarily.  We cannot tell, so play it safe.  FIXME.  */
120
#define SQR_BASECASE_LIM  SQR_TOOM2_THRESHOLD
121
#endif
122
123
#ifndef SQR_BASECASE_LIM
124
/* If SQR_BASECASE_LIM is now not defined, use mpn_sqr_basecase for any operand
125
   size.  */
126
#define SQR_BASECASE_LIM  MP_SIZE_T_MAX
127
#endif
128
129
#define mpn_local_sqr(rp,up,n)            \
130
234k
  do {                 \
131
234k
    if (ABOVE_THRESHOLD (n, SQR_BASECASE_THRESHOLD)      \
132
234k
  && BELOW_THRESHOLD (n, SQR_BASECASE_LIM))     \
133
234k
      mpn_sqr_basecase (rp, up, n);         \
134
234k
    else                \
135
234k
      mpn_mul_basecase(rp, up, n, up, n);       \
136
234k
  } while (0)
137
138
#define getbit(p,bi) \
139
  ((p[(bi - 1) / GMP_NUMB_BITS] >> (bi - 1) % GMP_NUMB_BITS) & 1)
140
141
/* FIXME: Maybe some things would get simpler if all callers ensure
142
   that bi >= nbits. As far as I understand, with the current code bi
143
   < nbits can happen only for the final iteration. */
144
static inline mp_limb_t
145
getbits (const mp_limb_t *p, mp_bitcnt_t bi, int nbits)
146
43.5k
{
147
43.5k
  int nbits_in_r;
148
43.5k
  mp_limb_t r;
149
43.5k
  mp_size_t i;
150
151
43.5k
  if (bi < nbits)
152
106
    {
153
106
      return p[0] & (((mp_limb_t) 1 << bi) - 1);
154
106
    }
155
43.4k
  else
156
43.4k
    {
157
43.4k
      bi -= nbits;      /* bit index of low bit to extract */
158
43.4k
      i = bi / GMP_NUMB_BITS;   /* word index of low bit to extract */
159
43.4k
      bi %= GMP_NUMB_BITS;   /* bit index in low word */
160
43.4k
      r = p[i] >> bi;     /* extract (low) bits */
161
43.4k
      nbits_in_r = GMP_NUMB_BITS - bi;  /* number of bits now in r */
162
43.4k
      if (nbits_in_r < nbits)    /* did we get enough bits? */
163
2.29k
  r += p[i + 1] << nbits_in_r; /* prepend bits from higher word */
164
43.4k
      return r & (((mp_limb_t ) 1 << nbits) - 1);
165
43.4k
    }
166
43.5k
}
167
168
#ifndef POWM_SEC_TABLE
169
#if GMP_NUMB_BITS < 50
170
#define POWM_SEC_TABLE  2,33,96,780,2741
171
#else
172
#define POWM_SEC_TABLE  2,130,524,2578
173
#endif
174
#endif
175
176
#if TUNE_PROGRAM_BUILD
177
extern int win_size (mp_bitcnt_t);
178
#else
179
static inline int
180
win_size (mp_bitcnt_t enb)
181
551
{
182
551
  int k;
183
  /* Find k, such that x[k-1] < enb <= x[k].
184
185
     We require that x[k] >= k, then it follows that enb > x[k-1] >=
186
     k-1, which implies k <= enb.
187
  */
188
551
  static const mp_bitcnt_t x[] = {0,POWM_SEC_TABLE,~(mp_bitcnt_t)0};
189
2.14k
  for (k = 1; enb > x[k]; k++)
190
1.59k
    ;
191
551
  ASSERT (k <= enb);
192
551
  return k;
193
551
}
194
#endif
195
196
/* Convert U to REDC form, U_r = B^n * U mod M.
197
   Uses scratch space at tp of size 2un + n + 1.  */
198
static void
199
redcify (mp_ptr rp, mp_srcptr up, mp_size_t un, mp_srcptr mp, mp_size_t n, mp_ptr tp)
200
372
{
201
372
  MPN_ZERO (tp, n);
202
372
  MPN_COPY (tp + n, up, un);
203
204
372
  mpn_sec_div_r (tp, un + n, mp, n, tp + un + n);
205
372
  MPN_COPY (rp, tp, n);
206
372
}
207
208
/* {rp, n} <-- {bp, bn} ^ {ep, en} mod {mp, n},
209
   where en = ceil (enb / GMP_NUMB_BITS)
210
   Requires that {mp, n} is odd (and hence also mp[0] odd).
211
   Uses scratch space at tp as defined by mpn_sec_powm_itch.  */
212
void
213
mpn_sec_powm (mp_ptr rp, mp_srcptr bp, mp_size_t bn,
214
        mp_srcptr ep, mp_bitcnt_t enb,
215
        mp_srcptr mp, mp_size_t n, mp_ptr tp)
216
186
{
217
186
  mp_limb_t ip[2], *mip;
218
186
  int windowsize, this_windowsize;
219
186
  mp_limb_t expbits;
220
186
  mp_ptr pp, this_pp, ps;
221
186
  long i;
222
186
  int cnd;
223
224
186
  ASSERT (enb > 0);
225
186
  ASSERT (n > 0);
226
  /* The code works for bn = 0, but the defined scratch space is 2 limbs
227
     greater than we supply, when converting 1 to redc form .  */
228
186
  ASSERT (bn > 0);
229
186
  ASSERT ((mp[0] & 1) != 0);
230
231
186
  windowsize = win_size (enb);
232
233
186
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
234
152
    {
235
152
      mip = ip;
236
152
      binvert_limb (mip[0], mp[0]);
237
152
      mip[0] = -mip[0];
238
152
    }
239
34
  else
240
34
    {
241
34
      mip = ip;
242
34
      mpn_binvert (mip, mp, 2, tp);
243
34
      mip[0] = -mip[0]; mip[1] = ~mip[1];
244
34
    }
245
246
186
  pp = tp;
247
186
  tp += (n << windowsize);  /* put tp after power table */
248
249
  /* Compute pp[0] table entry */
250
  /* scratch: |   n   | 1 |   n+2    |  */
251
  /*          | pp[0] | 1 | redcify  |  */
252
186
  this_pp = pp;
253
186
  this_pp[n] = 1;
254
186
  redcify (this_pp, this_pp + n, 1, mp, n, this_pp + n + 1);
255
186
  this_pp += n;
256
257
  /* Compute pp[1] table entry.  To avoid excessive scratch usage in the
258
     degenerate situation where B >> M, we let redcify use scratch space which
259
     will later be used by the pp table (element 2 and up).  */
260
  /* scratch: |   n   |   n   |  bn + n + 1  |  */
261
  /*          | pp[0] | pp[1] |   redcify    |  */
262
186
  redcify (this_pp, bp, bn, mp, n, this_pp + n);
263
264
  /* Precompute powers of b and put them in the temporary area at pp.  */
265
  /* scratch: |   n   |   n   | ...  |                    |   2n      |  */
266
  /*          | pp[0] | pp[1] | ...  | pp[2^windowsize-1] |  product  |  */
267
186
  ps = pp + n;    /* initially B^1 */
268
186
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
269
152
    {
270
1.39k
      for (i = (1 << windowsize) - 2; i > 0; i -= 2)
271
1.24k
  {
272
1.24k
    mpn_local_sqr (tp, ps, n);
273
1.24k
    ps += n;
274
1.24k
    this_pp += n;
275
1.24k
    MPN_REDC_1_SEC (this_pp, tp, mp, n, mip[0]);
276
277
1.24k
    mpn_mul_basecase (tp, this_pp, n, pp + n, n);
278
1.24k
    this_pp += n;
279
1.24k
    MPN_REDC_1_SEC (this_pp, tp, mp, n, mip[0]);
280
1.24k
  }
281
152
    }
282
34
  else
283
34
    {
284
548
      for (i = (1 << windowsize) - 2; i > 0; i -= 2)
285
514
  {
286
514
    mpn_local_sqr (tp, ps, n);
287
514
    ps += n;
288
514
    this_pp += n;
289
514
    MPN_REDC_2_SEC (this_pp, tp, mp, n, mip);
290
291
514
    mpn_mul_basecase (tp, this_pp, n, pp + n, n);
292
514
    this_pp += n;
293
514
    MPN_REDC_2_SEC (this_pp, tp, mp, n, mip);
294
514
  }
295
34
    }
296
297
186
  expbits = getbits (ep, enb, windowsize);
298
186
  ASSERT_ALWAYS (enb >= windowsize);
299
186
  enb -= windowsize;
300
301
186
  mpn_sec_tabselect (rp, pp, n, 1 << windowsize, expbits);
302
303
  /* Main exponentiation loop.  */
304
  /* scratch: |   n   |   n   | ...  |                    |     3n-4n     |  */
305
  /*          | pp[0] | pp[1] | ...  | pp[2^windowsize-1] |  loop scratch |  */
306
307
186
#define INNERLOOP             \
308
43.5k
  while (enb != 0)             \
309
43.3k
    {                 \
310
43.3k
      expbits = getbits (ep, enb, windowsize);        \
311
43.3k
      this_windowsize = windowsize;         \
312
43.3k
      if (enb < windowsize)           \
313
43.3k
  {               \
314
106
    this_windowsize -= windowsize - enb;        \
315
106
    enb = 0;              \
316
106
  }                \
317
43.3k
      else                \
318
43.3k
  enb -= windowsize;           \
319
43.3k
                  \
320
43.3k
      do                \
321
233k
  {               \
322
233k
    mpn_local_sqr (tp, rp, n);         \
323
233k
    MPN_REDUCE (rp, tp, mp, n, mip);        \
324
233k
    this_windowsize--;            \
325
233k
  }                \
326
233k
      while (this_windowsize != 0);          \
327
43.3k
                  \
328
43.3k
      mpn_sec_tabselect (tp + 2*n, pp, n, 1 << windowsize, expbits); \
329
43.3k
      mpn_mul_basecase (tp, rp, n, tp + 2*n, n);      \
330
43.3k
                  \
331
43.3k
      MPN_REDUCE (rp, tp, mp, n, mip);          \
332
43.3k
    }
333
334
186
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
335
152
    {
336
152
#undef MPN_REDUCE
337
167k
#define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_1_SEC (rp, tp, mp, n, mip[0])
338
152
      INNERLOOP;
339
152
    }
340
34
  else
341
34
    {
342
34
#undef MPN_REDUCE
343
108k
#define MPN_REDUCE(rp,tp,mp,n,mip)  MPN_REDC_2_SEC (rp, tp, mp, n, mip)
344
34
      INNERLOOP;
345
34
    }
346
347
186
  MPN_COPY (tp, rp, n);
348
186
  MPN_ZERO (tp + n, n);
349
350
186
  if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD))
351
152
    MPN_REDC_1_SEC (rp, tp, mp, n, mip[0]);
352
34
  else
353
34
    MPN_REDC_2_SEC (rp, tp, mp, n, mip);
354
355
186
  cnd = mpn_sub_n (tp, rp, mp, n); /* we need just retval */
356
186
  mpn_cnd_sub_n (!cnd, rp, rp, mp, n);
357
186
}
358
359
mp_size_t
360
mpn_sec_powm_itch (mp_size_t bn, mp_bitcnt_t enb, mp_size_t n)
361
365
{
362
365
  int windowsize;
363
365
  mp_size_t redcify_itch, itch;
364
365
  /* FIXME: no more _local/_basecase difference. */
366
  /* The top scratch usage will either be when reducing B in the 2nd redcify
367
     call, or more typically n*2^windowsize + 3n or 4n, in the main loop.  (It
368
     is 3n or 4n depending on if we use mpn_local_sqr or a native
369
     mpn_sqr_basecase.  We assume 4n always for now.) */
370
371
365
  windowsize = win_size (enb);
372
373
  /* The 2n term is due to pp[0] and pp[1] at the time of the 2nd redcify call,
374
     the (bn + n) term is due to redcify's own usage, and the rest is due to
375
     mpn_sec_div_r's usage when called from redcify.  */
376
365
  redcify_itch = (2 * n) + (bn + n) + ((bn + n) + 2 * n + 2);
377
378
  /* The n * 2^windowsize term is due to the power table, the 4n term is due to
379
     scratch needs of squaring/multiplication in the exponentiation loop.  */
380
365
  itch = (n << windowsize) + (4 * n);
381
382
365
  return MAX (itch, redcify_itch);
383
365
}