/src/aac/libAACdec/src/aacdec_hcrs.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* ----------------------------------------------------------------------------- |
2 | | Software License for The Fraunhofer FDK AAC Codec Library for Android |
3 | | |
4 | | © Copyright 1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten |
5 | | Forschung e.V. All rights reserved. |
6 | | |
7 | | 1. INTRODUCTION |
8 | | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
9 | | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
10 | | scheme for digital audio. This FDK AAC Codec software is intended to be used on |
11 | | a wide variety of Android devices. |
12 | | |
13 | | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
14 | | general perceptual audio codecs. AAC-ELD is considered the best-performing |
15 | | full-bandwidth communications codec by independent studies and is widely |
16 | | deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
17 | | specifications. |
18 | | |
19 | | Patent licenses for necessary patent claims for the FDK AAC Codec (including |
20 | | those of Fraunhofer) may be obtained through Via Licensing |
21 | | (www.vialicensing.com) or through the respective patent owners individually for |
22 | | the purpose of encoding or decoding bit streams in products that are compliant |
23 | | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
24 | | Android devices already license these patent claims through Via Licensing or |
25 | | directly from the patent owners, and therefore FDK AAC Codec software may |
26 | | already be covered under those patent licenses when it is used for those |
27 | | licensed purposes only. |
28 | | |
29 | | Commercially-licensed AAC software libraries, including floating-point versions |
30 | | with enhanced sound quality, are also available from Fraunhofer. Users are |
31 | | encouraged to check the Fraunhofer website for additional applications |
32 | | information and documentation. |
33 | | |
34 | | 2. COPYRIGHT LICENSE |
35 | | |
36 | | Redistribution and use in source and binary forms, with or without modification, |
37 | | are permitted without payment of copyright license fees provided that you |
38 | | satisfy the following conditions: |
39 | | |
40 | | You must retain the complete text of this software license in redistributions of |
41 | | the FDK AAC Codec or your modifications thereto in source code form. |
42 | | |
43 | | You must retain the complete text of this software license in the documentation |
44 | | and/or other materials provided with redistributions of the FDK AAC Codec or |
45 | | your modifications thereto in binary form. You must make available free of |
46 | | charge copies of the complete source code of the FDK AAC Codec and your |
47 | | modifications thereto to recipients of copies in binary form. |
48 | | |
49 | | The name of Fraunhofer may not be used to endorse or promote products derived |
50 | | from this library without prior written permission. |
51 | | |
52 | | You may not charge copyright license fees for anyone to use, copy or distribute |
53 | | the FDK AAC Codec software or your modifications thereto. |
54 | | |
55 | | Your modified versions of the FDK AAC Codec must carry prominent notices stating |
56 | | that you changed the software and the date of any change. For modified versions |
57 | | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
58 | | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
59 | | AAC Codec Library for Android." |
60 | | |
61 | | 3. NO PATENT LICENSE |
62 | | |
63 | | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
64 | | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
65 | | Fraunhofer provides no warranty of patent non-infringement with respect to this |
66 | | software. |
67 | | |
68 | | You may use this FDK AAC Codec software or modifications thereto only for |
69 | | purposes that are authorized by appropriate patent licenses. |
70 | | |
71 | | 4. DISCLAIMER |
72 | | |
73 | | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
74 | | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
75 | | including but not limited to the implied warranties of merchantability and |
76 | | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
77 | | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
78 | | or consequential damages, including but not limited to procurement of substitute |
79 | | goods or services; loss of use, data, or profits, or business interruption, |
80 | | however caused and on any theory of liability, whether in contract, strict |
81 | | liability, or tort (including negligence), arising in any way out of the use of |
82 | | this software, even if advised of the possibility of such damage. |
83 | | |
84 | | 5. CONTACT INFORMATION |
85 | | |
86 | | Fraunhofer Institute for Integrated Circuits IIS |
87 | | Attention: Audio and Multimedia Departments - FDK AAC LL |
88 | | Am Wolfsmantel 33 |
89 | | 91058 Erlangen, Germany |
90 | | |
91 | | www.iis.fraunhofer.de/amm |
92 | | amm-info@iis.fraunhofer.de |
93 | | ----------------------------------------------------------------------------- */ |
94 | | |
95 | | /**************************** AAC decoder library ****************************** |
96 | | |
97 | | Author(s): Robert Weidner (DSP Solutions) |
98 | | |
99 | | Description: HCR Decoder: Prepare decoding of non-PCWs, segmentation- and |
100 | | bitfield-handling, HCR-Statemachine |
101 | | |
102 | | *******************************************************************************/ |
103 | | |
104 | | #include "aacdec_hcrs.h" |
105 | | |
106 | | #include "aacdec_hcr.h" |
107 | | |
108 | | #include "aacdec_hcr_bit.h" |
109 | | #include "aac_rom.h" |
110 | | #include "aac_ram.h" |
111 | | |
112 | | static UINT InitSegmentBitfield(UINT *pNumSegment, |
113 | | SCHAR *pRemainingBitsInSegment, |
114 | | UINT *pSegmentBitfield, |
115 | | UCHAR *pNumWordForBitfield, |
116 | | USHORT *pNumBitValidInLastWord); |
117 | | |
118 | | static void InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr); |
119 | | |
120 | | static INT ModuloValue(INT input, INT bufferlength); |
121 | | |
122 | | static void ClearBitFromBitfield(STATEFUNC *ptrState, UINT offset, |
123 | | UINT *pBitfield); |
124 | | |
125 | | /*--------------------------------------------------------------------------------------------- |
126 | | description: This function decodes all non-priority codewords (non-PCWs) by |
127 | | using a state-machine. |
128 | | -------------------------------------------------------------------------------------------- |
129 | | */ |
130 | 0 | void DecodeNonPCWs(HANDLE_FDK_BITSTREAM bs, H_HCR_INFO pHcr) { |
131 | 0 | UINT numValidSegment; |
132 | 0 | INT segmentOffset; |
133 | 0 | INT codewordOffsetBase; |
134 | 0 | INT codewordOffset; |
135 | 0 | UINT trial; |
136 | |
|
137 | 0 | UINT *pNumSegment; |
138 | 0 | SCHAR *pRemainingBitsInSegment; |
139 | 0 | UINT *pSegmentBitfield; |
140 | 0 | UCHAR *pNumWordForBitfield; |
141 | 0 | USHORT *pNumBitValidInLastWord; |
142 | 0 | UINT *pCodewordBitfield; |
143 | 0 | INT bitfieldWord; |
144 | 0 | INT bitInWord; |
145 | 0 | UINT tempWord; |
146 | 0 | UINT interMediateWord; |
147 | 0 | INT tempBit; |
148 | 0 | INT carry; |
149 | |
|
150 | 0 | UINT numCodeword; |
151 | 0 | UCHAR numSet; |
152 | 0 | UCHAR currentSet; |
153 | 0 | UINT codewordInSet; |
154 | 0 | UINT remainingCodewordsInSet; |
155 | 0 | SCHAR *pSta; |
156 | 0 | UINT ret; |
157 | |
|
158 | 0 | pNumSegment = &(pHcr->segmentInfo.numSegment); |
159 | 0 | pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment; |
160 | 0 | pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield; |
161 | 0 | pNumWordForBitfield = &(pHcr->segmentInfo.numWordForBitfield); |
162 | 0 | pNumBitValidInLastWord = &(pHcr->segmentInfo.pNumBitValidInLastWord); |
163 | 0 | pSta = pHcr->nonPcwSideinfo.pSta; |
164 | |
|
165 | 0 | numValidSegment = InitSegmentBitfield(pNumSegment, pRemainingBitsInSegment, |
166 | 0 | pSegmentBitfield, pNumWordForBitfield, |
167 | 0 | pNumBitValidInLastWord); |
168 | |
|
169 | 0 | if (numValidSegment != 0) { |
170 | 0 | numCodeword = pHcr->sectionInfo.numCodeword; |
171 | 0 | numSet = ((numCodeword - 1) / *pNumSegment) + 1; |
172 | |
|
173 | 0 | pHcr->segmentInfo.readDirection = FROM_RIGHT_TO_LEFT; |
174 | | |
175 | | /* Process sets subsequently */ |
176 | 0 | numSet = fMin(numSet, (UCHAR)MAX_HCR_SETS); |
177 | 0 | for (currentSet = 1; currentSet < numSet; currentSet++) { |
178 | | |
179 | | /* step 1 */ |
180 | 0 | numCodeword -= |
181 | 0 | *pNumSegment; /* number of remaining non PCWs [for all sets] */ |
182 | 0 | if (numCodeword < *pNumSegment) { |
183 | 0 | codewordInSet = numCodeword; /* for last set */ |
184 | 0 | } else { |
185 | 0 | codewordInSet = *pNumSegment; /* for all sets except last set */ |
186 | 0 | } |
187 | | |
188 | | /* step 2 */ |
189 | | /* prepare array 'CodewordBitfield'; as much ones are written from left in |
190 | | * all words, as much decodedCodewordInSetCounter nonPCWs exist in this |
191 | | * set */ |
192 | 0 | tempWord = 0xFFFFFFFF; |
193 | 0 | pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield; |
194 | |
|
195 | 0 | for (bitfieldWord = *pNumWordForBitfield; bitfieldWord != 0; |
196 | 0 | bitfieldWord--) { /* loop over all used words */ |
197 | 0 | if (codewordInSet > NUMBER_OF_BIT_IN_WORD) { /* more codewords than |
198 | | number of bits => fill |
199 | | ones */ |
200 | | /* fill a whole word with ones */ |
201 | 0 | *pCodewordBitfield++ = tempWord; |
202 | 0 | codewordInSet -= NUMBER_OF_BIT_IN_WORD; /* subtract number of bits */ |
203 | 0 | } else { |
204 | | /* prepare last tempWord */ |
205 | 0 | for (remainingCodewordsInSet = codewordInSet; |
206 | 0 | remainingCodewordsInSet < NUMBER_OF_BIT_IN_WORD; |
207 | 0 | remainingCodewordsInSet++) { |
208 | 0 | tempWord = |
209 | 0 | tempWord & |
210 | 0 | ~(1 |
211 | 0 | << (NUMBER_OF_BIT_IN_WORD - 1 - |
212 | 0 | remainingCodewordsInSet)); /* set a zero at bit number |
213 | | (NUMBER_OF_BIT_IN_WORD-1-i) |
214 | | in tempWord */ |
215 | 0 | } |
216 | 0 | *pCodewordBitfield++ = tempWord; |
217 | 0 | tempWord = 0x00000000; |
218 | 0 | } |
219 | 0 | } |
220 | 0 | pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield; |
221 | | |
222 | | /* step 3 */ |
223 | | /* build non-PCW sideinfo for each non-PCW of the current set */ |
224 | 0 | InitNonPCWSideInformationForCurrentSet(pHcr); |
225 | | |
226 | | /* step 4 */ |
227 | | /* decode all non-PCWs belonging to this set */ |
228 | | |
229 | | /* loop over trials */ |
230 | 0 | codewordOffsetBase = 0; |
231 | 0 | for (trial = *pNumSegment; trial > 0; trial--) { |
232 | | /* loop over number of words in bitfields */ |
233 | 0 | segmentOffset = 0; /* start at zero in every segment */ |
234 | 0 | pHcr->segmentInfo.segmentOffset = |
235 | 0 | segmentOffset; /* store in structure for states */ |
236 | 0 | codewordOffset = codewordOffsetBase; |
237 | 0 | pHcr->nonPcwSideinfo.codewordOffset = |
238 | 0 | codewordOffset; /* store in structure for states */ |
239 | |
|
240 | 0 | for (bitfieldWord = 0; bitfieldWord < *pNumWordForBitfield; |
241 | 0 | bitfieldWord++) { |
242 | | /* derive tempWord with bitwise and */ |
243 | 0 | tempWord = |
244 | 0 | pSegmentBitfield[bitfieldWord] & pCodewordBitfield[bitfieldWord]; |
245 | | |
246 | | /* if tempWord is not zero, decode something */ |
247 | 0 | if (tempWord != 0) { |
248 | | /* loop over all bits in tempWord; start state machine if & is true |
249 | | */ |
250 | 0 | for (bitInWord = NUMBER_OF_BIT_IN_WORD; bitInWord > 0; |
251 | 0 | bitInWord--) { |
252 | 0 | interMediateWord = ((UINT)1 << (bitInWord - 1)); |
253 | 0 | if ((tempWord & interMediateWord) == interMediateWord) { |
254 | | /* get state and start state machine */ |
255 | 0 | pHcr->nonPcwSideinfo.pState = |
256 | 0 | aStateConstant2State[pSta[codewordOffset]]; |
257 | |
|
258 | 0 | while (pHcr->nonPcwSideinfo.pState) { |
259 | 0 | ret = ((STATEFUNC)pHcr->nonPcwSideinfo.pState)(bs, pHcr); |
260 | 0 | if (ret != 0) { |
261 | 0 | return; |
262 | 0 | } |
263 | 0 | } |
264 | 0 | } |
265 | | |
266 | | /* update both offsets */ |
267 | 0 | segmentOffset += 1; /* add NUMBER_OF_BIT_IN_WORD times one */ |
268 | 0 | pHcr->segmentInfo.segmentOffset = segmentOffset; |
269 | 0 | codewordOffset += 1; /* add NUMBER_OF_BIT_IN_WORD times one */ |
270 | 0 | codewordOffset = |
271 | 0 | ModuloValue(codewordOffset, |
272 | 0 | *pNumSegment); /* index of the current codeword |
273 | | lies within modulo range */ |
274 | 0 | pHcr->nonPcwSideinfo.codewordOffset = codewordOffset; |
275 | 0 | } |
276 | 0 | } else { |
277 | 0 | segmentOffset += |
278 | 0 | NUMBER_OF_BIT_IN_WORD; /* add NUMBER_OF_BIT_IN_WORD at once */ |
279 | 0 | pHcr->segmentInfo.segmentOffset = segmentOffset; |
280 | 0 | codewordOffset += |
281 | 0 | NUMBER_OF_BIT_IN_WORD; /* add NUMBER_OF_BIT_IN_WORD at once */ |
282 | 0 | codewordOffset = ModuloValue( |
283 | 0 | codewordOffset, |
284 | 0 | *pNumSegment); /* index of the current codeword lies within |
285 | | modulo range */ |
286 | 0 | pHcr->nonPcwSideinfo.codewordOffset = codewordOffset; |
287 | 0 | } |
288 | 0 | } /* end of bitfield word loop */ |
289 | | |
290 | | /* decrement codeword - pointer */ |
291 | 0 | codewordOffsetBase -= 1; |
292 | 0 | codewordOffsetBase = |
293 | 0 | ModuloValue(codewordOffsetBase, *pNumSegment); /* index of the |
294 | | current codeword |
295 | | base lies within |
296 | | modulo range */ |
297 | | |
298 | | /* rotate numSegment bits in codewordBitfield */ |
299 | | /* rotation of *numSegment bits in bitfield of codewords |
300 | | * (circle-rotation) */ |
301 | | /* get last valid bit */ |
302 | 0 | tempBit = pCodewordBitfield[*pNumWordForBitfield - 1] & |
303 | 0 | (1 << (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord)); |
304 | 0 | tempBit = tempBit >> (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord); |
305 | | |
306 | | /* write zero into place where tempBit was fetched from */ |
307 | 0 | pCodewordBitfield[*pNumWordForBitfield - 1] = |
308 | 0 | pCodewordBitfield[*pNumWordForBitfield - 1] & |
309 | 0 | ~(1 << (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord)); |
310 | | |
311 | | /* rotate last valid word */ |
312 | 0 | pCodewordBitfield[*pNumWordForBitfield - 1] = |
313 | 0 | pCodewordBitfield[*pNumWordForBitfield - 1] >> 1; |
314 | | |
315 | | /* transfare carry bit 0 from current word into bitposition 31 from next |
316 | | * word and rotate current word */ |
317 | 0 | for (bitfieldWord = *pNumWordForBitfield - 2; bitfieldWord > -1; |
318 | 0 | bitfieldWord--) { |
319 | | /* get carry (=bit at position 0) from current word */ |
320 | 0 | carry = pCodewordBitfield[bitfieldWord] & 1; |
321 | | |
322 | | /* put the carry bit at position 31 into word right from current word |
323 | | */ |
324 | 0 | pCodewordBitfield[bitfieldWord + 1] = |
325 | 0 | pCodewordBitfield[bitfieldWord + 1] | |
326 | 0 | (carry << (NUMBER_OF_BIT_IN_WORD - 1)); |
327 | | |
328 | | /* shift current word */ |
329 | 0 | pCodewordBitfield[bitfieldWord] = |
330 | 0 | pCodewordBitfield[bitfieldWord] >> 1; |
331 | 0 | } |
332 | | |
333 | | /* put tempBit into free bit-position 31 from first word */ |
334 | 0 | pCodewordBitfield[0] = |
335 | 0 | pCodewordBitfield[0] | (tempBit << (NUMBER_OF_BIT_IN_WORD - 1)); |
336 | |
|
337 | 0 | } /* end of trial loop */ |
338 | | |
339 | | /* toggle read direction */ |
340 | 0 | pHcr->segmentInfo.readDirection = |
341 | 0 | ToggleReadDirection(pHcr->segmentInfo.readDirection); |
342 | 0 | } |
343 | | /* end of set loop */ |
344 | | |
345 | | /* all non-PCWs of this spectrum are decoded */ |
346 | 0 | } |
347 | | |
348 | | /* all PCWs and all non PCWs are decoded. They are unbacksorted in output |
349 | | * buffer. Here is the Interface with comparing QSCs to asm decoding */ |
350 | 0 | } |
351 | | |
352 | | /*--------------------------------------------------------------------------------------------- |
353 | | description: This function prepares the bitfield used for the |
354 | | segments. The list is set up once to be used in all |
355 | | following sets. If a segment is decoded empty, the according bit from the |
356 | | Bitfield is removed. |
357 | | ----------------------------------------------------------------------------------------------- |
358 | | return: numValidSegment = the number of valid segments |
359 | | -------------------------------------------------------------------------------------------- |
360 | | */ |
361 | | static UINT InitSegmentBitfield(UINT *pNumSegment, |
362 | | SCHAR *pRemainingBitsInSegment, |
363 | | UINT *pSegmentBitfield, |
364 | | UCHAR *pNumWordForBitfield, |
365 | 0 | USHORT *pNumBitValidInLastWord) { |
366 | 0 | SHORT i; |
367 | 0 | USHORT r; |
368 | 0 | UCHAR bitfieldWord; |
369 | 0 | UINT tempWord; |
370 | 0 | USHORT numValidSegment; |
371 | |
|
372 | 0 | *pNumWordForBitfield = |
373 | 0 | (*pNumSegment == 0) |
374 | 0 | ? 0 |
375 | 0 | : ((*pNumSegment - 1) >> THIRTYTWO_LOG_DIV_TWO_LOG) + 1; |
376 | | |
377 | | /* loop over all words, which are completely used or only partial */ |
378 | | /* bit in pSegmentBitfield is zero if segment is empty; bit in |
379 | | * pSegmentBitfield is one if segment is not empty */ |
380 | 0 | numValidSegment = 0; |
381 | 0 | *pNumBitValidInLastWord = *pNumSegment; |
382 | | |
383 | | /* loop over words */ |
384 | 0 | for (bitfieldWord = 0; bitfieldWord < *pNumWordForBitfield - 1; |
385 | 0 | bitfieldWord++) { |
386 | 0 | tempWord = 0xFFFFFFFF; /* set ones */ |
387 | 0 | r = bitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG; |
388 | 0 | for (i = 0; i < NUMBER_OF_BIT_IN_WORD; i++) { |
389 | 0 | if (pRemainingBitsInSegment[r + i] == 0) { |
390 | 0 | tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD - 1 - |
391 | 0 | i)); /* set a zero at bit number |
392 | | (NUMBER_OF_BIT_IN_WORD-1-i) in |
393 | | tempWord */ |
394 | 0 | } else { |
395 | 0 | numValidSegment += 1; /* count segments which are not empty */ |
396 | 0 | } |
397 | 0 | } |
398 | 0 | pSegmentBitfield[bitfieldWord] = tempWord; /* store result */ |
399 | 0 | *pNumBitValidInLastWord -= NUMBER_OF_BIT_IN_WORD; /* calculate number of |
400 | | zeros on LSB side in |
401 | | the last word */ |
402 | 0 | } |
403 | | |
404 | | /* calculate last word: prepare special tempWord */ |
405 | 0 | tempWord = 0xFFFFFFFF; |
406 | 0 | for (i = 0; i < (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord); i++) { |
407 | 0 | tempWord = tempWord & ~(1 << i); /* clear bit i in tempWord */ |
408 | 0 | } |
409 | | |
410 | | /* calculate last word */ |
411 | 0 | r = bitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG; |
412 | 0 | for (i = 0; i < *pNumBitValidInLastWord; i++) { |
413 | 0 | if (pRemainingBitsInSegment[r + i] == 0) { |
414 | 0 | tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD - 1 - |
415 | 0 | i)); /* set a zero at bit number |
416 | | (NUMBER_OF_BIT_IN_WORD-1-i) in |
417 | | tempWord */ |
418 | 0 | } else { |
419 | 0 | numValidSegment += 1; /* count segments which are not empty */ |
420 | 0 | } |
421 | 0 | } |
422 | 0 | pSegmentBitfield[bitfieldWord] = tempWord; /* store result */ |
423 | |
|
424 | 0 | return numValidSegment; |
425 | 0 | } |
426 | | |
427 | | /*--------------------------------------------------------------------------------------------- |
428 | | description: This function sets up sideinfo for the non-PCW decoder (for the |
429 | | current set). |
430 | | ---------------------------------------------------------------------------------------------*/ |
431 | 0 | static void InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr) { |
432 | 0 | USHORT i, k; |
433 | 0 | UCHAR codebookDim; |
434 | 0 | UINT startNode; |
435 | |
|
436 | 0 | UCHAR *pCodebook = pHcr->nonPcwSideinfo.pCodebook; |
437 | 0 | UINT *iNode = pHcr->nonPcwSideinfo.iNode; |
438 | 0 | UCHAR *pCntSign = pHcr->nonPcwSideinfo.pCntSign; |
439 | 0 | USHORT *iResultPointer = pHcr->nonPcwSideinfo.iResultPointer; |
440 | 0 | UINT *pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo; |
441 | 0 | SCHAR *pSta = pHcr->nonPcwSideinfo.pSta; |
442 | 0 | USHORT *pNumExtendedSortedCodewordInSection = |
443 | 0 | pHcr->sectionInfo.pNumExtendedSortedCodewordInSection; |
444 | 0 | int numExtendedSortedCodewordInSectionIdx = |
445 | 0 | pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx; |
446 | 0 | UCHAR *pExtendedSortedCodebook = pHcr->sectionInfo.pExtendedSortedCodebook; |
447 | 0 | int extendedSortedCodebookIdx = pHcr->sectionInfo.extendedSortedCodebookIdx; |
448 | 0 | USHORT *pNumExtendedSortedSectionsInSets = |
449 | 0 | pHcr->sectionInfo.pNumExtendedSortedSectionsInSets; |
450 | 0 | int numExtendedSortedSectionsInSetsIdx = |
451 | 0 | pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx; |
452 | 0 | int quantizedSpectralCoefficientsIdx = |
453 | 0 | pHcr->decInOut.quantizedSpectralCoefficientsIdx; |
454 | 0 | const UCHAR *pCbDimension = aDimCb; |
455 | 0 | int iterationCounter = 0; |
456 | | |
457 | | /* loop over number of extended sorted sections in the current set so all |
458 | | * codewords sideinfo variables within this set can be prepared for decoding |
459 | | */ |
460 | 0 | for (i = pNumExtendedSortedSectionsInSets[numExtendedSortedSectionsInSetsIdx]; |
461 | 0 | i != 0; i--) { |
462 | 0 | codebookDim = |
463 | 0 | pCbDimension[pExtendedSortedCodebook[extendedSortedCodebookIdx]]; |
464 | 0 | startNode = *aHuffTable[pExtendedSortedCodebook[extendedSortedCodebookIdx]]; |
465 | |
|
466 | 0 | for (k = pNumExtendedSortedCodewordInSection |
467 | 0 | [numExtendedSortedCodewordInSectionIdx]; |
468 | 0 | k != 0; k--) { |
469 | 0 | iterationCounter++; |
470 | 0 | if (iterationCounter > (1024 >> 2)) { |
471 | 0 | return; |
472 | 0 | } |
473 | 0 | *pSta++ = aCodebook2StartInt |
474 | 0 | [pExtendedSortedCodebook[extendedSortedCodebookIdx]]; |
475 | 0 | *pCodebook++ = pExtendedSortedCodebook[extendedSortedCodebookIdx]; |
476 | 0 | *iNode++ = startNode; |
477 | 0 | *pCntSign++ = 0; |
478 | 0 | *iResultPointer++ = quantizedSpectralCoefficientsIdx; |
479 | 0 | *pEscapeSequenceInfo++ = 0; |
480 | 0 | quantizedSpectralCoefficientsIdx += |
481 | 0 | codebookDim; /* update pointer by codebookDim --> point to next |
482 | | starting value for writing out */ |
483 | 0 | if (quantizedSpectralCoefficientsIdx >= 1024) { |
484 | 0 | return; |
485 | 0 | } |
486 | 0 | } |
487 | 0 | numExtendedSortedCodewordInSectionIdx++; /* inc ptr for next ext sort sec in |
488 | | current set */ |
489 | 0 | extendedSortedCodebookIdx++; /* inc ptr for next ext sort sec in current set |
490 | | */ |
491 | 0 | if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR + MAX_HCR_SETS) || |
492 | 0 | extendedSortedCodebookIdx >= (MAX_SFB_HCR + MAX_HCR_SETS)) { |
493 | 0 | return; |
494 | 0 | } |
495 | 0 | } |
496 | 0 | numExtendedSortedSectionsInSetsIdx++; /* inc ptr for next set of non-PCWs */ |
497 | 0 | if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR + MAX_HCR_SETS)) { |
498 | 0 | return; |
499 | 0 | } |
500 | | |
501 | | /* Write back indexes */ |
502 | 0 | pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx = |
503 | 0 | numExtendedSortedCodewordInSectionIdx; |
504 | 0 | pHcr->sectionInfo.extendedSortedCodebookIdx = extendedSortedCodebookIdx; |
505 | 0 | pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx = |
506 | 0 | numExtendedSortedSectionsInSetsIdx; |
507 | 0 | pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx = |
508 | 0 | numExtendedSortedCodewordInSectionIdx; |
509 | 0 | pHcr->decInOut.quantizedSpectralCoefficientsIdx = |
510 | 0 | quantizedSpectralCoefficientsIdx; |
511 | 0 | } |
512 | | |
513 | | /*--------------------------------------------------------------------------------------------- |
514 | | description: This function returns the input value if the value is in the |
515 | | range of bufferlength. If <input> is smaller, one bufferlength |
516 | | is added, if <input> is bigger one bufferlength is subtracted. |
517 | | ----------------------------------------------------------------------------------------------- |
518 | | return: modulo result |
519 | | -------------------------------------------------------------------------------------------- |
520 | | */ |
521 | 0 | static INT ModuloValue(INT input, INT bufferlength) { |
522 | 0 | if (input > (bufferlength - 1)) { |
523 | 0 | return (input - bufferlength); |
524 | 0 | } |
525 | 0 | if (input < 0) { |
526 | 0 | return (input + bufferlength); |
527 | 0 | } |
528 | 0 | return input; |
529 | 0 | } |
530 | | |
531 | | /*--------------------------------------------------------------------------------------------- |
532 | | description: This function clears a bit from current bitfield and |
533 | | switches off the statemachine. |
534 | | |
535 | | A bit is cleared in two cases: |
536 | | a) a codeword is decoded, then a bit is cleared in codeword |
537 | | bitfield b) a segment is decoded empty, then a bit is cleared in segment |
538 | | bitfield |
539 | | -------------------------------------------------------------------------------------------- |
540 | | */ |
541 | | static void ClearBitFromBitfield(STATEFUNC *ptrState, UINT offset, |
542 | 0 | UINT *pBitfield) { |
543 | 0 | UINT numBitfieldWord; |
544 | 0 | UINT numBitfieldBit; |
545 | | |
546 | | /* get both values needed for clearing the bit */ |
547 | 0 | numBitfieldWord = offset >> THIRTYTWO_LOG_DIV_TWO_LOG; /* int = wordNr */ |
548 | 0 | numBitfieldBit = offset - (numBitfieldWord |
549 | 0 | << THIRTYTWO_LOG_DIV_TWO_LOG); /* fract = bitNr */ |
550 | | |
551 | | /* clear a bit in bitfield */ |
552 | 0 | pBitfield[numBitfieldWord] = |
553 | 0 | pBitfield[numBitfieldWord] & |
554 | 0 | ~(1 << (NUMBER_OF_BIT_IN_WORD - 1 - numBitfieldBit)); |
555 | | |
556 | | /* switch off state machine because codeword is decoded and/or because segment |
557 | | * is empty */ |
558 | 0 | *ptrState = NULL; |
559 | 0 | } |
560 | | |
561 | | /* ========================================================================================= |
562 | | the states of the statemachine |
563 | | ========================================================================================= |
564 | | */ |
565 | | |
566 | | /*--------------------------------------------------------------------------------------------- |
567 | | description: Decodes the body of a codeword. This State is used for |
568 | | codebooks 1,2,5 and 6. No sign bits are decoded, because the table of the |
569 | | quantized spectral values has got a valid sign at the quantized spectral lines. |
570 | | ----------------------------------------------------------------------------------------------- |
571 | | output: Two or four quantizes spectral values written at position |
572 | | where pResultPointr points to |
573 | | ----------------------------------------------------------------------------------------------- |
574 | | return: 0 |
575 | | -------------------------------------------------------------------------------------------- |
576 | | */ |
577 | 0 | UINT Hcr_State_BODY_ONLY(HANDLE_FDK_BITSTREAM bs, void *ptr) { |
578 | 0 | H_HCR_INFO pHcr = (H_HCR_INFO)ptr; |
579 | 0 | UINT *pSegmentBitfield; |
580 | 0 | UINT *pCodewordBitfield; |
581 | 0 | UINT segmentOffset; |
582 | 0 | FIXP_DBL *pResultBase; |
583 | 0 | UINT *iNode; |
584 | 0 | USHORT *iResultPointer; |
585 | 0 | UINT codewordOffset; |
586 | 0 | UINT branchNode; |
587 | 0 | UINT branchValue; |
588 | 0 | UINT iQSC; |
589 | 0 | UINT treeNode; |
590 | 0 | UCHAR carryBit; |
591 | 0 | INT *pLeftStartOfSegment; |
592 | 0 | INT *pRightStartOfSegment; |
593 | 0 | SCHAR *pRemainingBitsInSegment; |
594 | 0 | UCHAR readDirection; |
595 | 0 | UCHAR *pCodebook; |
596 | 0 | UCHAR dimCntr; |
597 | 0 | const UINT *pCurrentTree; |
598 | 0 | const UCHAR *pCbDimension; |
599 | 0 | const SCHAR *pQuantVal; |
600 | 0 | const SCHAR *pQuantValBase; |
601 | |
|
602 | 0 | pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment; |
603 | 0 | pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment; |
604 | 0 | pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment; |
605 | 0 | readDirection = pHcr->segmentInfo.readDirection; |
606 | 0 | pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield; |
607 | 0 | pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield; |
608 | 0 | segmentOffset = pHcr->segmentInfo.segmentOffset; |
609 | |
|
610 | 0 | pCodebook = pHcr->nonPcwSideinfo.pCodebook; |
611 | 0 | iNode = pHcr->nonPcwSideinfo.iNode; |
612 | 0 | pResultBase = pHcr->nonPcwSideinfo.pResultBase; |
613 | 0 | iResultPointer = pHcr->nonPcwSideinfo.iResultPointer; |
614 | 0 | codewordOffset = pHcr->nonPcwSideinfo.codewordOffset; |
615 | |
|
616 | 0 | pCbDimension = aDimCb; |
617 | |
|
618 | 0 | treeNode = iNode[codewordOffset]; |
619 | 0 | pCurrentTree = aHuffTable[pCodebook[codewordOffset]]; |
620 | |
|
621 | 0 | for (; pRemainingBitsInSegment[segmentOffset] > 0; |
622 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1) { |
623 | 0 | carryBit = HcrGetABitFromBitstream( |
624 | 0 | bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset], |
625 | 0 | &pRightStartOfSegment[segmentOffset], readDirection); |
626 | |
|
627 | 0 | CarryBitToBranchValue(carryBit, /* make a step in decoding tree */ |
628 | 0 | treeNode, &branchValue, &branchNode); |
629 | | |
630 | | /* if end of branch reached write out lines and count bits needed for sign, |
631 | | * otherwise store node in codeword sideinfo */ |
632 | 0 | if ((branchNode & TEST_BIT_10) == |
633 | 0 | TEST_BIT_10) { /* test bit 10 ; ==> body is complete */ |
634 | 0 | pQuantValBase = aQuantTable[pCodebook[codewordOffset]]; /* get base |
635 | | address of |
636 | | quantized |
637 | | values |
638 | | belonging to |
639 | | current |
640 | | codebook */ |
641 | 0 | pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid |
642 | | line [of 2 or 4 quantized |
643 | | values] */ |
644 | |
|
645 | 0 | iQSC = iResultPointer[codewordOffset]; /* get position of first line for |
646 | | writing out result */ |
647 | |
|
648 | 0 | for (dimCntr = pCbDimension[pCodebook[codewordOffset]]; dimCntr != 0; |
649 | 0 | dimCntr--) { |
650 | 0 | pResultBase[iQSC++] = |
651 | 0 | (FIXP_DBL)*pQuantVal++; /* write out 2 or 4 lines into |
652 | | spectrum; no Sign bits |
653 | | available in this state */ |
654 | 0 | } |
655 | |
|
656 | 0 | ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset, |
657 | 0 | pCodewordBitfield); /* clear a bit in bitfield and |
658 | | switch off statemachine */ |
659 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of |
660 | | for loop counter (see |
661 | | above) is done here */ |
662 | 0 | break; /* end of branch in tree reached i.e. a whole nonPCW-Body is |
663 | | decoded */ |
664 | 0 | } else { /* body is not decoded completely: */ |
665 | 0 | treeNode = *( |
666 | 0 | pCurrentTree + |
667 | 0 | branchValue); /* update treeNode for further step in decoding tree */ |
668 | 0 | } |
669 | 0 | } |
670 | 0 | iNode[codewordOffset] = treeNode; /* store updated treeNode because maybe |
671 | | decoding of codeword body not finished |
672 | | yet */ |
673 | |
|
674 | 0 | if (pRemainingBitsInSegment[segmentOffset] <= 0) { |
675 | 0 | ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset, |
676 | 0 | pSegmentBitfield); /* clear a bit in bitfield and |
677 | | switch off statemachine */ |
678 | |
|
679 | 0 | if (pRemainingBitsInSegment[segmentOffset] < 0) { |
680 | 0 | pHcr->decInOut.errorLog |= STATE_ERROR_BODY_ONLY; |
681 | 0 | return BODY_ONLY; |
682 | 0 | } |
683 | 0 | } |
684 | | |
685 | 0 | return STOP_THIS_STATE; |
686 | 0 | } |
687 | | |
688 | | /*--------------------------------------------------------------------------------------------- |
689 | | description: Decodes the codeword body, writes out result and counts the |
690 | | number of quantized spectral values, which are different form zero. For those |
691 | | values sign bits are needed. |
692 | | |
693 | | If sign bit counter cntSign is different from zero, switch to |
694 | | next state to decode sign Bits there. If sign bit counter cntSign is zero, no |
695 | | sign bits are needed and codeword is decoded. |
696 | | ----------------------------------------------------------------------------------------------- |
697 | | output: Two or four written quantizes spectral values written at |
698 | | position where pResultPointr points to. The signs of those lines may be wrong. |
699 | | If the signs [on just one signle sign] is wrong, the next state will correct it. |
700 | | ----------------------------------------------------------------------------------------------- |
701 | | return: 0 |
702 | | -------------------------------------------------------------------------------------------- |
703 | | */ |
704 | 0 | UINT Hcr_State_BODY_SIGN__BODY(HANDLE_FDK_BITSTREAM bs, void *ptr) { |
705 | 0 | H_HCR_INFO pHcr = (H_HCR_INFO)ptr; |
706 | 0 | SCHAR *pRemainingBitsInSegment; |
707 | 0 | INT *pLeftStartOfSegment; |
708 | 0 | INT *pRightStartOfSegment; |
709 | 0 | UCHAR readDirection; |
710 | 0 | UINT *pSegmentBitfield; |
711 | 0 | UINT *pCodewordBitfield; |
712 | 0 | UINT segmentOffset; |
713 | |
|
714 | 0 | UCHAR *pCodebook; |
715 | 0 | UINT *iNode; |
716 | 0 | UCHAR *pCntSign; |
717 | 0 | FIXP_DBL *pResultBase; |
718 | 0 | USHORT *iResultPointer; |
719 | 0 | UINT codewordOffset; |
720 | |
|
721 | 0 | UINT iQSC; |
722 | 0 | UINT cntSign; |
723 | 0 | UCHAR dimCntr; |
724 | 0 | UCHAR carryBit; |
725 | 0 | SCHAR *pSta; |
726 | 0 | UINT treeNode; |
727 | 0 | UINT branchValue; |
728 | 0 | UINT branchNode; |
729 | 0 | const UCHAR *pCbDimension; |
730 | 0 | const UINT *pCurrentTree; |
731 | 0 | const SCHAR *pQuantValBase; |
732 | 0 | const SCHAR *pQuantVal; |
733 | |
|
734 | 0 | pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment; |
735 | 0 | pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment; |
736 | 0 | pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment; |
737 | 0 | readDirection = pHcr->segmentInfo.readDirection; |
738 | 0 | pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield; |
739 | 0 | pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield; |
740 | 0 | segmentOffset = pHcr->segmentInfo.segmentOffset; |
741 | |
|
742 | 0 | pCodebook = pHcr->nonPcwSideinfo.pCodebook; |
743 | 0 | iNode = pHcr->nonPcwSideinfo.iNode; |
744 | 0 | pCntSign = pHcr->nonPcwSideinfo.pCntSign; |
745 | 0 | pResultBase = pHcr->nonPcwSideinfo.pResultBase; |
746 | 0 | iResultPointer = pHcr->nonPcwSideinfo.iResultPointer; |
747 | 0 | codewordOffset = pHcr->nonPcwSideinfo.codewordOffset; |
748 | 0 | pSta = pHcr->nonPcwSideinfo.pSta; |
749 | |
|
750 | 0 | pCbDimension = aDimCb; |
751 | |
|
752 | 0 | treeNode = iNode[codewordOffset]; |
753 | 0 | pCurrentTree = aHuffTable[pCodebook[codewordOffset]]; |
754 | |
|
755 | 0 | for (; pRemainingBitsInSegment[segmentOffset] > 0; |
756 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1) { |
757 | 0 | carryBit = HcrGetABitFromBitstream( |
758 | 0 | bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset], |
759 | 0 | &pRightStartOfSegment[segmentOffset], readDirection); |
760 | |
|
761 | 0 | CarryBitToBranchValue(carryBit, /* make a step in decoding tree */ |
762 | 0 | treeNode, &branchValue, &branchNode); |
763 | | |
764 | | /* if end of branch reached write out lines and count bits needed for sign, |
765 | | * otherwise store node in codeword sideinfo */ |
766 | 0 | if ((branchNode & TEST_BIT_10) == |
767 | 0 | TEST_BIT_10) { /* test bit 10 ; if set body complete */ |
768 | | /* body completely decoded; branchValue is valid, set pQuantVal to first |
769 | | * (of two or four) quantized spectral coefficients */ |
770 | 0 | pQuantValBase = aQuantTable[pCodebook[codewordOffset]]; /* get base |
771 | | address of |
772 | | quantized |
773 | | values |
774 | | belonging to |
775 | | current |
776 | | codebook */ |
777 | 0 | pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid |
778 | | line [of 2 or 4 quantized |
779 | | values] */ |
780 | |
|
781 | 0 | iQSC = iResultPointer[codewordOffset]; /* get position of first line for |
782 | | writing result */ |
783 | | |
784 | | /* codeword decoding result is written out here: Write out 2 or 4 |
785 | | * quantized spectral values with probably */ |
786 | | /* wrong sign and count number of values which are different from zero for |
787 | | * sign bit decoding [which happens in next state] */ |
788 | 0 | cntSign = 0; |
789 | 0 | for (dimCntr = pCbDimension[pCodebook[codewordOffset]]; dimCntr != 0; |
790 | 0 | dimCntr--) { |
791 | 0 | pResultBase[iQSC++] = |
792 | 0 | (FIXP_DBL)*pQuantVal; /* write quant. spec. coef. into spectrum */ |
793 | 0 | if (*pQuantVal++ != 0) { |
794 | 0 | cntSign += 1; |
795 | 0 | } |
796 | 0 | } |
797 | |
|
798 | 0 | if (cntSign == 0) { |
799 | 0 | ClearBitFromBitfield( |
800 | 0 | &(pHcr->nonPcwSideinfo.pState), segmentOffset, |
801 | 0 | pCodewordBitfield); /* clear a bit in bitfield and switch off |
802 | | statemachine */ |
803 | 0 | } else { |
804 | 0 | pCntSign[codewordOffset] = cntSign; /* write sign count result into |
805 | | codewordsideinfo of current |
806 | | codeword */ |
807 | 0 | pSta[codewordOffset] = BODY_SIGN__SIGN; /* change state */ |
808 | 0 | pHcr->nonPcwSideinfo.pState = |
809 | 0 | aStateConstant2State[pSta[codewordOffset]]; /* get state from |
810 | | separate array of |
811 | | cw-sideinfo */ |
812 | 0 | } |
813 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of |
814 | | for loop counter (see |
815 | | above) is done here */ |
816 | 0 | break; /* end of branch in tree reached i.e. a whole nonPCW-Body is |
817 | | decoded */ |
818 | 0 | } else { /* body is not decoded completely: */ |
819 | 0 | treeNode = *( |
820 | 0 | pCurrentTree + |
821 | 0 | branchValue); /* update treeNode for further step in decoding tree */ |
822 | 0 | } |
823 | 0 | } |
824 | 0 | iNode[codewordOffset] = treeNode; /* store updated treeNode because maybe |
825 | | decoding of codeword body not finished |
826 | | yet */ |
827 | |
|
828 | 0 | if (pRemainingBitsInSegment[segmentOffset] <= 0) { |
829 | 0 | ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset, |
830 | 0 | pSegmentBitfield); /* clear a bit in bitfield and |
831 | | switch off statemachine */ |
832 | |
|
833 | 0 | if (pRemainingBitsInSegment[segmentOffset] < 0) { |
834 | 0 | pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN__BODY; |
835 | 0 | return BODY_SIGN__BODY; |
836 | 0 | } |
837 | 0 | } |
838 | | |
839 | 0 | return STOP_THIS_STATE; |
840 | 0 | } |
841 | | |
842 | | /*--------------------------------------------------------------------------------------------- |
843 | | description: This state decodes the sign bits belonging to a codeword. The |
844 | | state is called as often in different "trials" until pCntSgn[codewordOffset] is |
845 | | zero. |
846 | | ----------------------------------------------------------------------------------------------- |
847 | | output: The two or four quantizes spectral values (written in previous |
848 | | state) have now the correct sign. |
849 | | ----------------------------------------------------------------------------------------------- |
850 | | return: 0 |
851 | | -------------------------------------------------------------------------------------------- |
852 | | */ |
853 | 0 | UINT Hcr_State_BODY_SIGN__SIGN(HANDLE_FDK_BITSTREAM bs, void *ptr) { |
854 | 0 | H_HCR_INFO pHcr = (H_HCR_INFO)ptr; |
855 | 0 | SCHAR *pRemainingBitsInSegment; |
856 | 0 | INT *pLeftStartOfSegment; |
857 | 0 | INT *pRightStartOfSegment; |
858 | 0 | UCHAR readDirection; |
859 | 0 | UINT *pSegmentBitfield; |
860 | 0 | UINT *pCodewordBitfield; |
861 | 0 | UINT segmentOffset; |
862 | |
|
863 | 0 | UCHAR *pCntSign; |
864 | 0 | FIXP_DBL *pResultBase; |
865 | 0 | USHORT *iResultPointer; |
866 | 0 | UINT codewordOffset; |
867 | |
|
868 | 0 | UCHAR carryBit; |
869 | 0 | UINT iQSC; |
870 | 0 | UCHAR cntSign; |
871 | |
|
872 | 0 | pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment; |
873 | 0 | pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment; |
874 | 0 | pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment; |
875 | 0 | readDirection = pHcr->segmentInfo.readDirection; |
876 | 0 | pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield; |
877 | 0 | pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield; |
878 | 0 | segmentOffset = pHcr->segmentInfo.segmentOffset; |
879 | | |
880 | | /*pCodebook = */ |
881 | 0 | pCntSign = pHcr->nonPcwSideinfo.pCntSign; |
882 | 0 | pResultBase = pHcr->nonPcwSideinfo.pResultBase; |
883 | 0 | iResultPointer = pHcr->nonPcwSideinfo.iResultPointer; |
884 | 0 | codewordOffset = pHcr->nonPcwSideinfo.codewordOffset; |
885 | |
|
886 | 0 | iQSC = iResultPointer[codewordOffset]; |
887 | 0 | cntSign = pCntSign[codewordOffset]; |
888 | | |
889 | | /* loop for sign bit decoding */ |
890 | 0 | for (; pRemainingBitsInSegment[segmentOffset] > 0; |
891 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1) { |
892 | 0 | carryBit = HcrGetABitFromBitstream( |
893 | 0 | bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset], |
894 | 0 | &pRightStartOfSegment[segmentOffset], readDirection); |
895 | 0 | cntSign -= |
896 | 0 | 1; /* decrement sign counter because one sign bit has been read */ |
897 | | |
898 | | /* search for a line (which was decoded in previous state) which is not |
899 | | * zero. [This value will get a sign] */ |
900 | 0 | while (pResultBase[iQSC] == (FIXP_DBL)0) { |
901 | 0 | if (++iQSC >= 1024) { /* points to current value different from zero */ |
902 | 0 | return BODY_SIGN__SIGN; |
903 | 0 | } |
904 | 0 | } |
905 | | |
906 | | /* put sign together with line; if carryBit is zero, the sign is ok already; |
907 | | * no write operation necessary in this case */ |
908 | 0 | if (carryBit != 0) { |
909 | 0 | pResultBase[iQSC] = -pResultBase[iQSC]; /* carryBit = 1 --> minus */ |
910 | 0 | } |
911 | |
|
912 | 0 | iQSC++; /* update pointer to next (maybe valid) value */ |
913 | |
|
914 | 0 | if (cntSign == 0) { /* if (cntSign==0) ==> set state CODEWORD_DECODED */ |
915 | 0 | ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset, |
916 | 0 | pCodewordBitfield); /* clear a bit in bitfield and |
917 | | switch off statemachine */ |
918 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of |
919 | | for loop counter (see |
920 | | above) is done here */ |
921 | 0 | break; /* whole nonPCW-Body and according sign bits are decoded */ |
922 | 0 | } |
923 | 0 | } |
924 | 0 | pCntSign[codewordOffset] = cntSign; |
925 | 0 | iResultPointer[codewordOffset] = iQSC; /* store updated pResultPointer */ |
926 | |
|
927 | 0 | if (pRemainingBitsInSegment[segmentOffset] <= 0) { |
928 | 0 | ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset, |
929 | 0 | pSegmentBitfield); /* clear a bit in bitfield and |
930 | | switch off statemachine */ |
931 | |
|
932 | 0 | if (pRemainingBitsInSegment[segmentOffset] < 0) { |
933 | 0 | pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN__SIGN; |
934 | 0 | return BODY_SIGN__SIGN; |
935 | 0 | } |
936 | 0 | } |
937 | | |
938 | 0 | return STOP_THIS_STATE; |
939 | 0 | } |
940 | | |
941 | | /*--------------------------------------------------------------------------------------------- |
942 | | description: Decodes the codeword body in case of codebook is 11. Writes |
943 | | out resulting two or four lines [with probably wrong sign] and counts the number |
944 | | of lines, which are different form zero. This information is needed in next |
945 | | state where sign bits will be decoded, if necessary. |
946 | | If sign bit counter cntSign is zero, no sign bits are needed |
947 | | and codeword is decoded completely. |
948 | | ----------------------------------------------------------------------------------------------- |
949 | | output: Two lines (quantizes spectral coefficients) which are probably |
950 | | wrong. The sign may be wrong and if one or two values is/are 16, the following |
951 | | states will decode the escape sequence to correct the values which are wirtten |
952 | | here. |
953 | | ----------------------------------------------------------------------------------------------- |
954 | | return: 0 |
955 | | -------------------------------------------------------------------------------------------- |
956 | | */ |
957 | 0 | UINT Hcr_State_BODY_SIGN_ESC__BODY(HANDLE_FDK_BITSTREAM bs, void *ptr) { |
958 | 0 | H_HCR_INFO pHcr = (H_HCR_INFO)ptr; |
959 | 0 | SCHAR *pRemainingBitsInSegment; |
960 | 0 | INT *pLeftStartOfSegment; |
961 | 0 | INT *pRightStartOfSegment; |
962 | 0 | UCHAR readDirection; |
963 | 0 | UINT *pSegmentBitfield; |
964 | 0 | UINT *pCodewordBitfield; |
965 | 0 | UINT segmentOffset; |
966 | |
|
967 | 0 | UINT *iNode; |
968 | 0 | UCHAR *pCntSign; |
969 | 0 | FIXP_DBL *pResultBase; |
970 | 0 | USHORT *iResultPointer; |
971 | 0 | UINT codewordOffset; |
972 | |
|
973 | 0 | UCHAR carryBit; |
974 | 0 | UINT iQSC; |
975 | 0 | UINT cntSign; |
976 | 0 | UINT dimCntr; |
977 | 0 | UINT treeNode; |
978 | 0 | SCHAR *pSta; |
979 | 0 | UINT branchNode; |
980 | 0 | UINT branchValue; |
981 | 0 | const UINT *pCurrentTree; |
982 | 0 | const SCHAR *pQuantValBase; |
983 | 0 | const SCHAR *pQuantVal; |
984 | |
|
985 | 0 | pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment; |
986 | 0 | pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment; |
987 | 0 | pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment; |
988 | 0 | readDirection = pHcr->segmentInfo.readDirection; |
989 | 0 | pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield; |
990 | 0 | pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield; |
991 | 0 | segmentOffset = pHcr->segmentInfo.segmentOffset; |
992 | |
|
993 | 0 | iNode = pHcr->nonPcwSideinfo.iNode; |
994 | 0 | pCntSign = pHcr->nonPcwSideinfo.pCntSign; |
995 | 0 | pResultBase = pHcr->nonPcwSideinfo.pResultBase; |
996 | 0 | iResultPointer = pHcr->nonPcwSideinfo.iResultPointer; |
997 | 0 | codewordOffset = pHcr->nonPcwSideinfo.codewordOffset; |
998 | 0 | pSta = pHcr->nonPcwSideinfo.pSta; |
999 | |
|
1000 | 0 | treeNode = iNode[codewordOffset]; |
1001 | 0 | pCurrentTree = aHuffTable[ESCAPE_CODEBOOK]; |
1002 | |
|
1003 | 0 | for (; pRemainingBitsInSegment[segmentOffset] > 0; |
1004 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1) { |
1005 | 0 | carryBit = HcrGetABitFromBitstream( |
1006 | 0 | bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset], |
1007 | 0 | &pRightStartOfSegment[segmentOffset], readDirection); |
1008 | | |
1009 | | /* make a step in tree */ |
1010 | 0 | CarryBitToBranchValue(carryBit, treeNode, &branchValue, &branchNode); |
1011 | | |
1012 | | /* if end of branch reached write out lines and count bits needed for sign, |
1013 | | * otherwise store node in codeword sideinfo */ |
1014 | 0 | if ((branchNode & TEST_BIT_10) == |
1015 | 0 | TEST_BIT_10) { /* test bit 10 ; if set body complete */ |
1016 | | |
1017 | | /* body completely decoded; branchValue is valid */ |
1018 | | /* set pQuantVol to first (of two or four) quantized spectral coefficients |
1019 | | */ |
1020 | 0 | pQuantValBase = aQuantTable[ESCAPE_CODEBOOK]; /* get base address of |
1021 | | quantized values |
1022 | | belonging to current |
1023 | | codebook */ |
1024 | 0 | pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid |
1025 | | line [of 2 or 4 quantized |
1026 | | values] */ |
1027 | | |
1028 | | /* make backup from original resultPointer in node storage for state |
1029 | | * BODY_SIGN_ESC__SIGN */ |
1030 | 0 | iNode[codewordOffset] = iResultPointer[codewordOffset]; |
1031 | | |
1032 | | /* get position of first line for writing result */ |
1033 | 0 | iQSC = iResultPointer[codewordOffset]; |
1034 | | |
1035 | | /* codeword decoding result is written out here: Write out 2 or 4 |
1036 | | * quantized spectral values with probably */ |
1037 | | /* wrong sign and count number of values which are different from zero for |
1038 | | * sign bit decoding [which happens in next state] */ |
1039 | 0 | cntSign = 0; |
1040 | |
|
1041 | 0 | for (dimCntr = DIMENSION_OF_ESCAPE_CODEBOOK; dimCntr != 0; dimCntr--) { |
1042 | 0 | pResultBase[iQSC++] = |
1043 | 0 | (FIXP_DBL)*pQuantVal; /* write quant. spec. coef. into spectrum */ |
1044 | 0 | if (*pQuantVal++ != 0) { |
1045 | 0 | cntSign += 1; |
1046 | 0 | } |
1047 | 0 | } |
1048 | |
|
1049 | 0 | if (cntSign == 0) { |
1050 | 0 | ClearBitFromBitfield( |
1051 | 0 | &(pHcr->nonPcwSideinfo.pState), segmentOffset, |
1052 | 0 | pCodewordBitfield); /* clear a bit in bitfield and switch off |
1053 | | statemachine */ |
1054 | | /* codeword decoded */ |
1055 | 0 | } else { |
1056 | | /* write sign count result into codewordsideinfo of current codeword */ |
1057 | 0 | pCntSign[codewordOffset] = cntSign; |
1058 | 0 | pSta[codewordOffset] = BODY_SIGN_ESC__SIGN; /* change state */ |
1059 | 0 | pHcr->nonPcwSideinfo.pState = |
1060 | 0 | aStateConstant2State[pSta[codewordOffset]]; /* get state from |
1061 | | separate array of |
1062 | | cw-sideinfo */ |
1063 | 0 | } |
1064 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1; /* the last reinitialzation |
1065 | | of for loop counter (see |
1066 | | above) is done here */ |
1067 | 0 | break; /* end of branch in tree reached i.e. a whole nonPCW-Body is |
1068 | | decoded */ |
1069 | 0 | } else { /* body is not decoded completely: */ |
1070 | | /* update treeNode for further step in decoding tree and store updated |
1071 | | * treeNode because maybe no more bits left in segment */ |
1072 | 0 | treeNode = *(pCurrentTree + branchValue); |
1073 | 0 | iNode[codewordOffset] = treeNode; |
1074 | 0 | } |
1075 | 0 | } |
1076 | |
|
1077 | 0 | if (pRemainingBitsInSegment[segmentOffset] <= 0) { |
1078 | 0 | ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset, |
1079 | 0 | pSegmentBitfield); /* clear a bit in bitfield and |
1080 | | switch off statemachine */ |
1081 | |
|
1082 | 0 | if (pRemainingBitsInSegment[segmentOffset] < 0) { |
1083 | 0 | pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__BODY; |
1084 | 0 | return BODY_SIGN_ESC__BODY; |
1085 | 0 | } |
1086 | 0 | } |
1087 | | |
1088 | 0 | return STOP_THIS_STATE; |
1089 | 0 | } |
1090 | | |
1091 | | /*--------------------------------------------------------------------------------------------- |
1092 | | description: This state decodes the sign bits, if a codeword of codebook 11 |
1093 | | needs some. A flag named 'flagB' in codeword sideinfo is set, if the second line |
1094 | | of quantized spectral values is 16. The 'flagB' is used in case of decoding of a |
1095 | | escape sequence is necessary as far as the second line is concerned. |
1096 | | |
1097 | | If only the first line needs an escape sequence, the flagB is |
1098 | | cleared. If only the second line needs an escape sequence, the flagB is not |
1099 | | used. |
1100 | | |
1101 | | For storing sideinfo in case of escape sequence decoding one |
1102 | | single word can be used for both escape sequences because they are decoded not |
1103 | | at the same time: |
1104 | | |
1105 | | |
1106 | | bit 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 |
1107 | | 4 3 2 1 0 |
1108 | | ===== == == =========== =========== |
1109 | | =================================== ^ ^ ^ ^ ^ |
1110 | | ^ | | | | | | res. flagA flagB |
1111 | | escapePrefixUp escapePrefixDown escapeWord |
1112 | | |
1113 | | ----------------------------------------------------------------------------------------------- |
1114 | | output: Two lines with correct sign. If one or two values is/are 16, |
1115 | | the lines are not valid, otherwise they are. |
1116 | | ----------------------------------------------------------------------------------------------- |
1117 | | return: 0 |
1118 | | -------------------------------------------------------------------------------------------- |
1119 | | */ |
1120 | 0 | UINT Hcr_State_BODY_SIGN_ESC__SIGN(HANDLE_FDK_BITSTREAM bs, void *ptr) { |
1121 | 0 | H_HCR_INFO pHcr = (H_HCR_INFO)ptr; |
1122 | 0 | SCHAR *pRemainingBitsInSegment; |
1123 | 0 | INT *pLeftStartOfSegment; |
1124 | 0 | INT *pRightStartOfSegment; |
1125 | 0 | UCHAR readDirection; |
1126 | 0 | UINT *pSegmentBitfield; |
1127 | 0 | UINT *pCodewordBitfield; |
1128 | 0 | UINT segmentOffset; |
1129 | |
|
1130 | 0 | UINT *iNode; |
1131 | 0 | UCHAR *pCntSign; |
1132 | 0 | FIXP_DBL *pResultBase; |
1133 | 0 | USHORT *iResultPointer; |
1134 | 0 | UINT *pEscapeSequenceInfo; |
1135 | 0 | UINT codewordOffset; |
1136 | |
|
1137 | 0 | UINT iQSC; |
1138 | 0 | UCHAR cntSign; |
1139 | 0 | UINT flagA; |
1140 | 0 | UINT flagB; |
1141 | 0 | UINT flags; |
1142 | 0 | UCHAR carryBit; |
1143 | 0 | SCHAR *pSta; |
1144 | |
|
1145 | 0 | pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment; |
1146 | 0 | pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment; |
1147 | 0 | pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment; |
1148 | 0 | readDirection = pHcr->segmentInfo.readDirection; |
1149 | 0 | pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield; |
1150 | 0 | pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield; |
1151 | 0 | segmentOffset = pHcr->segmentInfo.segmentOffset; |
1152 | |
|
1153 | 0 | iNode = pHcr->nonPcwSideinfo.iNode; |
1154 | 0 | pCntSign = pHcr->nonPcwSideinfo.pCntSign; |
1155 | 0 | pResultBase = pHcr->nonPcwSideinfo.pResultBase; |
1156 | 0 | iResultPointer = pHcr->nonPcwSideinfo.iResultPointer; |
1157 | 0 | pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo; |
1158 | 0 | codewordOffset = pHcr->nonPcwSideinfo.codewordOffset; |
1159 | 0 | pSta = pHcr->nonPcwSideinfo.pSta; |
1160 | |
|
1161 | 0 | iQSC = iResultPointer[codewordOffset]; |
1162 | 0 | cntSign = pCntSign[codewordOffset]; |
1163 | | |
1164 | | /* loop for sign bit decoding */ |
1165 | 0 | for (; pRemainingBitsInSegment[segmentOffset] > 0; |
1166 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1) { |
1167 | 0 | carryBit = HcrGetABitFromBitstream( |
1168 | 0 | bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset], |
1169 | 0 | &pRightStartOfSegment[segmentOffset], readDirection); |
1170 | | |
1171 | | /* decrement sign counter because one sign bit has been read */ |
1172 | 0 | cntSign -= 1; |
1173 | 0 | pCntSign[codewordOffset] = cntSign; |
1174 | | |
1175 | | /* get a quantized spectral value (which was decoded in previous state) |
1176 | | * which is not zero. [This value will get a sign] */ |
1177 | 0 | while (pResultBase[iQSC] == (FIXP_DBL)0) { |
1178 | 0 | if (++iQSC >= 1024) { |
1179 | 0 | return BODY_SIGN_ESC__SIGN; |
1180 | 0 | } |
1181 | 0 | } |
1182 | 0 | iResultPointer[codewordOffset] = iQSC; |
1183 | | |
1184 | | /* put negative sign together with quantized spectral value; if carryBit is |
1185 | | * zero, the sign is ok already; no write operation necessary in this case |
1186 | | */ |
1187 | 0 | if (carryBit != 0) { |
1188 | 0 | pResultBase[iQSC] = -pResultBase[iQSC]; /* carryBit = 1 --> minus */ |
1189 | 0 | } |
1190 | 0 | iQSC++; /* update index to next (maybe valid) value */ |
1191 | 0 | iResultPointer[codewordOffset] = iQSC; |
1192 | |
|
1193 | 0 | if (cntSign == 0) { |
1194 | | /* all sign bits are decoded now */ |
1195 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of |
1196 | | for loop counter (see |
1197 | | above) is done here */ |
1198 | | |
1199 | | /* check decoded values if codeword is decoded: Check if one or two escape |
1200 | | * sequences 16 follow */ |
1201 | | |
1202 | | /* step 0 */ |
1203 | | /* restore pointer to first decoded quantized value [ = original |
1204 | | * pResultPointr] from index iNode prepared in State_BODY_SIGN_ESC__BODY |
1205 | | */ |
1206 | 0 | iQSC = iNode[codewordOffset]; |
1207 | | |
1208 | | /* step 1 */ |
1209 | | /* test first value if escape sequence follows */ |
1210 | 0 | flagA = 0; /* for first possible escape sequence */ |
1211 | 0 | if (fixp_abs(pResultBase[iQSC++]) == (FIXP_DBL)ESCAPE_VALUE) { |
1212 | 0 | flagA = 1; |
1213 | 0 | } |
1214 | | |
1215 | | /* step 2 */ |
1216 | | /* test second value if escape sequence follows */ |
1217 | 0 | flagB = 0; /* for second possible escape sequence */ |
1218 | 0 | if (fixp_abs(pResultBase[iQSC]) == (FIXP_DBL)ESCAPE_VALUE) { |
1219 | 0 | flagB = 1; |
1220 | 0 | } |
1221 | | |
1222 | | /* step 3 */ |
1223 | | /* evaluate flag result and go on if necessary */ |
1224 | 0 | if (!flagA && !flagB) { |
1225 | 0 | ClearBitFromBitfield( |
1226 | 0 | &(pHcr->nonPcwSideinfo.pState), segmentOffset, |
1227 | 0 | pCodewordBitfield); /* clear a bit in bitfield and switch off |
1228 | | statemachine */ |
1229 | 0 | } else { |
1230 | | /* at least one of two lines is 16 */ |
1231 | | /* store both flags at correct positions in non PCW codeword sideinfo |
1232 | | * pEscapeSequenceInfo[codewordOffset] */ |
1233 | 0 | flags = flagA << POSITION_OF_FLAG_A; |
1234 | 0 | flags |= (flagB << POSITION_OF_FLAG_B); |
1235 | 0 | pEscapeSequenceInfo[codewordOffset] = flags; |
1236 | | |
1237 | | /* set next state */ |
1238 | 0 | pSta[codewordOffset] = BODY_SIGN_ESC__ESC_PREFIX; |
1239 | 0 | pHcr->nonPcwSideinfo.pState = |
1240 | 0 | aStateConstant2State[pSta[codewordOffset]]; /* get state from |
1241 | | separate array of |
1242 | | cw-sideinfo */ |
1243 | | |
1244 | | /* set result pointer to the first line of the two decoded lines */ |
1245 | 0 | iResultPointer[codewordOffset] = iNode[codewordOffset]; |
1246 | |
|
1247 | 0 | if (!flagA && flagB) { |
1248 | | /* update pResultPointr ==> state Stat_BODY_SIGN_ESC__ESC_WORD writes |
1249 | | * to correct position. Second value is the one and only escape value |
1250 | | */ |
1251 | 0 | iQSC = iResultPointer[codewordOffset]; |
1252 | 0 | iQSC++; |
1253 | 0 | iResultPointer[codewordOffset] = iQSC; |
1254 | 0 | } |
1255 | |
|
1256 | 0 | } /* at least one of two lines is 16 */ |
1257 | 0 | break; /* nonPCW-Body at cb 11 and according sign bits are decoded */ |
1258 | |
|
1259 | 0 | } /* if ( cntSign == 0 ) */ |
1260 | 0 | } /* loop over remaining Bits in segment */ |
1261 | | |
1262 | 0 | if (pRemainingBitsInSegment[segmentOffset] <= 0) { |
1263 | 0 | ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset, |
1264 | 0 | pSegmentBitfield); /* clear a bit in bitfield and |
1265 | | switch off statemachine */ |
1266 | |
|
1267 | 0 | if (pRemainingBitsInSegment[segmentOffset] < 0) { |
1268 | 0 | pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__SIGN; |
1269 | 0 | return BODY_SIGN_ESC__SIGN; |
1270 | 0 | } |
1271 | 0 | } |
1272 | 0 | return STOP_THIS_STATE; |
1273 | 0 | } |
1274 | | |
1275 | | /*--------------------------------------------------------------------------------------------- |
1276 | | description: Decode escape prefix of first or second escape sequence. The |
1277 | | escape prefix consists of ones. The following zero is also decoded here. |
1278 | | ----------------------------------------------------------------------------------------------- |
1279 | | output: If the single separator-zero which follows the |
1280 | | escape-prefix-ones is not yet decoded: The value 'escapePrefixUp' in word |
1281 | | pEscapeSequenceInfo[codewordOffset] is updated. |
1282 | | |
1283 | | If the single separator-zero which follows the |
1284 | | escape-prefix-ones is decoded: Two updated values 'escapePrefixUp' and |
1285 | | 'escapePrefixDown' in word pEscapeSequenceInfo[codewordOffset]. This State is |
1286 | | finished. Switch to next state. |
1287 | | ----------------------------------------------------------------------------------------------- |
1288 | | return: 0 |
1289 | | -------------------------------------------------------------------------------------------- |
1290 | | */ |
1291 | 0 | UINT Hcr_State_BODY_SIGN_ESC__ESC_PREFIX(HANDLE_FDK_BITSTREAM bs, void *ptr) { |
1292 | 0 | H_HCR_INFO pHcr = (H_HCR_INFO)ptr; |
1293 | 0 | SCHAR *pRemainingBitsInSegment; |
1294 | 0 | INT *pLeftStartOfSegment; |
1295 | 0 | INT *pRightStartOfSegment; |
1296 | 0 | UCHAR readDirection; |
1297 | 0 | UINT *pSegmentBitfield; |
1298 | 0 | UINT segmentOffset; |
1299 | 0 | UINT *pEscapeSequenceInfo; |
1300 | 0 | UINT codewordOffset; |
1301 | 0 | UCHAR carryBit; |
1302 | 0 | UINT escapePrefixUp; |
1303 | 0 | SCHAR *pSta; |
1304 | |
|
1305 | 0 | pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment; |
1306 | 0 | pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment; |
1307 | 0 | pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment; |
1308 | 0 | readDirection = pHcr->segmentInfo.readDirection; |
1309 | 0 | pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield; |
1310 | 0 | segmentOffset = pHcr->segmentInfo.segmentOffset; |
1311 | 0 | pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo; |
1312 | 0 | codewordOffset = pHcr->nonPcwSideinfo.codewordOffset; |
1313 | 0 | pSta = pHcr->nonPcwSideinfo.pSta; |
1314 | |
|
1315 | 0 | escapePrefixUp = |
1316 | 0 | (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_UP) >> |
1317 | 0 | LSB_ESCAPE_PREFIX_UP; |
1318 | | |
1319 | | /* decode escape prefix */ |
1320 | 0 | for (; pRemainingBitsInSegment[segmentOffset] > 0; |
1321 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1) { |
1322 | 0 | carryBit = HcrGetABitFromBitstream( |
1323 | 0 | bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset], |
1324 | 0 | &pRightStartOfSegment[segmentOffset], readDirection); |
1325 | | |
1326 | | /* count ones and store sum in escapePrefixUp */ |
1327 | 0 | if (carryBit == 1) { |
1328 | 0 | escapePrefixUp += 1; /* update conter for ones */ |
1329 | 0 | if (escapePrefixUp > 8) { |
1330 | 0 | pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_PREFIX; |
1331 | 0 | return BODY_SIGN_ESC__ESC_PREFIX; |
1332 | 0 | } |
1333 | | |
1334 | | /* store updated counter in sideinfo of current codeword */ |
1335 | 0 | pEscapeSequenceInfo[codewordOffset] &= |
1336 | 0 | ~MASK_ESCAPE_PREFIX_UP; /* delete old escapePrefixUp */ |
1337 | 0 | escapePrefixUp <<= LSB_ESCAPE_PREFIX_UP; /* shift to correct position */ |
1338 | 0 | pEscapeSequenceInfo[codewordOffset] |= |
1339 | 0 | escapePrefixUp; /* insert new escapePrefixUp */ |
1340 | 0 | escapePrefixUp >>= LSB_ESCAPE_PREFIX_UP; /* shift back down */ |
1341 | 0 | } else { /* separator [zero] reached */ |
1342 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of |
1343 | | for loop counter (see |
1344 | | above) is done here */ |
1345 | 0 | escapePrefixUp += |
1346 | 0 | 4; /* if escape_separator '0' appears, add 4 and ==> break */ |
1347 | | |
1348 | | /* store escapePrefixUp in pEscapeSequenceInfo[codewordOffset] at bit |
1349 | | * position escapePrefixUp */ |
1350 | 0 | pEscapeSequenceInfo[codewordOffset] &= |
1351 | 0 | ~MASK_ESCAPE_PREFIX_UP; /* delete old escapePrefixUp */ |
1352 | 0 | escapePrefixUp <<= LSB_ESCAPE_PREFIX_UP; /* shift to correct position */ |
1353 | 0 | pEscapeSequenceInfo[codewordOffset] |= |
1354 | 0 | escapePrefixUp; /* insert new escapePrefixUp */ |
1355 | 0 | escapePrefixUp >>= LSB_ESCAPE_PREFIX_UP; /* shift back down */ |
1356 | | |
1357 | | /* store escapePrefixUp in pEscapeSequenceInfo[codewordOffset] at bit |
1358 | | * position escapePrefixDown */ |
1359 | 0 | pEscapeSequenceInfo[codewordOffset] &= |
1360 | 0 | ~MASK_ESCAPE_PREFIX_DOWN; /* delete old escapePrefixDown */ |
1361 | 0 | escapePrefixUp <<= LSB_ESCAPE_PREFIX_DOWN; /* shift to correct position */ |
1362 | 0 | pEscapeSequenceInfo[codewordOffset] |= |
1363 | 0 | escapePrefixUp; /* insert new escapePrefixDown */ |
1364 | |
|
1365 | 0 | pSta[codewordOffset] = BODY_SIGN_ESC__ESC_WORD; /* set next state */ |
1366 | 0 | pHcr->nonPcwSideinfo.pState = |
1367 | 0 | aStateConstant2State[pSta[codewordOffset]]; /* get state from separate |
1368 | | array of cw-sideinfo */ |
1369 | 0 | break; |
1370 | 0 | } |
1371 | 0 | } |
1372 | | |
1373 | 0 | if (pRemainingBitsInSegment[segmentOffset] <= 0) { |
1374 | 0 | ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset, |
1375 | 0 | pSegmentBitfield); /* clear a bit in bitfield and |
1376 | | switch off statemachine */ |
1377 | |
|
1378 | 0 | if (pRemainingBitsInSegment[segmentOffset] < 0) { |
1379 | 0 | pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_PREFIX; |
1380 | 0 | return BODY_SIGN_ESC__ESC_PREFIX; |
1381 | 0 | } |
1382 | 0 | } |
1383 | | |
1384 | 0 | return STOP_THIS_STATE; |
1385 | 0 | } |
1386 | | |
1387 | | /*--------------------------------------------------------------------------------------------- |
1388 | | description: Decode escapeWord of escape sequence. If the escape sequence |
1389 | | is decoded completely, assemble quantized-spectral-escape-coefficient and |
1390 | | replace the previous decoded 16 by the new value. Test flagB. If flagB is set, |
1391 | | the second escape sequence must be decoded. If flagB is not set, the codeword is |
1392 | | decoded and the state machine is switched off. |
1393 | | ----------------------------------------------------------------------------------------------- |
1394 | | output: Two lines with valid sign. At least one of both lines has got |
1395 | | the correct value. |
1396 | | ----------------------------------------------------------------------------------------------- |
1397 | | return: 0 |
1398 | | -------------------------------------------------------------------------------------------- |
1399 | | */ |
1400 | 0 | UINT Hcr_State_BODY_SIGN_ESC__ESC_WORD(HANDLE_FDK_BITSTREAM bs, void *ptr) { |
1401 | 0 | H_HCR_INFO pHcr = (H_HCR_INFO)ptr; |
1402 | 0 | SCHAR *pRemainingBitsInSegment; |
1403 | 0 | INT *pLeftStartOfSegment; |
1404 | 0 | INT *pRightStartOfSegment; |
1405 | 0 | UCHAR readDirection; |
1406 | 0 | UINT *pSegmentBitfield; |
1407 | 0 | UINT *pCodewordBitfield; |
1408 | 0 | UINT segmentOffset; |
1409 | |
|
1410 | 0 | FIXP_DBL *pResultBase; |
1411 | 0 | USHORT *iResultPointer; |
1412 | 0 | UINT *pEscapeSequenceInfo; |
1413 | 0 | UINT codewordOffset; |
1414 | |
|
1415 | 0 | UINT escapeWord; |
1416 | 0 | UINT escapePrefixDown; |
1417 | 0 | UINT escapePrefixUp; |
1418 | 0 | UCHAR carryBit; |
1419 | 0 | UINT iQSC; |
1420 | 0 | INT sign; |
1421 | 0 | UINT flagA; |
1422 | 0 | UINT flagB; |
1423 | 0 | SCHAR *pSta; |
1424 | |
|
1425 | 0 | pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment; |
1426 | 0 | pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment; |
1427 | 0 | pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment; |
1428 | 0 | readDirection = pHcr->segmentInfo.readDirection; |
1429 | 0 | pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield; |
1430 | 0 | pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield; |
1431 | 0 | segmentOffset = pHcr->segmentInfo.segmentOffset; |
1432 | |
|
1433 | 0 | pResultBase = pHcr->nonPcwSideinfo.pResultBase; |
1434 | 0 | iResultPointer = pHcr->nonPcwSideinfo.iResultPointer; |
1435 | 0 | pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo; |
1436 | 0 | codewordOffset = pHcr->nonPcwSideinfo.codewordOffset; |
1437 | 0 | pSta = pHcr->nonPcwSideinfo.pSta; |
1438 | |
|
1439 | 0 | escapeWord = pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_WORD; |
1440 | 0 | escapePrefixDown = |
1441 | 0 | (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_DOWN) >> |
1442 | 0 | LSB_ESCAPE_PREFIX_DOWN; |
1443 | | |
1444 | | /* decode escape word */ |
1445 | 0 | for (; pRemainingBitsInSegment[segmentOffset] > 0; |
1446 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1) { |
1447 | 0 | carryBit = HcrGetABitFromBitstream( |
1448 | 0 | bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset], |
1449 | 0 | &pRightStartOfSegment[segmentOffset], readDirection); |
1450 | | |
1451 | | /* build escape word */ |
1452 | 0 | escapeWord <<= |
1453 | 0 | 1; /* left shift previous decoded part of escapeWord by on bit */ |
1454 | 0 | escapeWord = escapeWord | carryBit; /* assemble escape word by bitwise or */ |
1455 | | |
1456 | | /* decrement counter for length of escape word because one more bit was |
1457 | | * decoded */ |
1458 | 0 | escapePrefixDown -= 1; |
1459 | | |
1460 | | /* store updated escapePrefixDown */ |
1461 | 0 | pEscapeSequenceInfo[codewordOffset] &= |
1462 | 0 | ~MASK_ESCAPE_PREFIX_DOWN; /* delete old escapePrefixDown */ |
1463 | 0 | escapePrefixDown <<= LSB_ESCAPE_PREFIX_DOWN; /* shift to correct position */ |
1464 | 0 | pEscapeSequenceInfo[codewordOffset] |= |
1465 | 0 | escapePrefixDown; /* insert new escapePrefixDown */ |
1466 | 0 | escapePrefixDown >>= LSB_ESCAPE_PREFIX_DOWN; /* shift back */ |
1467 | | |
1468 | | /* store updated escapeWord */ |
1469 | 0 | pEscapeSequenceInfo[codewordOffset] &= |
1470 | 0 | ~MASK_ESCAPE_WORD; /* delete old escapeWord */ |
1471 | 0 | pEscapeSequenceInfo[codewordOffset] |= |
1472 | 0 | escapeWord; /* insert new escapeWord */ |
1473 | |
|
1474 | 0 | if (escapePrefixDown == 0) { |
1475 | 0 | pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of |
1476 | | for loop counter (see |
1477 | | above) is done here */ |
1478 | | |
1479 | | /* escape sequence decoded. Assemble escape-line and replace original line |
1480 | | */ |
1481 | | |
1482 | | /* step 0 */ |
1483 | | /* derive sign */ |
1484 | 0 | iQSC = iResultPointer[codewordOffset]; |
1485 | 0 | sign = (pResultBase[iQSC] >= (FIXP_DBL)0) |
1486 | 0 | ? 1 |
1487 | 0 | : -1; /* get sign of escape value 16 */ |
1488 | | |
1489 | | /* step 1 */ |
1490 | | /* get escapePrefixUp */ |
1491 | 0 | escapePrefixUp = |
1492 | 0 | (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_UP) >> |
1493 | 0 | LSB_ESCAPE_PREFIX_UP; |
1494 | | |
1495 | | /* step 2 */ |
1496 | | /* calculate escape value */ |
1497 | 0 | pResultBase[iQSC] = |
1498 | 0 | (FIXP_DBL)(sign * (((INT)1 << escapePrefixUp) + (INT)escapeWord)); |
1499 | | |
1500 | | /* get both flags from sideinfo (flags are not shifted to the |
1501 | | * lsb-position) */ |
1502 | 0 | flagA = pEscapeSequenceInfo[codewordOffset] & MASK_FLAG_A; |
1503 | 0 | flagB = pEscapeSequenceInfo[codewordOffset] & MASK_FLAG_B; |
1504 | | |
1505 | | /* step 3 */ |
1506 | | /* clear the whole escape sideinfo word */ |
1507 | 0 | pEscapeSequenceInfo[codewordOffset] = 0; |
1508 | | |
1509 | | /* change state in dependence of flag flagB */ |
1510 | 0 | if (flagA != 0) { |
1511 | | /* first escape sequence decoded; previous decoded 16 has been replaced |
1512 | | * by valid line */ |
1513 | | |
1514 | | /* clear flagA in sideinfo word because this escape sequence has already |
1515 | | * beed decoded */ |
1516 | 0 | pEscapeSequenceInfo[codewordOffset] &= ~MASK_FLAG_A; |
1517 | |
|
1518 | 0 | if (flagB == 0) { |
1519 | 0 | ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset, |
1520 | 0 | pCodewordBitfield); /* clear a bit in bitfield |
1521 | | and switch off |
1522 | | statemachine */ |
1523 | 0 | } else { |
1524 | | /* updated pointer to next and last 16 */ |
1525 | 0 | iQSC++; |
1526 | 0 | iResultPointer[codewordOffset] = iQSC; |
1527 | | |
1528 | | /* change state */ |
1529 | 0 | pSta[codewordOffset] = BODY_SIGN_ESC__ESC_PREFIX; |
1530 | 0 | pHcr->nonPcwSideinfo.pState = |
1531 | 0 | aStateConstant2State[pSta[codewordOffset]]; /* get state from |
1532 | | separate array of |
1533 | | cw-sideinfo */ |
1534 | 0 | } |
1535 | 0 | } else { |
1536 | 0 | ClearBitFromBitfield( |
1537 | 0 | &(pHcr->nonPcwSideinfo.pState), segmentOffset, |
1538 | 0 | pCodewordBitfield); /* clear a bit in bitfield and switch off |
1539 | | statemachine */ |
1540 | 0 | } |
1541 | 0 | break; |
1542 | 0 | } |
1543 | 0 | } |
1544 | |
|
1545 | 0 | if (pRemainingBitsInSegment[segmentOffset] <= 0) { |
1546 | 0 | ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset, |
1547 | 0 | pSegmentBitfield); /* clear a bit in bitfield and |
1548 | | switch off statemachine */ |
1549 | |
|
1550 | 0 | if (pRemainingBitsInSegment[segmentOffset] < 0) { |
1551 | 0 | pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_WORD; |
1552 | 0 | return BODY_SIGN_ESC__ESC_WORD; |
1553 | 0 | } |
1554 | 0 | } |
1555 | | |
1556 | 0 | return STOP_THIS_STATE; |
1557 | 0 | } |