Coverage Report

Created: 2025-07-01 06:21

/src/aac/libSBRenc/src/ps_main.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** SBR encoder library ******************************
96
97
   Author(s):   M. Multrus
98
99
   Description: PS Wrapper, Downmix
100
101
*******************************************************************************/
102
103
#include "ps_main.h"
104
105
/* Includes ******************************************************************/
106
#include "ps_bitenc.h"
107
#include "sbrenc_ram.h"
108
109
/*--------------- function declarations --------------------*/
110
static void psFindBestScaling(
111
    HANDLE_PARAMETRIC_STEREO hParametricStereo,
112
    FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
113
    UCHAR *dynBandScale, FIXP_DBL *maxBandValue, SCHAR *dmxScale);
114
115
/*------------- function definitions ----------------*/
116
0
FDK_PSENC_ERROR PSEnc_Create(HANDLE_PARAMETRIC_STEREO *phParametricStereo) {
117
0
  FDK_PSENC_ERROR error = PSENC_OK;
118
0
  HANDLE_PARAMETRIC_STEREO hParametricStereo = NULL;
119
120
0
  if (phParametricStereo == NULL) {
121
0
    error = PSENC_INVALID_HANDLE;
122
0
  } else {
123
0
    int i;
124
125
0
    if (NULL == (hParametricStereo = GetRam_ParamStereo())) {
126
0
      error = PSENC_MEMORY_ERROR;
127
0
      goto bail;
128
0
    }
129
0
    FDKmemclear(hParametricStereo, sizeof(PARAMETRIC_STEREO));
130
131
0
    if (PSENC_OK !=
132
0
        (error = FDKsbrEnc_CreatePSEncode(&hParametricStereo->hPsEncode))) {
133
0
      error = PSENC_MEMORY_ERROR;
134
0
      goto bail;
135
0
    }
136
137
0
    for (i = 0; i < MAX_PS_CHANNELS; i++) {
138
0
      if (FDKhybridAnalysisOpen(
139
0
              &hParametricStereo->fdkHybAnaFilter[i],
140
0
              hParametricStereo->__staticHybAnaStatesLF[i],
141
0
              sizeof(hParametricStereo->__staticHybAnaStatesLF[i]),
142
0
              hParametricStereo->__staticHybAnaStatesHF[i],
143
0
              sizeof(hParametricStereo->__staticHybAnaStatesHF[i])) != 0) {
144
0
        error = PSENC_MEMORY_ERROR;
145
0
        goto bail;
146
0
      }
147
0
    }
148
0
  }
149
150
0
bail:
151
0
  if (phParametricStereo != NULL) {
152
0
    *phParametricStereo = hParametricStereo; /* return allocated handle */
153
0
  }
154
155
0
  if (error != PSENC_OK) {
156
0
    PSEnc_Destroy(phParametricStereo);
157
0
  }
158
0
  return error;
159
0
}
160
161
FDK_PSENC_ERROR PSEnc_Init(HANDLE_PARAMETRIC_STEREO hParametricStereo,
162
                           const HANDLE_PSENC_CONFIG hPsEncConfig,
163
0
                           INT noQmfSlots, INT noQmfBands, UCHAR *dynamic_RAM) {
164
0
  FDK_PSENC_ERROR error = PSENC_OK;
165
166
0
  if ((NULL == hParametricStereo) || (NULL == hPsEncConfig)) {
167
0
    error = PSENC_INVALID_HANDLE;
168
0
  } else {
169
0
    int ch, i;
170
171
0
    hParametricStereo->initPS = 1;
172
0
    hParametricStereo->noQmfSlots = noQmfSlots;
173
0
    hParametricStereo->noQmfBands = noQmfBands;
174
175
    /* clear delay lines */
176
0
    FDKmemclear(hParametricStereo->qmfDelayLines,
177
0
                sizeof(hParametricStereo->qmfDelayLines));
178
179
0
    hParametricStereo->qmfDelayScale = FRACT_BITS - 1;
180
181
    /* create configuration for hybrid filter bank */
182
0
    for (ch = 0; ch < MAX_PS_CHANNELS; ch++) {
183
0
      FDKhybridAnalysisInit(&hParametricStereo->fdkHybAnaFilter[ch],
184
0
                            THREE_TO_TEN, 64, 64, 1);
185
0
    } /* ch */
186
187
0
    FDKhybridSynthesisInit(&hParametricStereo->fdkHybSynFilter, THREE_TO_TEN,
188
0
                           64, 64);
189
190
    /* determine average delay */
191
0
    hParametricStereo->psDelay =
192
0
        (HYBRID_FILTER_DELAY * hParametricStereo->noQmfBands);
193
194
0
    if ((hPsEncConfig->maxEnvelopes < PSENC_NENV_1) ||
195
0
        (hPsEncConfig->maxEnvelopes > PSENC_NENV_MAX)) {
196
0
      hPsEncConfig->maxEnvelopes = PSENC_NENV_DEFAULT;
197
0
    }
198
0
    hParametricStereo->maxEnvelopes = hPsEncConfig->maxEnvelopes;
199
200
0
    if (PSENC_OK !=
201
0
        (error = FDKsbrEnc_InitPSEncode(
202
0
             hParametricStereo->hPsEncode, (PS_BANDS)hPsEncConfig->nStereoBands,
203
0
             hPsEncConfig->iidQuantErrorThreshold))) {
204
0
      goto bail;
205
0
    }
206
207
0
    for (ch = 0; ch < MAX_PS_CHANNELS; ch++) {
208
0
      FIXP_DBL *pDynReal = GetRam_Sbr_envRBuffer(ch, dynamic_RAM);
209
0
      FIXP_DBL *pDynImag = GetRam_Sbr_envIBuffer(ch, dynamic_RAM);
210
211
0
      for (i = 0; i < HYBRID_FRAMESIZE; i++) {
212
0
        hParametricStereo->pHybridData[i + HYBRID_READ_OFFSET][ch][0] =
213
0
            &pDynReal[i * MAX_HYBRID_BANDS];
214
0
        hParametricStereo->pHybridData[i + HYBRID_READ_OFFSET][ch][1] =
215
0
            &pDynImag[i * MAX_HYBRID_BANDS];
216
0
        ;
217
0
      }
218
219
0
      for (i = 0; i < HYBRID_READ_OFFSET; i++) {
220
0
        hParametricStereo->pHybridData[i][ch][0] =
221
0
            hParametricStereo->__staticHybridData[i][ch][0];
222
0
        hParametricStereo->pHybridData[i][ch][1] =
223
0
            hParametricStereo->__staticHybridData[i][ch][1];
224
0
      }
225
0
    } /* ch */
226
227
    /* clear static hybrid buffer */
228
0
    FDKmemclear(hParametricStereo->__staticHybridData,
229
0
                sizeof(hParametricStereo->__staticHybridData));
230
231
    /* clear bs buffer */
232
0
    FDKmemclear(hParametricStereo->psOut, sizeof(hParametricStereo->psOut));
233
234
0
    hParametricStereo->psOut[0].enablePSHeader =
235
0
        1; /* write ps header in first frame */
236
237
    /* clear scaling buffer */
238
0
    FDKmemclear(hParametricStereo->dynBandScale, sizeof(UCHAR) * PS_MAX_BANDS);
239
0
    FDKmemclear(hParametricStereo->maxBandValue,
240
0
                sizeof(FIXP_DBL) * PS_MAX_BANDS);
241
242
0
  } /* valid handle */
243
0
bail:
244
0
  return error;
245
0
}
246
247
0
FDK_PSENC_ERROR PSEnc_Destroy(HANDLE_PARAMETRIC_STEREO *phParametricStereo) {
248
0
  FDK_PSENC_ERROR error = PSENC_OK;
249
250
0
  if (NULL != phParametricStereo) {
251
0
    HANDLE_PARAMETRIC_STEREO hParametricStereo = *phParametricStereo;
252
0
    if (hParametricStereo != NULL) {
253
0
      FDKsbrEnc_DestroyPSEncode(&hParametricStereo->hPsEncode);
254
0
      FreeRam_ParamStereo(phParametricStereo);
255
0
    }
256
0
  }
257
258
0
  return error;
259
0
}
260
261
static FDK_PSENC_ERROR ExtractPSParameters(
262
    HANDLE_PARAMETRIC_STEREO hParametricStereo, const int sendHeader,
263
0
    FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2]) {
264
0
  FDK_PSENC_ERROR error = PSENC_OK;
265
266
0
  if (hParametricStereo == NULL) {
267
0
    error = PSENC_INVALID_HANDLE;
268
0
  } else {
269
    /* call ps encode function */
270
0
    if (hParametricStereo->initPS) {
271
0
      hParametricStereo->psOut[1] = hParametricStereo->psOut[0];
272
0
    }
273
0
    hParametricStereo->psOut[0] = hParametricStereo->psOut[1];
274
275
0
    if (PSENC_OK !=
276
0
        (error = FDKsbrEnc_PSEncode(
277
0
             hParametricStereo->hPsEncode, &hParametricStereo->psOut[1],
278
0
             hParametricStereo->dynBandScale, hParametricStereo->maxEnvelopes,
279
0
             hybridData, hParametricStereo->noQmfSlots, sendHeader))) {
280
0
      goto bail;
281
0
    }
282
283
0
    if (hParametricStereo->initPS) {
284
0
      hParametricStereo->psOut[0] = hParametricStereo->psOut[1];
285
0
      hParametricStereo->initPS = 0;
286
0
    }
287
0
  }
288
0
bail:
289
0
  return error;
290
0
}
291
292
static FDK_PSENC_ERROR DownmixPSQmfData(
293
    HANDLE_PARAMETRIC_STEREO hParametricStereo,
294
    HANDLE_QMF_FILTER_BANK sbrSynthQmf, FIXP_DBL **RESTRICT mixRealQmfData,
295
    FIXP_DBL **RESTRICT mixImagQmfData, INT_PCM *downsampledOutSignal,
296
    const UINT downsampledOutSignalBufSize,
297
    FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
298
    const INT noQmfSlots, const INT psQmfScale[MAX_PS_CHANNELS],
299
0
    SCHAR *qmfScale) {
300
0
  FDK_PSENC_ERROR error = PSENC_OK;
301
302
0
  if (hParametricStereo == NULL) {
303
0
    error = PSENC_INVALID_HANDLE;
304
0
  } else {
305
0
    int n, k;
306
0
    C_AALLOC_SCRATCH_START(pWorkBuffer, FIXP_DBL, 2 * 64)
307
308
    /* define scalings */
309
0
    int dynQmfScale = fixMax(
310
0
        0, hParametricStereo->dmxScale -
311
0
               1); /* scale one bit more for addition of left and right */
312
0
    int downmixScale = psQmfScale[0] - dynQmfScale;
313
0
    const FIXP_DBL maxStereoScaleFactor = MAXVAL_DBL; /* 2.f/2.f */
314
315
0
    for (n = 0; n < noQmfSlots; n++) {
316
0
      FIXP_DBL tmpHybrid[2][MAX_HYBRID_BANDS];
317
318
0
      for (k = 0; k < 71; k++) {
319
0
        int dynScale, sc; /* scaling */
320
0
        FIXP_DBL tmpLeftReal, tmpRightReal, tmpLeftImag, tmpRightImag;
321
0
        FIXP_DBL tmpScaleFactor, stereoScaleFactor;
322
323
0
        tmpLeftReal = hybridData[n][0][0][k];
324
0
        tmpLeftImag = hybridData[n][0][1][k];
325
0
        tmpRightReal = hybridData[n][1][0][k];
326
0
        tmpRightImag = hybridData[n][1][1][k];
327
328
0
        sc = fixMax(
329
0
            0, CntLeadingZeros(fixMax(
330
0
                   fixMax(fixp_abs(tmpLeftReal), fixp_abs(tmpLeftImag)),
331
0
                   fixMax(fixp_abs(tmpRightReal), fixp_abs(tmpRightImag)))) -
332
0
                   2);
333
334
0
        tmpLeftReal <<= sc;
335
0
        tmpLeftImag <<= sc;
336
0
        tmpRightReal <<= sc;
337
0
        tmpRightImag <<= sc;
338
0
        dynScale = fixMin(sc - dynQmfScale, DFRACT_BITS - 1);
339
340
        /* calc stereo scale factor to avoid loss of energy in bands */
341
        /* stereo scale factor = min(2.0f, sqrt( (abs(l(k, n)^2 + abs(r(k, n)^2
342
         * )))/(0.5f*abs(l(k, n) + r(k, n))) )) */
343
0
        stereoScaleFactor = fPow2Div2(tmpLeftReal) + fPow2Div2(tmpLeftImag) +
344
0
                            fPow2Div2(tmpRightReal) + fPow2Div2(tmpRightImag);
345
346
        /* might be that tmpScaleFactor becomes negative, so fabs(.) */
347
0
        tmpScaleFactor =
348
0
            fixp_abs(stereoScaleFactor + fMult(tmpLeftReal, tmpRightReal) +
349
0
                     fMult(tmpLeftImag, tmpRightImag));
350
351
        /* min(2.0f, sqrt(stereoScaleFactor/(0.5f*tmpScaleFactor)))  */
352
0
        if ((stereoScaleFactor >> 1) <
353
0
            fMult(maxStereoScaleFactor, tmpScaleFactor)) {
354
0
          int sc_num = CountLeadingBits(stereoScaleFactor);
355
0
          int sc_denum = CountLeadingBits(tmpScaleFactor);
356
0
          sc = -(sc_num - sc_denum);
357
358
0
          tmpScaleFactor = schur_div((stereoScaleFactor << (sc_num)) >> 1,
359
0
                                     tmpScaleFactor << sc_denum, 16);
360
361
          /* prevent odd scaling for next sqrt calculation */
362
0
          if (sc & 0x1) {
363
0
            sc++;
364
0
            tmpScaleFactor >>= 1;
365
0
          }
366
0
          stereoScaleFactor = sqrtFixp(tmpScaleFactor);
367
0
          stereoScaleFactor <<= (sc >> 1);
368
0
        } else {
369
0
          stereoScaleFactor = maxStereoScaleFactor;
370
0
        }
371
372
        /* write data to hybrid output */
373
0
        tmpHybrid[0][k] = fMultDiv2(stereoScaleFactor,
374
0
                                    (FIXP_DBL)(tmpLeftReal + tmpRightReal)) >>
375
0
                          dynScale;
376
0
        tmpHybrid[1][k] = fMultDiv2(stereoScaleFactor,
377
0
                                    (FIXP_DBL)(tmpLeftImag + tmpRightImag)) >>
378
0
                          dynScale;
379
380
0
      } /* hybrid bands - k */
381
382
0
      FDKhybridSynthesisApply(&hParametricStereo->fdkHybSynFilter, tmpHybrid[0],
383
0
                              tmpHybrid[1], mixRealQmfData[n],
384
0
                              mixImagQmfData[n]);
385
386
0
      qmfSynthesisFilteringSlot(
387
0
          sbrSynthQmf, mixRealQmfData[n], mixImagQmfData[n], downmixScale - 7,
388
0
          downmixScale - 7,
389
0
          downsampledOutSignal + (n * sbrSynthQmf->no_channels), 1,
390
0
          pWorkBuffer);
391
392
0
    } /* slots */
393
394
0
    *qmfScale = -downmixScale + 7;
395
396
0
    C_AALLOC_SCRATCH_END(pWorkBuffer, FIXP_DBL, 2 * 64)
397
398
0
    {
399
0
      const INT noQmfSlots2 = hParametricStereo->noQmfSlots >> 1;
400
0
      const int noQmfBands = hParametricStereo->noQmfBands;
401
402
0
      INT scale, i, j, slotOffset;
403
404
0
      FIXP_DBL tmp[2][64];
405
406
0
      for (i = 0; i < noQmfSlots2; i++) {
407
0
        FDKmemcpy(tmp[0], hParametricStereo->qmfDelayLines[0][i],
408
0
                  noQmfBands * sizeof(FIXP_DBL));
409
0
        FDKmemcpy(tmp[1], hParametricStereo->qmfDelayLines[1][i],
410
0
                  noQmfBands * sizeof(FIXP_DBL));
411
412
0
        FDKmemcpy(hParametricStereo->qmfDelayLines[0][i],
413
0
                  mixRealQmfData[i + noQmfSlots2],
414
0
                  noQmfBands * sizeof(FIXP_DBL));
415
0
        FDKmemcpy(hParametricStereo->qmfDelayLines[1][i],
416
0
                  mixImagQmfData[i + noQmfSlots2],
417
0
                  noQmfBands * sizeof(FIXP_DBL));
418
419
0
        FDKmemcpy(mixRealQmfData[i + noQmfSlots2], mixRealQmfData[i],
420
0
                  noQmfBands * sizeof(FIXP_DBL));
421
0
        FDKmemcpy(mixImagQmfData[i + noQmfSlots2], mixImagQmfData[i],
422
0
                  noQmfBands * sizeof(FIXP_DBL));
423
424
0
        FDKmemcpy(mixRealQmfData[i], tmp[0], noQmfBands * sizeof(FIXP_DBL));
425
0
        FDKmemcpy(mixImagQmfData[i], tmp[1], noQmfBands * sizeof(FIXP_DBL));
426
0
      }
427
428
0
      if (hParametricStereo->qmfDelayScale > *qmfScale) {
429
0
        scale = hParametricStereo->qmfDelayScale - *qmfScale;
430
0
        slotOffset = 0;
431
0
      } else {
432
0
        scale = *qmfScale - hParametricStereo->qmfDelayScale;
433
0
        slotOffset = noQmfSlots2;
434
0
      }
435
436
0
      for (i = 0; i < noQmfSlots2; i++) {
437
0
        for (j = 0; j < noQmfBands; j++) {
438
0
          mixRealQmfData[i + slotOffset][j] >>= scale;
439
0
          mixImagQmfData[i + slotOffset][j] >>= scale;
440
0
        }
441
0
      }
442
443
0
      scale = *qmfScale;
444
0
      *qmfScale = fMin(*qmfScale, hParametricStereo->qmfDelayScale);
445
0
      hParametricStereo->qmfDelayScale = scale;
446
0
    }
447
448
0
  } /* valid handle */
449
450
0
  return error;
451
0
}
452
453
INT FDKsbrEnc_PSEnc_WritePSData(HANDLE_PARAMETRIC_STEREO hParametricStereo,
454
0
                                HANDLE_FDK_BITSTREAM hBitstream) {
455
0
  return (
456
0
      (hParametricStereo != NULL)
457
0
          ? FDKsbrEnc_WritePSBitstream(&hParametricStereo->psOut[0], hBitstream)
458
0
          : 0);
459
0
}
460
461
FDK_PSENC_ERROR FDKsbrEnc_PSEnc_ParametricStereoProcessing(
462
    HANDLE_PARAMETRIC_STEREO hParametricStereo, INT_PCM *samples[2],
463
    UINT samplesBufSize, QMF_FILTER_BANK **hQmfAnalysis,
464
    FIXP_DBL **RESTRICT downmixedRealQmfData,
465
    FIXP_DBL **RESTRICT downmixedImagQmfData, INT_PCM *downsampledOutSignal,
466
0
    HANDLE_QMF_FILTER_BANK sbrSynthQmf, SCHAR *qmfScale, const int sendHeader) {
467
0
  FDK_PSENC_ERROR error = PSENC_OK;
468
0
  INT psQmfScale[MAX_PS_CHANNELS] = {0};
469
0
  int psCh, i;
470
0
  C_AALLOC_SCRATCH_START(pWorkBuffer, FIXP_DBL, 4 * 64)
471
472
0
  for (psCh = 0; psCh < MAX_PS_CHANNELS; psCh++) {
473
0
    for (i = 0; i < hQmfAnalysis[psCh]->no_col; i++) {
474
0
      qmfAnalysisFilteringSlot(
475
0
          hQmfAnalysis[psCh], &pWorkBuffer[2 * 64], /* qmfReal[64] */
476
0
          &pWorkBuffer[3 * 64],                     /* qmfImag[64] */
477
0
          samples[psCh] + i * hQmfAnalysis[psCh]->no_channels, 1,
478
0
          &pWorkBuffer[0 * 64] /* qmf workbuffer 2*64 */
479
0
      );
480
481
0
      FDKhybridAnalysisApply(
482
0
          &hParametricStereo->fdkHybAnaFilter[psCh],
483
0
          &pWorkBuffer[2 * 64], /* qmfReal[64] */
484
0
          &pWorkBuffer[3 * 64], /* qmfImag[64] */
485
0
          hParametricStereo->pHybridData[i + HYBRID_READ_OFFSET][psCh][0],
486
0
          hParametricStereo->pHybridData[i + HYBRID_READ_OFFSET][psCh][1]);
487
488
0
    } /* no_col loop  i  */
489
490
0
    psQmfScale[psCh] = hQmfAnalysis[psCh]->outScalefactor;
491
492
0
  } /* for psCh */
493
494
0
  C_AALLOC_SCRATCH_END(pWorkBuffer, FIXP_DBL, 4 * 64)
495
496
  /* find best scaling in new QMF and Hybrid data */
497
0
  psFindBestScaling(
498
0
      hParametricStereo, &hParametricStereo->pHybridData[HYBRID_READ_OFFSET],
499
0
      hParametricStereo->dynBandScale, hParametricStereo->maxBandValue,
500
0
      &hParametricStereo->dmxScale);
501
502
  /* extract the ps parameters */
503
0
  if (PSENC_OK !=
504
0
      (error = ExtractPSParameters(hParametricStereo, sendHeader,
505
0
                                   &hParametricStereo->pHybridData[0]))) {
506
0
    goto bail;
507
0
  }
508
509
  /* save hybrid date for next frame */
510
0
  for (i = 0; i < HYBRID_READ_OFFSET; i++) {
511
0
    FDKmemcpy(
512
0
        hParametricStereo->pHybridData[i][0][0],
513
0
        hParametricStereo->pHybridData[hParametricStereo->noQmfSlots + i][0][0],
514
0
        MAX_HYBRID_BANDS * sizeof(FIXP_DBL)); /* left, real */
515
0
    FDKmemcpy(
516
0
        hParametricStereo->pHybridData[i][0][1],
517
0
        hParametricStereo->pHybridData[hParametricStereo->noQmfSlots + i][0][1],
518
0
        MAX_HYBRID_BANDS * sizeof(FIXP_DBL)); /* left, imag */
519
0
    FDKmemcpy(
520
0
        hParametricStereo->pHybridData[i][1][0],
521
0
        hParametricStereo->pHybridData[hParametricStereo->noQmfSlots + i][1][0],
522
0
        MAX_HYBRID_BANDS * sizeof(FIXP_DBL)); /* right, real */
523
0
    FDKmemcpy(
524
0
        hParametricStereo->pHybridData[i][1][1],
525
0
        hParametricStereo->pHybridData[hParametricStereo->noQmfSlots + i][1][1],
526
0
        MAX_HYBRID_BANDS * sizeof(FIXP_DBL)); /* right, imag */
527
0
  }
528
529
  /* downmix and hybrid synthesis */
530
0
  if (PSENC_OK !=
531
0
      (error = DownmixPSQmfData(
532
0
           hParametricStereo, sbrSynthQmf, downmixedRealQmfData,
533
0
           downmixedImagQmfData, downsampledOutSignal, samplesBufSize,
534
0
           &hParametricStereo->pHybridData[HYBRID_READ_OFFSET],
535
0
           hParametricStereo->noQmfSlots, psQmfScale, qmfScale))) {
536
0
    goto bail;
537
0
  }
538
539
0
bail:
540
541
0
  return error;
542
0
}
543
544
static void psFindBestScaling(
545
    HANDLE_PARAMETRIC_STEREO hParametricStereo,
546
    FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
547
0
    UCHAR *dynBandScale, FIXP_DBL *maxBandValue, SCHAR *dmxScale) {
548
0
  HANDLE_PS_ENCODE hPsEncode = hParametricStereo->hPsEncode;
549
550
0
  INT group, bin, col, band;
551
0
  const INT frameSize = hParametricStereo->noQmfSlots;
552
0
  const INT psBands = (INT)hPsEncode->psEncMode;
553
0
  const INT nIidGroups = hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups;
554
555
  /* group wise scaling */
556
0
  FIXP_DBL maxVal[2][PS_MAX_BANDS];
557
0
  FIXP_DBL maxValue = FL2FXCONST_DBL(0.f);
558
559
0
  FDKmemclear(maxVal, sizeof(maxVal));
560
561
  /* start with hybrid data */
562
0
  for (group = 0; group < nIidGroups; group++) {
563
    /* Translate group to bin */
564
0
    bin = hPsEncode->subband2parameterIndex[group];
565
566
    /* Translate from 20 bins to 10 bins */
567
0
    if (hPsEncode->psEncMode == PS_BANDS_COARSE) {
568
0
      bin >>= 1;
569
0
    }
570
571
    /* QMF downmix scaling */
572
0
    for (col = 0; col < frameSize; col++) {
573
0
      int i, section = (col < frameSize - HYBRID_READ_OFFSET) ? 0 : 1;
574
0
      FIXP_DBL tmp = maxVal[section][bin];
575
0
      for (i = hPsEncode->iidGroupBorders[group];
576
0
           i < hPsEncode->iidGroupBorders[group + 1]; i++) {
577
0
        tmp = fixMax(tmp, (FIXP_DBL)fixp_abs(hybridData[col][0][0][i]));
578
0
        tmp = fixMax(tmp, (FIXP_DBL)fixp_abs(hybridData[col][0][1][i]));
579
0
        tmp = fixMax(tmp, (FIXP_DBL)fixp_abs(hybridData[col][1][0][i]));
580
0
        tmp = fixMax(tmp, (FIXP_DBL)fixp_abs(hybridData[col][1][1][i]));
581
0
      }
582
0
      maxVal[section][bin] = tmp;
583
0
    }
584
0
  } /* nIidGroups */
585
586
  /* convert maxSpec to maxScaling, find scaling space */
587
0
  for (band = 0; band < psBands; band++) {
588
0
#ifndef MULT_16x16
589
0
    dynBandScale[band] =
590
0
        CountLeadingBits(fixMax(maxVal[0][band], maxBandValue[band]));
591
#else
592
    dynBandScale[band] = fixMax(
593
        0, CountLeadingBits(fixMax(maxVal[0][band], maxBandValue[band])) -
594
               FRACT_BITS);
595
#endif
596
0
    maxValue = fixMax(maxValue, fixMax(maxVal[0][band], maxVal[1][band]));
597
0
    maxBandValue[band] = fixMax(maxVal[0][band], maxVal[1][band]);
598
0
  }
599
600
    /* calculate maximal scaling for QMF downmix */
601
0
#ifndef MULT_16x16
602
0
  *dmxScale = fixMin(DFRACT_BITS, CountLeadingBits(maxValue));
603
#else
604
  *dmxScale = fixMax(0, fixMin(FRACT_BITS, CountLeadingBits((maxValue))));
605
#endif
606
0
}