Coverage Report

Created: 2023-03-26 06:07

/src/aac/libAACdec/src/usacdec_acelp.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):   Matthias Hildenbrand
98
99
   Description: USAC ACELP frame decoder
100
101
*******************************************************************************/
102
103
#include "usacdec_acelp.h"
104
105
#include "usacdec_ace_d4t64.h"
106
#include "usacdec_ace_ltp.h"
107
#include "usacdec_rom.h"
108
#include "usacdec_lpc.h"
109
#include "genericStds.h"
110
111
0
#define PIT_FR2_12k8 128 /* Minimum pitch lag with resolution 1/2      */
112
0
#define PIT_FR1_12k8 160 /* Minimum pitch lag with resolution 1        */
113
#define TILT_CODE2 \
114
0
  FL2FXCONST_SGL(0.3f * 2.0f) /* ACELP code pre-emphasis factor ( *2 )      */
115
#define PIT_SHARP \
116
0
  FL2FXCONST_SGL(0.85f) /* pitch sharpening factor                    */
117
#define PREEMPH_FAC \
118
0
  FL2FXCONST_SGL(0.68f) /* ACELP synth pre-emphasis factor            */
119
120
0
#define ACELP_HEADROOM 1
121
0
#define ACELP_OUTSCALE (MDCT_OUT_HEADROOM - ACELP_HEADROOM)
122
123
/**
124
 * \brief Calculate pre-emphasis (1 - mu z^-1) on input signal.
125
 * \param[in] in pointer to input signal; in[-1] is also needed.
126
 * \param[out] out pointer to output signal.
127
 * \param[in] L length of filtering.
128
 */
129
/* static */
130
0
void E_UTIL_preemph(const FIXP_DBL *in, FIXP_DBL *out, INT L) {
131
0
  int i;
132
133
0
  for (i = 0; i < L; i++) {
134
0
    out[i] = fAddSaturate(in[i], -fMult(PREEMPH_FAC, in[i - 1]));
135
0
  }
136
137
0
  return;
138
0
}
139
140
/**
141
 * \brief Calculate de-emphasis 1/(1 - TILT_CODE z^-1) on innovative codebook
142
 * vector.
143
 * \param[in,out] x innovative codebook vector.
144
 */
145
static void Preemph_code(
146
    FIXP_COD x[] /* (i/o)   : input signal overwritten by the output */
147
0
) {
148
0
  int i;
149
0
  FIXP_DBL L_tmp;
150
151
  /* ARM926: 12 cycles per sample */
152
0
  for (i = L_SUBFR - 1; i > 0; i--) {
153
0
    L_tmp = FX_COD2FX_DBL(x[i]);
154
0
    L_tmp -= fMultDiv2(x[i - 1], TILT_CODE2);
155
0
    x[i] = FX_DBL2FX_COD(L_tmp);
156
0
  }
157
0
}
158
159
/**
160
 * \brief Apply pitch sharpener to the innovative codebook vector.
161
 * \param[in,out] x innovative codebook vector.
162
 * \param[in] pit_lag decoded pitch lag.
163
 */
164
static void Pit_shrp(
165
    FIXP_COD x[], /* in/out: impulse response (or algebraic code) */
166
    int pit_lag   /* input : pitch lag                            */
167
0
) {
168
0
  int i;
169
0
  FIXP_DBL L_tmp;
170
171
0
  for (i = pit_lag; i < L_SUBFR; i++) {
172
0
    L_tmp = FX_COD2FX_DBL(x[i]);
173
0
    L_tmp += fMult(x[i - pit_lag], PIT_SHARP);
174
0
    x[i] = FX_DBL2FX_COD(L_tmp);
175
0
  }
176
177
0
  return;
178
0
}
179
180
  /**
181
   * \brief Calculate Quantized codebook gain, Quantized pitch gain and unbiased
182
   *        Innovative code vector energy.
183
   * \param[in] index index of quantizer.
184
   * \param[in] code innovative code vector with exponent = SF_CODE.
185
   * \param[out] gain_pit Quantized pitch gain g_p with exponent = SF_GAIN_P.
186
   * \param[out] gain_code Quantized codebook gain g_c.
187
   * \param[in] mean_ener mean_ener defined in open-loop (2 bits), exponent = 7.
188
   * \param[out] E_code unbiased innovative code vector energy.
189
   * \param[out] E_code_e exponent of unbiased innovative code vector energy.
190
   */
191
192
0
#define SF_MEAN_ENER_LG10 9
193
194
/* pow(10.0, {18, 30, 42, 54}/20.0) /(float)(1<<SF_MEAN_ENER_LG10) */
195
static const FIXP_DBL pow_10_mean_energy[4] = {0x01fc5ebd, 0x07e7db92,
196
                                               0x1f791f65, 0x7d4bfba3};
197
198
static void D_gain2_plus(int index, FIXP_COD code[], FIXP_SGL *gain_pit,
199
                         FIXP_DBL *gain_code, int mean_ener_bits, int bfi,
200
                         FIXP_SGL *past_gpit, FIXP_DBL *past_gcode,
201
0
                         FIXP_DBL *pEner_code, int *pEner_code_e) {
202
0
  FIXP_DBL Ltmp;
203
0
  FIXP_DBL gcode0, gcode_inov;
204
0
  INT gcode0_e, gcode_inov_e;
205
0
  int i;
206
207
0
  FIXP_DBL ener_code;
208
0
  INT ener_code_e;
209
210
  /* ener_code = sum(code[]^2) */
211
0
  ener_code = FIXP_DBL(0);
212
0
  for (i = 0; i < L_SUBFR; i++) {
213
0
    ener_code += fPow2Div2(code[i]);
214
0
  }
215
216
0
  ener_code_e = fMax(fNorm(ener_code) - 1, 0);
217
0
  ener_code <<= ener_code_e;
218
0
  ener_code_e = 2 * SF_CODE + 1 - ener_code_e;
219
220
  /* export energy of code for calc_period_factor() */
221
0
  *pEner_code = ener_code;
222
0
  *pEner_code_e = ener_code_e;
223
224
0
  ener_code += scaleValue(FL2FXCONST_DBL(0.01f), -ener_code_e);
225
226
  /* ener_code *= 1/L_SUBFR, and make exponent even (because of square root
227
   * below). */
228
0
  if (ener_code_e & 1) {
229
0
    ener_code_e -= 5;
230
0
    ener_code >>= 1;
231
0
  } else {
232
0
    ener_code_e -= 6;
233
0
  }
234
0
  gcode_inov = invSqrtNorm2(ener_code, &gcode0_e);
235
0
  gcode_inov_e = gcode0_e - (ener_code_e >> 1);
236
237
0
  if (bfi) {
238
0
    FIXP_DBL tgcode;
239
0
    FIXP_SGL tgpit;
240
241
0
    tgpit = *past_gpit;
242
243
0
    if (tgpit > FL2FXCONST_SGL(0.95f / (1 << SF_GAIN_P))) {
244
0
      tgpit = FL2FXCONST_SGL(0.95f / (1 << SF_GAIN_P));
245
0
    } else if (tgpit < FL2FXCONST_SGL(0.5f / (1 << SF_GAIN_P))) {
246
0
      tgpit = FL2FXCONST_SGL(0.5f / (1 << SF_GAIN_P));
247
0
    }
248
0
    *gain_pit = tgpit;
249
0
    tgpit = FX_DBL2FX_SGL(fMult(tgpit, FL2FXCONST_DBL(0.95f)));
250
0
    *past_gpit = tgpit;
251
252
0
    tgpit = FL2FXCONST_SGL(1.4f / (1 << SF_GAIN_P)) - tgpit;
253
0
    tgcode = fMult(*past_gcode, tgpit) << SF_GAIN_P;
254
0
    *gain_code = scaleValue(fMult(tgcode, gcode_inov), gcode_inov_e);
255
0
    *past_gcode = tgcode;
256
257
0
    return;
258
0
  }
259
260
  /*-------------- Decode gains ---------------*/
261
  /*
262
   gcode0 = pow(10.0, (float)mean_ener/20.0);
263
   gcode0 = gcode0 / sqrt(ener_code/L_SUBFR);
264
   */
265
0
  gcode0 = pow_10_mean_energy[mean_ener_bits];
266
0
  gcode0 = fMultDiv2(gcode0, gcode_inov);
267
0
  gcode0_e = gcode0_e + SF_MEAN_ENER_LG10 - (ener_code_e >> 1) + 1;
268
269
0
  i = index << 1;
270
0
  *gain_pit = t_qua_gain7b[i]; /* adaptive codebook gain */
271
  /* t_qua_gain[ind2p1] : fixed codebook gain correction factor */
272
0
  Ltmp = fMult(t_qua_gain7b[i + 1], gcode0);
273
0
  *gain_code = scaleValue(Ltmp, gcode0_e - SF_GAIN_C + SF_QUA_GAIN7B);
274
275
  /* update bad frame handler */
276
0
  *past_gpit = *gain_pit;
277
278
  /*--------------------------------------------------------
279
    past_gcode  = gain_code/gcode_inov
280
   --------------------------------------------------------*/
281
0
  {
282
0
    FIXP_DBL gcode_m;
283
0
    INT gcode_e;
284
285
0
    gcode_m = fDivNormHighPrec(Ltmp, gcode_inov, &gcode_e);
286
0
    gcode_e += (gcode0_e - SF_GAIN_C + SF_QUA_GAIN7B) - (gcode_inov_e);
287
0
    *past_gcode = scaleValue(gcode_m, gcode_e);
288
0
  }
289
0
}
290
291
/**
292
 * \brief Calculate period/voicing factor r_v
293
 * \param[in] exc pitch excitation.
294
 * \param[in] gain_pit gain of pitch g_p.
295
 * \param[in] gain_code gain of code g_c.
296
 * \param[in] gain_code_e exponent of gain of code.
297
 * \param[in] ener_code unbiased innovative code vector energy.
298
 * \param[in] ener_code_e exponent of unbiased innovative code vector energy.
299
 * \return period/voice factor r_v (-1=unvoiced to 1=voiced), exponent SF_PFAC.
300
 */
301
static FIXP_DBL calc_period_factor(FIXP_DBL exc[], FIXP_SGL gain_pit,
302
                                   FIXP_DBL gain_code, FIXP_DBL ener_code,
303
0
                                   int ener_code_e) {
304
0
  int ener_exc_e, L_tmp_e, s = 0;
305
0
  FIXP_DBL ener_exc, L_tmp;
306
0
  FIXP_DBL period_fac;
307
308
  /* energy of pitch excitation */
309
0
  ener_exc = (FIXP_DBL)0;
310
0
  for (int i = 0; i < L_SUBFR; i++) {
311
0
    ener_exc += fPow2Div2(exc[i]) >> s;
312
0
    if (ener_exc >= FL2FXCONST_DBL(0.5f)) {
313
0
      ener_exc >>= 1;
314
0
      s++;
315
0
    }
316
0
  }
317
318
0
  ener_exc_e = fNorm(ener_exc);
319
0
  ener_exc = fMult(ener_exc << ener_exc_e, fPow2(gain_pit));
320
0
  if (ener_exc != (FIXP_DBL)0) {
321
0
    ener_exc_e = 2 * SF_EXC + 1 + 2 * SF_GAIN_P - ener_exc_e + s;
322
0
  } else {
323
0
    ener_exc_e = 0;
324
0
  }
325
326
  /* energy of innovative code excitation */
327
  /* L_tmp = ener_code * gain_code*gain_code; */
328
0
  L_tmp_e = fNorm(gain_code);
329
0
  L_tmp = fPow2(gain_code << L_tmp_e);
330
0
  L_tmp = fMult(ener_code, L_tmp);
331
0
  L_tmp_e = 2 * SF_GAIN_C + ener_code_e - 2 * L_tmp_e;
332
333
  /* Find common exponent */
334
0
  {
335
0
    FIXP_DBL num, den;
336
0
    int exp_diff;
337
338
0
    exp_diff = ener_exc_e - L_tmp_e;
339
0
    if (exp_diff >= 0) {
340
0
      ener_exc >>= 1;
341
0
      if (exp_diff <= DFRACT_BITS - 2) {
342
0
        L_tmp >>= exp_diff + 1;
343
0
      } else {
344
0
        L_tmp = (FIXP_DBL)0;
345
0
      }
346
0
      den = ener_exc + L_tmp;
347
0
      if (ener_exc_e < DFRACT_BITS - 1) {
348
0
        den += scaleValue(FL2FXCONST_DBL(0.01f), -ener_exc_e - 1);
349
0
      }
350
0
    } else {
351
0
      if (exp_diff >= -(DFRACT_BITS - 2)) {
352
0
        ener_exc >>= 1 - exp_diff;
353
0
      } else {
354
0
        ener_exc = (FIXP_DBL)0;
355
0
      }
356
0
      L_tmp >>= 1;
357
0
      den = ener_exc + L_tmp;
358
0
      if (L_tmp_e < DFRACT_BITS - 1) {
359
0
        den += scaleValue(FL2FXCONST_DBL(0.01f), -L_tmp_e - 1);
360
0
      }
361
0
    }
362
0
    num = (ener_exc - L_tmp);
363
0
    num >>= SF_PFAC;
364
365
0
    if (den > (FIXP_DBL)0) {
366
0
      if (ener_exc > L_tmp) {
367
0
        period_fac = schur_div(num, den, 16);
368
0
      } else {
369
0
        period_fac = -schur_div(-num, den, 16);
370
0
      }
371
0
    } else {
372
0
      period_fac = (FIXP_DBL)MAXVAL_DBL;
373
0
    }
374
0
  }
375
376
  /* exponent = SF_PFAC */
377
0
  return period_fac;
378
0
}
379
380
/*------------------------------------------------------------*
381
 * noise enhancer                                             *
382
 * ~~~~~~~~~~~~~~                                             *
383
 * - Enhance excitation on noise. (modify gain of code)       *
384
 *   If signal is noisy and LPC filter is stable, move gain   *
385
 *   of code 1.5 dB toward gain of code threshold.            *
386
 *   This decrease by 3 dB noise energy variation.            *
387
 *------------------------------------------------------------*/
388
/**
389
 * \brief Enhance excitation on noise. (modify gain of code)
390
 * \param[in] gain_code Quantized codebook gain g_c, exponent = SF_GAIN_C.
391
 * \param[in] period_fac periodicity factor, exponent = SF_PFAC.
392
 * \param[in] stab_fac stability factor, exponent = SF_STAB.
393
 * \param[in,out] p_gc_threshold modified gain of previous subframe.
394
 * \return gain_code smoothed gain of code g_sc, exponent = SF_GAIN_C.
395
 */
396
static FIXP_DBL
397
noise_enhancer(/* (o) : smoothed gain g_sc                     SF_GAIN_C */
398
               FIXP_DBL gain_code, /* (i) : Quantized codebook gain SF_GAIN_C */
399
               FIXP_DBL period_fac, /* (i) : periodicity factor (-1=unvoiced to
400
                                       1=voiced), SF_PFAC */
401
               FIXP_SGL stab_fac,   /* (i) : stability factor (0 <= ... < 1.0)
402
                                       SF_STAB   */
403
               FIXP_DBL
404
                   *p_gc_threshold) /* (io): gain of code threshold SF_GAIN_C */
405
0
{
406
0
  FIXP_DBL fac, L_tmp, gc_thres;
407
408
0
  gc_thres = *p_gc_threshold;
409
410
0
  L_tmp = gain_code;
411
0
  if (L_tmp < gc_thres) {
412
0
    L_tmp += fMultDiv2(gain_code,
413
0
                       FL2FXCONST_SGL(2.0 * 0.19f)); /* +1.5dB => *(1.0+0.19) */
414
0
    if (L_tmp > gc_thres) {
415
0
      L_tmp = gc_thres;
416
0
    }
417
0
  } else {
418
0
    L_tmp = fMult(gain_code,
419
0
                  FL2FXCONST_SGL(1.0f / 1.19f)); /* -1.5dB => *10^(-1.5/20) */
420
0
    if (L_tmp < gc_thres) {
421
0
      L_tmp = gc_thres;
422
0
    }
423
0
  }
424
0
  *p_gc_threshold = L_tmp;
425
426
  /* voicing factor     lambda = 0.5*(1-period_fac) */
427
  /* gain smoothing factor S_m = lambda*stab_fac  (=fac)
428
                               = 0.5(stab_fac - stab_fac * period_fac) */
429
0
  fac = (FX_SGL2FX_DBL(stab_fac) >> (SF_PFAC + 1)) -
430
0
        fMultDiv2(stab_fac, period_fac);
431
  /* fac_e = SF_PFAC + SF_STAB */
432
0
  FDK_ASSERT(fac >= (FIXP_DBL)0);
433
434
  /* gain_code = (float)((fac*tmp) + ((1.0-fac)*gain_code)); */
435
0
  gain_code = fMult(fac, L_tmp) -
436
0
              fMult(FL2FXCONST_DBL(-1.0f / (1 << (SF_PFAC + SF_STAB))) + fac,
437
0
                    gain_code);
438
0
  gain_code <<= (SF_PFAC + SF_STAB);
439
440
0
  return gain_code;
441
0
}
442
443
/**
444
 * \brief Update adaptive codebook u'(n) (exc)
445
 *        Enhance pitch of c(n) and build post-processed excitation u(n) (exc2)
446
 * \param[in] code innovative codevector c(n), exponent = SF_CODE.
447
 * \param[in,out] exc filtered adaptive codebook v(n), exponent = SF_EXC.
448
 * \param[in] gain_pit adaptive codebook gain, exponent = SF_GAIN_P.
449
 * \param[in] gain_code innovative codebook gain g_c, exponent = SF_GAIN_C.
450
 * \param[in] gain_code_smoothed smoothed innov. codebook gain g_sc, exponent =
451
 * SF_GAIN_C.
452
 * \param[in] period_fac periodicity factor r_v, exponent = SF_PFAC.
453
 * \param[out] exc2 post-processed excitation u(n), exponent = SF_EXC.
454
 */
455
void BuildAdaptiveExcitation(
456
    FIXP_COD code[],    /* (i) : algebraic codevector c(n)             Q9  */
457
    FIXP_DBL exc[],     /* (io): filtered adaptive codebook v(n)       Q15 */
458
    FIXP_SGL gain_pit,  /* (i) : adaptive codebook gain g_p            Q14 */
459
    FIXP_DBL gain_code, /* (i) : innovative codebook gain g_c          Q16 */
460
    FIXP_DBL gain_code_smoothed, /* (i) : smoothed innov. codebook gain g_sc
461
                                    Q16 */
462
    FIXP_DBL period_fac, /* (i) : periodicity factor r_v                Q15 */
463
    FIXP_DBL exc2[]      /* (o) : post-processed excitation u(n)        Q15 */
464
0
) {
465
/* Note: code[L_SUBFR] and exc2[L_SUBFR] share the same memory!
466
         If exc2[i] is written, code[i] will be destroyed!
467
*/
468
0
#define SF_HEADROOM (1)
469
0
#define SF (SF_CODE + SF_GAIN_C + 1 - SF_EXC - SF_HEADROOM)
470
0
#define SF_GAIN_P2 (SF_GAIN_P - SF_HEADROOM)
471
472
0
  int i;
473
0
  FIXP_DBL tmp, cpe, code_smooth_prev, code_smooth;
474
475
0
  FIXP_COD code_i;
476
0
  FIXP_DBL cpe_code_smooth, cpe_code_smooth_prev;
477
478
  /* cpe = (1+r_v)/8 * 2 ; ( SF = -1) */
479
0
  cpe = (period_fac >> (2 - SF_PFAC)) + FL2FXCONST_DBL(0.25f);
480
481
  /* u'(n) */
482
0
  tmp = fMultDiv2(*exc, gain_pit) << (SF_GAIN_P2 + 1); /* v(0)*g_p */
483
0
  *exc++ = (tmp + (fMultDiv2(code[0], gain_code) << SF)) << SF_HEADROOM;
484
485
  /* u(n) */
486
0
  code_smooth_prev = fMultDiv2(*code++, gain_code_smoothed)
487
0
                     << SF; /* c(0) * g_sc */
488
0
  code_i = *code++;
489
0
  code_smooth = fMultDiv2(code_i, gain_code_smoothed) << SF; /* c(1) * g_sc */
490
0
  tmp += code_smooth_prev; /* tmp = v(0)*g_p + c(0)*g_sc */
491
0
  cpe_code_smooth = fMultDiv2(cpe, code_smooth);
492
0
  *exc2++ = (tmp - cpe_code_smooth) << SF_HEADROOM;
493
0
  cpe_code_smooth_prev = fMultDiv2(cpe, code_smooth_prev);
494
495
0
  i = L_SUBFR - 2;
496
0
  do /* ARM926: 22 cycles per iteration */
497
0
  {
498
    /* u'(n) */
499
0
    tmp = fMultDiv2(*exc, gain_pit) << (SF_GAIN_P2 + 1);
500
0
    *exc++ = (tmp + (fMultDiv2(code_i, gain_code) << SF)) << SF_HEADROOM;
501
    /* u(n) */
502
0
    tmp += code_smooth; /* += g_sc * c(i) */
503
0
    tmp -= cpe_code_smooth_prev;
504
0
    cpe_code_smooth_prev = cpe_code_smooth;
505
0
    code_i = *code++;
506
0
    code_smooth = fMultDiv2(code_i, gain_code_smoothed) << SF;
507
0
    cpe_code_smooth = fMultDiv2(cpe, code_smooth);
508
0
    *exc2++ = (tmp - cpe_code_smooth)
509
0
              << SF_HEADROOM; /* tmp - c_pe * g_sc * c(i+1) */
510
0
  } while (--i != 0);
511
512
  /* u'(n) */
513
0
  tmp = fMultDiv2(*exc, gain_pit) << (SF_GAIN_P2 + 1);
514
0
  *exc = (tmp + (fMultDiv2(code_i, gain_code) << SF)) << SF_HEADROOM;
515
  /* u(n) */
516
0
  tmp += code_smooth;
517
0
  tmp -= cpe_code_smooth_prev;
518
0
  *exc2++ = tmp << SF_HEADROOM;
519
520
0
  return;
521
0
}
522
523
/**
524
 * \brief Interpolate LPC vector in LSP domain for current subframe and convert
525
 * to LP domain
526
 * \param[in] lsp_old LPC vector (LSP domain) corresponding to the beginning of
527
 * current ACELP frame.
528
 * \param[in] lsp_new LPC vector (LSP domain) corresponding to the end of
529
 * current ACELP frame.
530
 * \param[in] subfr_nr number of current ACELP subframe 0..3.
531
 * \param[in] nb_subfr total number of ACELP subframes in this frame.
532
 * \param[out] A LP filter coefficients for current ACELP subframe, exponent =
533
 * SF_A_COEFFS.
534
 */
535
/* static */
536
void int_lpc_acelp(
537
    const FIXP_LPC lsp_old[], /* input : LSPs from past frame              */
538
    const FIXP_LPC lsp_new[], /* input : LSPs from present frame           */
539
    int subfr_nr, int nb_subfr,
540
    FIXP_LPC
541
        A[], /* output: interpolated LP coefficients for current subframe */
542
0
    INT *A_exp) {
543
0
  int i;
544
0
  FIXP_LPC lsp_interpol[M_LP_FILTER_ORDER];
545
0
  FIXP_SGL fac_old, fac_new;
546
547
0
  FDK_ASSERT((nb_subfr == 3) || (nb_subfr == 4));
548
549
0
  fac_old = lsp_interpol_factor[nb_subfr & 0x1][(nb_subfr - 1) - subfr_nr];
550
0
  fac_new = lsp_interpol_factor[nb_subfr & 0x1][subfr_nr];
551
0
  for (i = 0; i < M_LP_FILTER_ORDER; i++) {
552
0
    lsp_interpol[i] = FX_DBL2FX_LPC(
553
0
        (fMultDiv2(lsp_old[i], fac_old) + fMultDiv2(lsp_new[i], fac_new)) << 1);
554
0
  }
555
556
0
  E_LPC_f_lsp_a_conversion(lsp_interpol, A, A_exp);
557
558
0
  return;
559
0
}
560
561
/**
562
 * \brief Perform LP synthesis by filtering the post-processed excitation u(n)
563
 *        through the LP synthesis filter 1/A(z)
564
 * \param[in] a LP filter coefficients, exponent = SF_A_COEFFS.
565
 * \param[in] length length of input/output signal.
566
 * \param[in] x post-processed excitation u(n).
567
 * \param[in,out] y LP synthesis signal and filter memory
568
 * y[-M_LP_FILTER_ORDER..-1].
569
 */
570
571
/* static */
572
void Syn_filt(const FIXP_LPC a[], /* (i) : a[m] prediction coefficients Q12 */
573
              const INT a_exp,
574
              INT length,   /* (i) : length of input/output signal (64|128)   */
575
              FIXP_DBL x[], /* (i) : input signal Qx  */
576
              FIXP_DBL y[]  /* (i/o) : filter states / output signal  Qx-s*/
577
0
) {
578
0
  int i, j;
579
0
  FIXP_DBL L_tmp;
580
581
0
  for (i = 0; i < length; i++) {
582
0
    L_tmp = (FIXP_DBL)0;
583
584
0
    for (j = 0; j < M_LP_FILTER_ORDER; j++) {
585
0
      L_tmp -= fMultDiv2(a[j], y[i - (j + 1)]) >> (LP_FILTER_SCALE - 1);
586
0
    }
587
588
0
    L_tmp = scaleValue(L_tmp, a_exp + LP_FILTER_SCALE);
589
0
    y[i] = fAddSaturate(L_tmp, x[i]);
590
0
  }
591
592
0
  return;
593
0
}
594
595
/**
596
 * \brief Calculate de-emphasis 1/(1 - mu z^-1) on input signal.
597
 * \param[in] x input signal.
598
 * \param[out] y output signal.
599
 * \param[in] L length of signal.
600
 * \param[in,out] mem memory (signal[-1]).
601
 */
602
/* static */
603
0
void Deemph(FIXP_DBL *x, FIXP_DBL *y, int L, FIXP_DBL *mem) {
604
0
  int i;
605
0
  FIXP_DBL yi = *mem;
606
607
0
  for (i = 0; i < L; i++) {
608
0
    FIXP_DBL xi = x[i] >> 1;
609
0
    xi = fMultAddDiv2(xi, PREEMPH_FAC, yi);
610
0
    yi = SATURATE_LEFT_SHIFT(xi, 1, 32);
611
0
    y[i] = yi;
612
0
  }
613
0
  *mem = yi;
614
0
  return;
615
0
}
616
617
/**
618
 * \brief Compute the LP residual by filtering the input speech through the
619
 * analysis filter A(z).
620
 * \param[in] a LP filter coefficients, exponent = SF_A_COEFFS
621
 * \param[in] x input signal (note that values x[-m..-1] are needed), exponent =
622
 * SF_SYNTH
623
 * \param[out] y output signal (residual), exponent = SF_EXC
624
 * \param[in] l length of filtering
625
 */
626
/* static */
627
void E_UTIL_residu(const FIXP_LPC *a, const INT a_exp, FIXP_DBL *x, FIXP_DBL *y,
628
0
                   INT l) {
629
0
  FIXP_DBL s;
630
0
  INT i, j;
631
632
  /* (note that values x[-m..-1] are needed) */
633
0
  for (i = 0; i < l; i++) {
634
0
    s = (FIXP_DBL)0;
635
636
0
    for (j = 0; j < M_LP_FILTER_ORDER; j++) {
637
0
      s += fMultDiv2(a[j], x[i - j - 1]) >> (LP_FILTER_SCALE - 1);
638
0
    }
639
640
0
    s = scaleValue(s, a_exp + LP_FILTER_SCALE);
641
0
    y[i] = fAddSaturate(s, x[i]);
642
0
  }
643
644
0
  return;
645
0
}
646
647
/* use to map subfr number to number of bits used for acb_index */
648
static const UCHAR num_acb_idx_bits_table[2][NB_SUBFR] = {
649
    {9, 6, 9, 6}, /* coreCoderFrameLength == 1024 */
650
    {9, 6, 6, 0}  /* coreCoderFrameLength == 768  */
651
};
652
653
static int DecodePitchLag(HANDLE_FDK_BITSTREAM hBs,
654
                          const UCHAR num_acb_idx_bits,
655
                          const int PIT_MIN, /* TMIN */
656
                          const int PIT_FR2, /* TFR2 */
657
                          const int PIT_FR1, /* TFR1 */
658
                          const int PIT_MAX, /* TMAX */
659
0
                          int *pT0, int *pT0_frac, int *pT0_min, int *pT0_max) {
660
0
  int acb_idx;
661
0
  int error = 0;
662
0
  int T0, T0_frac;
663
664
0
  FDK_ASSERT((num_acb_idx_bits == 9) || (num_acb_idx_bits == 6));
665
666
0
  acb_idx = FDKreadBits(hBs, num_acb_idx_bits);
667
668
0
  if (num_acb_idx_bits == 6) {
669
    /* When the pitch value is encoded on 6 bits, a pitch resolution of 1/4 is
670
       always used in the range [T1-8, T1+7.75], where T1 is nearest integer to
671
       the fractional pitch lag of the previous subframe.
672
    */
673
0
    T0 = *pT0_min + acb_idx / 4;
674
0
    T0_frac = acb_idx & 0x3;
675
0
  } else { /* num_acb_idx_bits == 9 */
676
    /* When the pitch value is encoded on 9 bits, a fractional pitch delay is
677
       used with resolutions 0.25 in the range [TMIN, TFR2-0.25], resolutions
678
       0.5 in the range [TFR2, TFR1-0.5], and integers only in the range [TFR1,
679
       TMAX]. NOTE: for small sampling rates TMAX can get smaller than TFR1.
680
    */
681
0
    int T0_min, T0_max;
682
683
0
    if (acb_idx < (PIT_FR2 - PIT_MIN) * 4) {
684
      /* first interval with 0.25 pitch resolution */
685
0
      T0 = PIT_MIN + (acb_idx / 4);
686
0
      T0_frac = acb_idx & 0x3;
687
0
    } else if (acb_idx < ((PIT_FR2 - PIT_MIN) * 4 + (PIT_FR1 - PIT_FR2) * 2)) {
688
      /* second interval with 0.5 pitch resolution */
689
0
      acb_idx -= (PIT_FR2 - PIT_MIN) * 4;
690
0
      T0 = PIT_FR2 + (acb_idx / 2);
691
0
      T0_frac = (acb_idx & 0x1) * 2;
692
0
    } else {
693
      /* third interval with 1.0 pitch resolution */
694
0
      T0 = acb_idx + PIT_FR1 - ((PIT_FR2 - PIT_MIN) * 4) -
695
0
           ((PIT_FR1 - PIT_FR2) * 2);
696
0
      T0_frac = 0;
697
0
    }
698
    /* find T0_min and T0_max for subframe 1 or 3 */
699
0
    T0_min = T0 - 8;
700
0
    if (T0_min < PIT_MIN) {
701
0
      T0_min = PIT_MIN;
702
0
    }
703
0
    T0_max = T0_min + 15;
704
0
    if (T0_max > PIT_MAX) {
705
0
      T0_max = PIT_MAX;
706
0
      T0_min = T0_max - 15;
707
0
    }
708
0
    *pT0_min = T0_min;
709
0
    *pT0_max = T0_max;
710
0
  }
711
0
  *pT0 = T0;
712
0
  *pT0_frac = T0_frac;
713
714
0
  return error;
715
0
}
716
static void ConcealPitchLag(CAcelpStaticMem *acelp_mem, const int PIT_MAX,
717
0
                            int *pT0, int *pT0_frac) {
718
0
  USHORT *pold_T0 = &acelp_mem->old_T0;
719
0
  UCHAR *pold_T0_frac = &acelp_mem->old_T0_frac;
720
721
0
  if ((int)*pold_T0 >= PIT_MAX) {
722
0
    *pold_T0 = (USHORT)(PIT_MAX - 5);
723
0
  }
724
0
  *pT0 = (int)*pold_T0;
725
0
  *pT0_frac = (int)*pold_T0_frac;
726
0
}
727
728
static UCHAR tab_coremode2nbits[8] = {20, 28, 36, 44, 52, 64, 12, 16};
729
730
0
static int MapCoreMode2NBits(int core_mode) {
731
0
  return (int)tab_coremode2nbits[core_mode];
732
0
}
733
734
void CLpd_AcelpDecode(CAcelpStaticMem *acelp_mem, INT i_offset,
735
                      const FIXP_LPC lsp_old[M_LP_FILTER_ORDER],
736
                      const FIXP_LPC lsp_new[M_LP_FILTER_ORDER],
737
                      FIXP_SGL stab_fac, CAcelpChannelData *pAcelpData,
738
                      INT numLostSubframes, int lastLpcLost, int frameCnt,
739
                      FIXP_DBL synth[], int pT[], FIXP_DBL *pit_gain,
740
0
                      INT coreCoderFrameLength) {
741
0
  int i_subfr, subfr_nr, l_div, T;
742
0
  int T0 = -1, T0_frac = -1; /* mark invalid */
743
744
0
  int pit_gain_index = 0;
745
746
0
  const int PIT_MAX = PIT_MAX_12k8 + (6 * i_offset); /* maximum pitch lag */
747
748
0
  FIXP_COD *code;
749
0
  FIXP_DBL *exc2;
750
0
  FIXP_DBL *syn;
751
0
  FIXP_DBL *exc;
752
0
  FIXP_LPC A[M_LP_FILTER_ORDER];
753
0
  INT A_exp;
754
755
0
  FIXP_DBL period_fac;
756
0
  FIXP_SGL gain_pit;
757
0
  FIXP_DBL gain_code, gain_code_smooth, Ener_code;
758
0
  int Ener_code_e;
759
0
  int n;
760
0
  int bfi = (numLostSubframes > 0) ? 1 : 0;
761
762
0
  C_ALLOC_SCRATCH_START(
763
0
      exc_buf, FIXP_DBL,
764
0
      PIT_MAX_MAX + L_INTERPOL + L_DIV + 1); /* 411 + 17 + 256 + 1 = 685 */
765
0
  C_ALLOC_SCRATCH_START(syn_buf, FIXP_DBL,
766
0
                        M_LP_FILTER_ORDER + L_DIV); /* 16 + 256 = 272 */
767
  /* use same memory for code[L_SUBFR] and exc2[L_SUBFR] */
768
0
  C_ALLOC_SCRATCH_START(tmp_buf, FIXP_DBL, L_SUBFR); /* 64 */
769
  /* make sure they don't overlap if they are accessed alternatingly in
770
   * BuildAdaptiveExcitation() */
771
0
#if (COD_BITS == FRACT_BITS)
772
0
  code = (FIXP_COD *)(tmp_buf + L_SUBFR / 2);
773
#elif (COD_BITS == DFRACT_BITS)
774
  code = (FIXP_COD *)tmp_buf;
775
#endif
776
0
  exc2 = (FIXP_DBL *)tmp_buf;
777
778
0
  syn = syn_buf + M_LP_FILTER_ORDER;
779
0
  exc = exc_buf + PIT_MAX_MAX + L_INTERPOL;
780
781
0
  FDKmemcpy(syn_buf, acelp_mem->old_syn_mem,
782
0
            M_LP_FILTER_ORDER * sizeof(FIXP_DBL));
783
0
  FDKmemcpy(exc_buf, acelp_mem->old_exc_mem,
784
0
            (PIT_MAX_MAX + L_INTERPOL) * sizeof(FIXP_DBL));
785
786
0
  FDKmemclear(exc_buf + (PIT_MAX_MAX + L_INTERPOL),
787
0
              (L_DIV + 1) * sizeof(FIXP_DBL));
788
789
0
  l_div = coreCoderFrameLength / NB_DIV;
790
791
0
  for (i_subfr = 0, subfr_nr = 0; i_subfr < l_div;
792
0
       i_subfr += L_SUBFR, subfr_nr++) {
793
    /*-------------------------------------------------*
794
     * - Decode pitch lag (T0 and T0_frac)             *
795
     *-------------------------------------------------*/
796
0
    if (bfi) {
797
0
      ConcealPitchLag(acelp_mem, PIT_MAX, &T0, &T0_frac);
798
0
    } else {
799
0
      T0 = (int)pAcelpData->T0[subfr_nr];
800
0
      T0_frac = (int)pAcelpData->T0_frac[subfr_nr];
801
0
    }
802
803
    /*-------------------------------------------------*
804
     * - Find the pitch gain, the interpolation filter *
805
     *   and the adaptive codebook vector.             *
806
     *-------------------------------------------------*/
807
0
    Pred_lt4(&exc[i_subfr], T0, T0_frac);
808
809
0
    if ((!bfi && pAcelpData->ltp_filtering_flag[subfr_nr] == 0) ||
810
0
        (bfi && numLostSubframes == 1 && stab_fac < FL2FXCONST_SGL(0.25f))) {
811
      /* find pitch excitation with lp filter: v'(n) => v(n) */
812
0
      Pred_lt4_postfilter(&exc[i_subfr]);
813
0
    }
814
815
    /*-------------------------------------------------------*
816
     * - Decode innovative codebook.                         *
817
     * - Add the fixed-gain pitch contribution to code[].    *
818
     *-------------------------------------------------------*/
819
0
    if (bfi) {
820
0
      for (n = 0; n < L_SUBFR; n++) {
821
0
        code[n] =
822
0
            FX_SGL2FX_COD((FIXP_SGL)E_UTIL_random(&acelp_mem->seed_ace)) >> 4;
823
0
      }
824
0
    } else {
825
0
      int nbits = MapCoreMode2NBits((int)pAcelpData->acelp_core_mode);
826
0
      D_ACELP_decode_4t64(pAcelpData->icb_index[subfr_nr], nbits, &code[0]);
827
0
    }
828
829
0
    T = T0;
830
0
    if (T0_frac > 2) {
831
0
      T += 1;
832
0
    }
833
834
0
    Preemph_code(code);
835
0
    Pit_shrp(code, T);
836
837
    /* Output pitch lag for bass post-filter */
838
0
    if (T > PIT_MAX) {
839
0
      pT[subfr_nr] = PIT_MAX;
840
0
    } else {
841
0
      pT[subfr_nr] = T;
842
0
    }
843
0
    D_gain2_plus(
844
0
        pAcelpData->gains[subfr_nr],
845
0
        code,       /* (i)  : Innovative code vector, exponent = SF_CODE */
846
0
        &gain_pit,  /* (o)  : Quantized pitch gain, exponent = SF_GAIN_P */
847
0
        &gain_code, /* (o)  : Quantized codebook gain                    */
848
0
        pAcelpData
849
0
            ->mean_energy, /* (i)  : mean_ener defined in open-loop (2 bits) */
850
0
        bfi, &acelp_mem->past_gpit, &acelp_mem->past_gcode,
851
0
        &Ener_code,    /* (o)  : Innovative code vector energy              */
852
0
        &Ener_code_e); /* (o)  : Innovative code vector energy exponent     */
853
854
0
    pit_gain[pit_gain_index++] = FX_SGL2FX_DBL(gain_pit);
855
856
    /* calc periodicity factor r_v */
857
0
    period_fac =
858
0
        calc_period_factor(/* (o) : factor (-1=unvoiced to 1=voiced)    */
859
0
                           &exc[i_subfr], /* (i) : pitch excitation, exponent =
860
                                             SF_EXC */
861
0
                           gain_pit,      /* (i) : gain of pitch, exponent =
862
                                             SF_GAIN_P */
863
0
                           gain_code,     /* (i) : gain of code     */
864
0
                           Ener_code,     /* (i) : Energy of code[]     */
865
0
                           Ener_code_e);  /* (i) : Exponent of energy of code[]
866
                                           */
867
868
0
    if (lastLpcLost && frameCnt == 0) {
869
0
      if (gain_pit > FL2FXCONST_SGL(1.0f / (1 << SF_GAIN_P))) {
870
0
        gain_pit = FL2FXCONST_SGL(1.0f / (1 << SF_GAIN_P));
871
0
      }
872
0
    }
873
874
0
    gain_code_smooth =
875
0
        noise_enhancer(/* (o) : smoothed gain g_sc exponent = SF_GAIN_C */
876
0
                       gain_code,  /* (i) : Quantized codebook gain  */
877
0
                       period_fac, /* (i) : periodicity factor (-1=unvoiced to
878
                                      1=voiced)  */
879
0
                       stab_fac,   /* (i) : stability factor (0 <= ... < 1),
880
                                      exponent = 1 */
881
0
                       &acelp_mem->gc_threshold);
882
883
    /* Compute adaptive codebook update u'(n), pitch enhancement c'(n) and
884
     * post-processed excitation u(n). */
885
0
    BuildAdaptiveExcitation(code, exc + i_subfr, gain_pit, gain_code,
886
0
                            gain_code_smooth, period_fac, exc2);
887
888
    /* Interpolate filter coeffs for current subframe in lsp domain and convert
889
     * to LP domain */
890
0
    int_lpc_acelp(lsp_old,  /* input : LSPs from past frame              */
891
0
                  lsp_new,  /* input : LSPs from present frame           */
892
0
                  subfr_nr, /* input : ACELP subframe index              */
893
0
                  coreCoderFrameLength / L_DIV,
894
0
                  A, /* output: LP coefficients of this subframe  */
895
0
                  &A_exp);
896
897
0
    Syn_filt(A, /* (i) : a[m] prediction coefficients               */
898
0
             A_exp, L_SUBFR, /* (i) : length */
899
0
             exc2, /* (i) : input signal                               */
900
0
             &syn[i_subfr] /* (i/o) : filter states / output signal */
901
0
    );
902
903
0
  } /* end of subframe loop */
904
905
  /* update pitch value for bfi procedure */
906
0
  acelp_mem->old_T0_frac = T0_frac;
907
0
  acelp_mem->old_T0 = T0;
908
909
  /* save old excitation and old synthesis memory for next ACELP frame */
910
0
  FDKmemcpy(acelp_mem->old_exc_mem, exc + l_div - (PIT_MAX_MAX + L_INTERPOL),
911
0
            sizeof(FIXP_DBL) * (PIT_MAX_MAX + L_INTERPOL));
912
0
  FDKmemcpy(acelp_mem->old_syn_mem, syn_buf + l_div,
913
0
            sizeof(FIXP_DBL) * M_LP_FILTER_ORDER);
914
915
0
  Deemph(syn, synth, l_div,
916
0
         &acelp_mem->de_emph_mem); /* ref soft: mem = synth[-1] */
917
918
0
  scaleValues(synth, l_div, -ACELP_OUTSCALE);
919
0
  acelp_mem->deemph_mem_wsyn = acelp_mem->de_emph_mem;
920
921
0
  C_ALLOC_SCRATCH_END(tmp_buf, FIXP_DBL, L_SUBFR);
922
0
  C_ALLOC_SCRATCH_END(syn_buf, FIXP_DBL, M_LP_FILTER_ORDER + L_DIV);
923
0
  C_ALLOC_SCRATCH_END(exc_buf, FIXP_DBL, PIT_MAX_MAX + L_INTERPOL + L_DIV + 1);
924
0
  return;
925
0
}
926
927
0
void CLpd_AcelpReset(CAcelpStaticMem *acelp) {
928
0
  acelp->gc_threshold = (FIXP_DBL)0;
929
930
0
  acelp->past_gpit = (FIXP_SGL)0;
931
0
  acelp->past_gcode = (FIXP_DBL)0;
932
0
  acelp->old_T0 = 64;
933
0
  acelp->old_T0_frac = 0;
934
0
  acelp->deemph_mem_wsyn = (FIXP_DBL)0;
935
0
  acelp->wsyn_rms = (FIXP_DBL)0;
936
0
  acelp->seed_ace = 0;
937
0
}
938
939
/* TCX time domain concealment */
940
/*   Compare to figure 13a on page 54 in 3GPP TS 26.290 */
941
void CLpd_TcxTDConceal(CAcelpStaticMem *acelp_mem, SHORT *pitch,
942
                       const FIXP_LPC lsp_old[M_LP_FILTER_ORDER],
943
                       const FIXP_LPC lsp_new[M_LP_FILTER_ORDER],
944
                       const FIXP_SGL stab_fac, INT nLostSf, FIXP_DBL synth[],
945
0
                       INT coreCoderFrameLength, UCHAR last_tcx_noise_factor) {
946
  /* repeat past excitation with pitch from previous decoded TCX frame */
947
0
  C_ALLOC_SCRATCH_START(
948
0
      exc_buf, FIXP_DBL,
949
0
      PIT_MAX_MAX + L_INTERPOL + L_DIV); /* 411 +  17 + 256 + 1 =  */
950
0
  C_ALLOC_SCRATCH_START(syn_buf, FIXP_DBL,
951
0
                        M_LP_FILTER_ORDER + L_DIV); /* 256 +  16           =  */
952
                                                    /*                    +=  */
953
0
  FIXP_DBL ns_buf[L_DIV + 1];
954
0
  FIXP_DBL *syn = syn_buf + M_LP_FILTER_ORDER;
955
0
  FIXP_DBL *exc = exc_buf + PIT_MAX_MAX + L_INTERPOL;
956
0
  FIXP_DBL *ns = ns_buf + 1;
957
0
  FIXP_DBL tmp, fact_exc;
958
0
  INT T = fMin(*pitch, (SHORT)PIT_MAX_MAX);
959
0
  int i, i_subfr, subfr_nr;
960
0
  int lDiv = coreCoderFrameLength / NB_DIV;
961
962
0
  FDKmemcpy(syn_buf, acelp_mem->old_syn_mem,
963
0
            M_LP_FILTER_ORDER * sizeof(FIXP_DBL));
964
0
  FDKmemcpy(exc_buf, acelp_mem->old_exc_mem,
965
0
            (PIT_MAX_MAX + L_INTERPOL) * sizeof(FIXP_DBL));
966
967
  /* if we lost all packets (i.e. 1 packet of TCX-20 ms, 2 packets of
968
     the TCX-40 ms or 4 packets of the TCX-80ms), we lost the whole
969
     coded frame extrapolation strategy: repeat lost excitation and
970
     use extrapolated LSFs */
971
972
  /* AMR-WB+ like TCX TD concealment */
973
974
  /* number of lost frame cmpt */
975
0
  if (nLostSf < 2) {
976
0
    fact_exc = FL2FXCONST_DBL(0.8f);
977
0
  } else {
978
0
    fact_exc = FL2FXCONST_DBL(0.4f);
979
0
  }
980
981
  /* repeat past excitation */
982
0
  for (i = 0; i < lDiv; i++) {
983
0
    exc[i] = fMult(fact_exc, exc[i - T]);
984
0
  }
985
986
0
  tmp = fMult(fact_exc, acelp_mem->wsyn_rms);
987
0
  acelp_mem->wsyn_rms = tmp;
988
989
  /* init deemph_mem_wsyn */
990
0
  acelp_mem->deemph_mem_wsyn = exc[-1];
991
992
0
  ns[-1] = acelp_mem->deemph_mem_wsyn;
993
994
0
  for (i_subfr = 0, subfr_nr = 0; i_subfr < lDiv;
995
0
       i_subfr += L_SUBFR, subfr_nr++) {
996
0
    FIXP_DBL tRes[L_SUBFR];
997
0
    FIXP_LPC A[M_LP_FILTER_ORDER];
998
0
    INT A_exp;
999
1000
    /* interpolate LPC coefficients */
1001
0
    int_lpc_acelp(lsp_old, lsp_new, subfr_nr, lDiv / L_SUBFR, A, &A_exp);
1002
1003
0
    Syn_filt(A,              /* (i) : a[m] prediction coefficients         */
1004
0
             A_exp, L_SUBFR, /* (i) : length                               */
1005
0
             &exc[i_subfr],  /* (i) : input signal                         */
1006
0
             &syn[i_subfr]   /* (i/o) : filter states / output signal      */
1007
0
    );
1008
1009
0
    E_LPC_a_weight(
1010
0
        A, A,
1011
0
        M_LP_FILTER_ORDER); /* overwrite A as it is not needed any longer */
1012
1013
0
    E_UTIL_residu(A, A_exp, &syn[i_subfr], tRes, L_SUBFR);
1014
1015
0
    Deemph(tRes, &ns[i_subfr], L_SUBFR, &acelp_mem->deemph_mem_wsyn);
1016
1017
    /* Amplitude limiter (saturate at wsyn_rms) */
1018
0
    for (i = i_subfr; i < i_subfr + L_SUBFR; i++) {
1019
0
      if (ns[i] > tmp) {
1020
0
        ns[i] = tmp;
1021
0
      } else {
1022
0
        if (ns[i] < -tmp) {
1023
0
          ns[i] = -tmp;
1024
0
        }
1025
0
      }
1026
0
    }
1027
1028
0
    E_UTIL_preemph(&ns[i_subfr], tRes, L_SUBFR);
1029
1030
0
    Syn_filt(A,              /* (i) : a[m] prediction coefficients         */
1031
0
             A_exp, L_SUBFR, /* (i) : length                               */
1032
0
             tRes,           /* (i) : input signal                         */
1033
0
             &syn[i_subfr]   /* (i/o) : filter states / output signal      */
1034
0
    );
1035
1036
0
    FDKmemmove(&synth[i_subfr], &syn[i_subfr], L_SUBFR * sizeof(FIXP_DBL));
1037
0
  }
1038
1039
  /* save old excitation and old synthesis memory for next ACELP frame */
1040
0
  FDKmemcpy(acelp_mem->old_exc_mem, exc + lDiv - (PIT_MAX_MAX + L_INTERPOL),
1041
0
            sizeof(FIXP_DBL) * (PIT_MAX_MAX + L_INTERPOL));
1042
0
  FDKmemcpy(acelp_mem->old_syn_mem, syn_buf + lDiv,
1043
0
            sizeof(FIXP_DBL) * M_LP_FILTER_ORDER);
1044
0
  acelp_mem->de_emph_mem = acelp_mem->deemph_mem_wsyn;
1045
1046
0
  C_ALLOC_SCRATCH_END(syn_buf, FIXP_DBL, M_LP_FILTER_ORDER + L_DIV);
1047
0
  C_ALLOC_SCRATCH_END(exc_buf, FIXP_DBL, PIT_MAX_MAX + L_INTERPOL + L_DIV);
1048
0
}
1049
1050
void Acelp_PreProcessing(FIXP_DBL *synth_buf, FIXP_DBL *old_synth, INT *pitch,
1051
                         INT *old_T_pf, FIXP_DBL *pit_gain,
1052
                         FIXP_DBL *old_gain_pf, INT samplingRate, INT *i_offset,
1053
                         INT coreCoderFrameLength, INT synSfd,
1054
0
                         INT nbSubfrSuperfr) {
1055
0
  int n;
1056
1057
  /* init beginning of synth_buf with old synthesis from previous frame */
1058
0
  FDKmemcpy(synth_buf, old_synth, sizeof(FIXP_DBL) * (PIT_MAX_MAX - BPF_DELAY));
1059
1060
  /* calculate pitch lag offset for ACELP decoder */
1061
0
  *i_offset =
1062
0
      (samplingRate * PIT_MIN_12k8 + (FSCALE_DENOM / 2)) / FSCALE_DENOM -
1063
0
      PIT_MIN_12k8;
1064
1065
  /* for bass postfilter */
1066
0
  for (n = 0; n < synSfd; n++) {
1067
0
    pitch[n] = old_T_pf[n];
1068
0
    pit_gain[n] = old_gain_pf[n];
1069
0
  }
1070
0
  for (n = 0; n < nbSubfrSuperfr; n++) {
1071
0
    pitch[n + synSfd] = L_SUBFR;
1072
0
    pit_gain[n + synSfd] = (FIXP_DBL)0;
1073
0
  }
1074
0
}
1075
1076
void Acelp_PostProcessing(FIXP_DBL *synth_buf, FIXP_DBL *old_synth, INT *pitch,
1077
                          INT *old_T_pf, INT coreCoderFrameLength, INT synSfd,
1078
0
                          INT nbSubfrSuperfr) {
1079
0
  int n;
1080
1081
  /* store last part of synth_buf (which is not handled by the IMDCT overlap)
1082
   * for next frame */
1083
0
  FDKmemcpy(old_synth, synth_buf + coreCoderFrameLength,
1084
0
            sizeof(FIXP_DBL) * (PIT_MAX_MAX - BPF_DELAY));
1085
1086
  /* for bass postfilter */
1087
0
  for (n = 0; n < synSfd; n++) {
1088
0
    old_T_pf[n] = pitch[nbSubfrSuperfr + n];
1089
0
  }
1090
0
}
1091
1092
0
#define L_FAC_ZIR (LFAC)
1093
1094
void CLpd_Acelp_Zir(const FIXP_LPC A[], const INT A_exp,
1095
                    CAcelpStaticMem *acelp_mem, const INT length,
1096
0
                    FIXP_DBL zir[], int doDeemph) {
1097
0
  C_ALLOC_SCRATCH_START(tmp_buf, FIXP_DBL, L_FAC_ZIR + M_LP_FILTER_ORDER);
1098
0
  FDK_ASSERT(length <= L_FAC_ZIR);
1099
1100
0
  FDKmemcpy(tmp_buf, acelp_mem->old_syn_mem,
1101
0
            M_LP_FILTER_ORDER * sizeof(FIXP_DBL));
1102
0
  FDKmemset(tmp_buf + M_LP_FILTER_ORDER, 0, L_FAC_ZIR * sizeof(FIXP_DBL));
1103
1104
0
  Syn_filt(A, A_exp, length, &tmp_buf[M_LP_FILTER_ORDER],
1105
0
           &tmp_buf[M_LP_FILTER_ORDER]);
1106
0
  if (!doDeemph) {
1107
    /* if last lpd mode was TD concealment, then bypass deemph */
1108
0
    FDKmemcpy(zir, tmp_buf, length * sizeof(*zir));
1109
0
  } else {
1110
0
    Deemph(&tmp_buf[M_LP_FILTER_ORDER], &zir[0], length,
1111
0
           &acelp_mem->de_emph_mem);
1112
0
    scaleValues(zir, length, -ACELP_OUTSCALE);
1113
0
  }
1114
0
  C_ALLOC_SCRATCH_END(tmp_buf, FIXP_DBL, L_FAC_ZIR + M_LP_FILTER_ORDER);
1115
0
}
1116
1117
void CLpd_AcelpPrepareInternalMem(const FIXP_DBL *synth, UCHAR last_lpd_mode,
1118
                                  UCHAR last_last_lpd_mode,
1119
                                  const FIXP_LPC *A_new, const INT A_new_exp,
1120
                                  const FIXP_LPC *A_old, const INT A_old_exp,
1121
                                  CAcelpStaticMem *acelp_mem,
1122
                                  INT coreCoderFrameLength, INT clearOldExc,
1123
0
                                  UCHAR lpd_mode) {
1124
0
  int l_div =
1125
0
      coreCoderFrameLength / NB_DIV; /* length of one ACELP/TCX20 frame */
1126
0
  int l_div_partial;
1127
0
  FIXP_DBL *syn, *old_exc_mem;
1128
1129
0
  C_ALLOC_SCRATCH_START(synth_buf, FIXP_DBL,
1130
0
                        PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER);
1131
0
  syn = &synth_buf[M_LP_FILTER_ORDER];
1132
1133
0
  l_div_partial = PIT_MAX_MAX + L_INTERPOL - l_div;
1134
0
  old_exc_mem = acelp_mem->old_exc_mem;
1135
1136
0
  if (lpd_mode == 4) {
1137
    /* Bypass Domain conversion. TCXTD Concealment does no deemphasis in the
1138
     * end. */
1139
0
    FDKmemcpy(
1140
0
        synth_buf, &synth[-(PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER)],
1141
0
        (PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER) * sizeof(FIXP_DBL));
1142
    /* Set deemphasis memory state for TD concealment */
1143
0
    acelp_mem->deemph_mem_wsyn = scaleValueSaturate(synth[-1], ACELP_OUTSCALE);
1144
0
  } else {
1145
    /* convert past [PIT_MAX_MAX+L_INTERPOL+M_LP_FILTER_ORDER] synthesis to
1146
     * preemph domain */
1147
0
    E_UTIL_preemph(&synth[-(PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER)],
1148
0
                   synth_buf, PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER);
1149
0
    scaleValuesSaturate(synth_buf, PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER,
1150
0
                        ACELP_OUTSCALE);
1151
0
  }
1152
1153
  /* Set deemphasis memory state */
1154
0
  acelp_mem->de_emph_mem = scaleValueSaturate(synth[-1], ACELP_OUTSCALE);
1155
1156
  /* update acelp synth filter memory */
1157
0
  FDKmemcpy(acelp_mem->old_syn_mem,
1158
0
            &syn[PIT_MAX_MAX + L_INTERPOL - M_LP_FILTER_ORDER],
1159
0
            M_LP_FILTER_ORDER * sizeof(FIXP_DBL));
1160
1161
0
  if (clearOldExc) {
1162
0
    FDKmemclear(old_exc_mem, (PIT_MAX_MAX + L_INTERPOL) * sizeof(FIXP_DBL));
1163
0
    C_ALLOC_SCRATCH_END(synth_buf, FIXP_DBL,
1164
0
                        PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER);
1165
0
    return;
1166
0
  }
1167
1168
  /* update past [PIT_MAX_MAX+L_INTERPOL] samples of exc memory */
1169
0
  if (last_lpd_mode == 1) {        /* last frame was TCX20 */
1170
0
    if (last_last_lpd_mode == 0) { /* ACELP -> TCX20 -> ACELP transition */
1171
      /* Delay valid part of excitation buffer (from previous ACELP frame) by
1172
       * l_div samples */
1173
0
      FDKmemmove(old_exc_mem, old_exc_mem + l_div,
1174
0
                 sizeof(FIXP_DBL) * l_div_partial);
1175
0
    } else if (last_last_lpd_mode > 0) { /* TCX -> TCX20 -> ACELP transition */
1176
0
      E_UTIL_residu(A_old, A_old_exp, syn, old_exc_mem, l_div_partial);
1177
0
    }
1178
0
    E_UTIL_residu(A_new, A_new_exp, syn + l_div_partial,
1179
0
                  old_exc_mem + l_div_partial, l_div);
1180
0
  } else { /* prev frame was FD, TCX40 or TCX80 */
1181
0
    int exc_A_new_length = (coreCoderFrameLength / 2 > PIT_MAX_MAX + L_INTERPOL)
1182
0
                               ? PIT_MAX_MAX + L_INTERPOL
1183
0
                               : coreCoderFrameLength / 2;
1184
0
    int exc_A_old_length = PIT_MAX_MAX + L_INTERPOL - exc_A_new_length;
1185
0
    E_UTIL_residu(A_old, A_old_exp, syn, old_exc_mem, exc_A_old_length);
1186
0
    E_UTIL_residu(A_new, A_new_exp, &syn[exc_A_old_length],
1187
0
                  &old_exc_mem[exc_A_old_length], exc_A_new_length);
1188
0
  }
1189
0
  C_ALLOC_SCRATCH_END(synth_buf, FIXP_DBL,
1190
0
                      PIT_MAX_MAX + L_INTERPOL + M_LP_FILTER_ORDER);
1191
1192
0
  return;
1193
0
}
1194
1195
0
FIXP_DBL *CLpd_ACELP_GetFreeExcMem(CAcelpStaticMem *acelp_mem, INT length) {
1196
0
  FDK_ASSERT(length <= PIT_MAX_MAX + L_INTERPOL);
1197
0
  return acelp_mem->old_exc_mem;
1198
0
}
1199
1200
INT CLpd_AcelpRead(HANDLE_FDK_BITSTREAM hBs, CAcelpChannelData *acelp,
1201
                   INT acelp_core_mode, INT coreCoderFrameLength,
1202
0
                   INT i_offset) {
1203
0
  int nb_subfr = coreCoderFrameLength / L_DIV;
1204
0
  const UCHAR *num_acb_index_bits =
1205
0
      (nb_subfr == 4) ? num_acb_idx_bits_table[0] : num_acb_idx_bits_table[1];
1206
0
  int nbits;
1207
0
  int error = 0;
1208
1209
0
  const int PIT_MIN = PIT_MIN_12k8 + i_offset;
1210
0
  const int PIT_FR2 = PIT_FR2_12k8 - i_offset;
1211
0
  const int PIT_FR1 = PIT_FR1_12k8;
1212
0
  const int PIT_MAX = PIT_MAX_12k8 + (6 * i_offset);
1213
0
  int T0, T0_frac, T0_min = 0, T0_max;
1214
1215
0
  if (PIT_MAX > PIT_MAX_MAX) {
1216
0
    error = AAC_DEC_DECODE_FRAME_ERROR;
1217
0
    goto bail;
1218
0
  }
1219
1220
0
  acelp->acelp_core_mode = acelp_core_mode;
1221
1222
0
  nbits = MapCoreMode2NBits(acelp_core_mode);
1223
1224
  /* decode mean energy with 2 bits : 18, 30, 42 or 54 dB */
1225
0
  acelp->mean_energy = FDKreadBits(hBs, 2);
1226
1227
0
  for (int sfr = 0; sfr < nb_subfr; sfr++) {
1228
    /* read ACB index and store T0 and T0_frac for each ACELP subframe. */
1229
0
    error = DecodePitchLag(hBs, num_acb_index_bits[sfr], PIT_MIN, PIT_FR2,
1230
0
                           PIT_FR1, PIT_MAX, &T0, &T0_frac, &T0_min, &T0_max);
1231
0
    if (error) {
1232
0
      goto bail;
1233
0
    }
1234
0
    acelp->T0[sfr] = (USHORT)T0;
1235
0
    acelp->T0_frac[sfr] = (UCHAR)T0_frac;
1236
0
    acelp->ltp_filtering_flag[sfr] = FDKreadBits(hBs, 1);
1237
0
    switch (nbits) {
1238
0
      case 12: /* 12 bits AMR-WB codebook is used */
1239
0
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 1);
1240
0
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 5);
1241
0
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 1);
1242
0
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 5);
1243
0
        break;
1244
0
      case 16: /* 16 bits AMR-WB codebook is used */
1245
0
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 1);
1246
0
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 5);
1247
0
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 5);
1248
0
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 5);
1249
0
        break;
1250
0
      case 20: /* 20 bits AMR-WB codebook is used */
1251
0
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 5);
1252
0
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 5);
1253
0
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 5);
1254
0
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 5);
1255
0
        break;
1256
0
      case 28: /* 28 bits AMR-WB codebook is used */
1257
0
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 9);
1258
0
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 9);
1259
0
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 5);
1260
0
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 5);
1261
0
        break;
1262
0
      case 36: /* 36 bits AMR-WB codebook is used */
1263
0
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 9);
1264
0
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 9);
1265
0
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 9);
1266
0
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 9);
1267
0
        break;
1268
0
      case 44: /* 44 bits AMR-WB codebook is used */
1269
0
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 13);
1270
0
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 13);
1271
0
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 9);
1272
0
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 9);
1273
0
        break;
1274
0
      case 52: /* 52 bits AMR-WB codebook is used */
1275
0
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 13);
1276
0
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 13);
1277
0
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 13);
1278
0
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 13);
1279
0
        break;
1280
0
      case 64: /* 64 bits AMR-WB codebook is used */
1281
0
        acelp->icb_index[sfr][0] = FDKreadBits(hBs, 2);
1282
0
        acelp->icb_index[sfr][1] = FDKreadBits(hBs, 2);
1283
0
        acelp->icb_index[sfr][2] = FDKreadBits(hBs, 2);
1284
0
        acelp->icb_index[sfr][3] = FDKreadBits(hBs, 2);
1285
0
        acelp->icb_index[sfr][4] = FDKreadBits(hBs, 14);
1286
0
        acelp->icb_index[sfr][5] = FDKreadBits(hBs, 14);
1287
0
        acelp->icb_index[sfr][6] = FDKreadBits(hBs, 14);
1288
0
        acelp->icb_index[sfr][7] = FDKreadBits(hBs, 14);
1289
0
        break;
1290
0
      default:
1291
0
        FDK_ASSERT(0);
1292
0
        break;
1293
0
    }
1294
0
    acelp->gains[sfr] = FDKreadBits(hBs, 7);
1295
0
  }
1296
1297
0
bail:
1298
0
  return error;
1299
0
}