/src/aac/libAACdec/src/rvlcconceal.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* ----------------------------------------------------------------------------- |
2 | | Software License for The Fraunhofer FDK AAC Codec Library for Android |
3 | | |
4 | | © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten |
5 | | Forschung e.V. All rights reserved. |
6 | | |
7 | | 1. INTRODUCTION |
8 | | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
9 | | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
10 | | scheme for digital audio. This FDK AAC Codec software is intended to be used on |
11 | | a wide variety of Android devices. |
12 | | |
13 | | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
14 | | general perceptual audio codecs. AAC-ELD is considered the best-performing |
15 | | full-bandwidth communications codec by independent studies and is widely |
16 | | deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
17 | | specifications. |
18 | | |
19 | | Patent licenses for necessary patent claims for the FDK AAC Codec (including |
20 | | those of Fraunhofer) may be obtained through Via Licensing |
21 | | (www.vialicensing.com) or through the respective patent owners individually for |
22 | | the purpose of encoding or decoding bit streams in products that are compliant |
23 | | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
24 | | Android devices already license these patent claims through Via Licensing or |
25 | | directly from the patent owners, and therefore FDK AAC Codec software may |
26 | | already be covered under those patent licenses when it is used for those |
27 | | licensed purposes only. |
28 | | |
29 | | Commercially-licensed AAC software libraries, including floating-point versions |
30 | | with enhanced sound quality, are also available from Fraunhofer. Users are |
31 | | encouraged to check the Fraunhofer website for additional applications |
32 | | information and documentation. |
33 | | |
34 | | 2. COPYRIGHT LICENSE |
35 | | |
36 | | Redistribution and use in source and binary forms, with or without modification, |
37 | | are permitted without payment of copyright license fees provided that you |
38 | | satisfy the following conditions: |
39 | | |
40 | | You must retain the complete text of this software license in redistributions of |
41 | | the FDK AAC Codec or your modifications thereto in source code form. |
42 | | |
43 | | You must retain the complete text of this software license in the documentation |
44 | | and/or other materials provided with redistributions of the FDK AAC Codec or |
45 | | your modifications thereto in binary form. You must make available free of |
46 | | charge copies of the complete source code of the FDK AAC Codec and your |
47 | | modifications thereto to recipients of copies in binary form. |
48 | | |
49 | | The name of Fraunhofer may not be used to endorse or promote products derived |
50 | | from this library without prior written permission. |
51 | | |
52 | | You may not charge copyright license fees for anyone to use, copy or distribute |
53 | | the FDK AAC Codec software or your modifications thereto. |
54 | | |
55 | | Your modified versions of the FDK AAC Codec must carry prominent notices stating |
56 | | that you changed the software and the date of any change. For modified versions |
57 | | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
58 | | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
59 | | AAC Codec Library for Android." |
60 | | |
61 | | 3. NO PATENT LICENSE |
62 | | |
63 | | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
64 | | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
65 | | Fraunhofer provides no warranty of patent non-infringement with respect to this |
66 | | software. |
67 | | |
68 | | You may use this FDK AAC Codec software or modifications thereto only for |
69 | | purposes that are authorized by appropriate patent licenses. |
70 | | |
71 | | 4. DISCLAIMER |
72 | | |
73 | | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
74 | | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
75 | | including but not limited to the implied warranties of merchantability and |
76 | | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
77 | | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
78 | | or consequential damages, including but not limited to procurement of substitute |
79 | | goods or services; loss of use, data, or profits, or business interruption, |
80 | | however caused and on any theory of liability, whether in contract, strict |
81 | | liability, or tort (including negligence), arising in any way out of the use of |
82 | | this software, even if advised of the possibility of such damage. |
83 | | |
84 | | 5. CONTACT INFORMATION |
85 | | |
86 | | Fraunhofer Institute for Integrated Circuits IIS |
87 | | Attention: Audio and Multimedia Departments - FDK AAC LL |
88 | | Am Wolfsmantel 33 |
89 | | 91058 Erlangen, Germany |
90 | | |
91 | | www.iis.fraunhofer.de/amm |
92 | | amm-info@iis.fraunhofer.de |
93 | | ----------------------------------------------------------------------------- */ |
94 | | |
95 | | /**************************** AAC decoder library ****************************** |
96 | | |
97 | | Author(s): |
98 | | |
99 | | Description: |
100 | | |
101 | | *******************************************************************************/ |
102 | | |
103 | | /*! |
104 | | \file |
105 | | \brief rvlc concealment |
106 | | \author Josef Hoepfl |
107 | | */ |
108 | | |
109 | | #include "rvlcconceal.h" |
110 | | |
111 | | #include "block.h" |
112 | | #include "rvlc.h" |
113 | | |
114 | | /*--------------------------------------------------------------------------------------------- |
115 | | function: calcRefValFwd |
116 | | |
117 | | description: The function determines the scalefactor which is closed to the |
118 | | scalefactorband conceal_min. The same is done for intensity data and noise |
119 | | energies. |
120 | | ----------------------------------------------------------------------------------------------- |
121 | | output: - reference value scf |
122 | | - reference value internsity data |
123 | | - reference value noise energy |
124 | | ----------------------------------------------------------------------------------------------- |
125 | | return: - |
126 | | -------------------------------------------------------------------------------------------- |
127 | | */ |
128 | | |
129 | | static void calcRefValFwd(CErRvlcInfo *pRvlc, |
130 | | CAacDecoderChannelInfo *pAacDecoderChannelInfo, |
131 | 0 | int *refIsFwd, int *refNrgFwd, int *refScfFwd) { |
132 | 0 | int band, bnds, group, startBand; |
133 | 0 | int idIs, idNrg, idScf; |
134 | 0 | int conceal_min, conceal_group_min; |
135 | 0 | int MaximumScaleFactorBands; |
136 | |
|
137 | 0 | if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) |
138 | 0 | MaximumScaleFactorBands = 16; |
139 | 0 | else |
140 | 0 | MaximumScaleFactorBands = 64; |
141 | |
|
142 | 0 | conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands; |
143 | 0 | conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands; |
144 | | |
145 | | /* calculate first reference value for approach in forward direction */ |
146 | 0 | idIs = idNrg = idScf = 1; |
147 | | |
148 | | /* set reference values */ |
149 | 0 | *refIsFwd = -SF_OFFSET; |
150 | 0 | *refNrgFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - |
151 | 0 | SF_OFFSET - 90 - 256; |
152 | 0 | *refScfFwd = |
153 | 0 | pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET; |
154 | |
|
155 | 0 | startBand = conceal_min - 1; |
156 | 0 | for (group = conceal_group_min; group >= 0; group--) { |
157 | 0 | for (band = startBand; band >= 0; band--) { |
158 | 0 | bnds = 16 * group + band; |
159 | 0 | switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) { |
160 | 0 | case ZERO_HCB: |
161 | 0 | break; |
162 | 0 | case INTENSITY_HCB: |
163 | 0 | case INTENSITY_HCB2: |
164 | 0 | if (idIs) { |
165 | 0 | *refIsFwd = |
166 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
167 | 0 | idIs = 0; /* reference value has been set */ |
168 | 0 | } |
169 | 0 | break; |
170 | 0 | case NOISE_HCB: |
171 | 0 | if (idNrg) { |
172 | 0 | *refNrgFwd = |
173 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
174 | 0 | idNrg = 0; /* reference value has been set */ |
175 | 0 | } |
176 | 0 | break; |
177 | 0 | default: |
178 | 0 | if (idScf) { |
179 | 0 | *refScfFwd = |
180 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
181 | 0 | idScf = 0; /* reference value has been set */ |
182 | 0 | } |
183 | 0 | break; |
184 | 0 | } |
185 | 0 | } |
186 | 0 | startBand = pRvlc->maxSfbTransmitted - 1; |
187 | 0 | } |
188 | 0 | } |
189 | | |
190 | | /*--------------------------------------------------------------------------------------------- |
191 | | function: calcRefValBwd |
192 | | |
193 | | description: The function determines the scalefactor which is closed to the |
194 | | scalefactorband conceal_max. The same is done for intensity data and noise |
195 | | energies. |
196 | | ----------------------------------------------------------------------------------------------- |
197 | | output: - reference value scf |
198 | | - reference value internsity data |
199 | | - reference value noise energy |
200 | | ----------------------------------------------------------------------------------------------- |
201 | | return: - |
202 | | -------------------------------------------------------------------------------------------- |
203 | | */ |
204 | | |
205 | | static void calcRefValBwd(CErRvlcInfo *pRvlc, |
206 | | CAacDecoderChannelInfo *pAacDecoderChannelInfo, |
207 | 0 | int *refIsBwd, int *refNrgBwd, int *refScfBwd) { |
208 | 0 | int band, bnds, group, startBand; |
209 | 0 | int idIs, idNrg, idScf; |
210 | 0 | int conceal_max, conceal_group_max; |
211 | 0 | int MaximumScaleFactorBands; |
212 | |
|
213 | 0 | if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) |
214 | 0 | MaximumScaleFactorBands = 16; |
215 | 0 | else |
216 | 0 | MaximumScaleFactorBands = 64; |
217 | |
|
218 | 0 | conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands; |
219 | 0 | conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands; |
220 | | |
221 | | /* calculate first reference value for approach in backward direction */ |
222 | 0 | idIs = idNrg = idScf = 1; |
223 | | |
224 | | /* set reference values */ |
225 | 0 | *refIsBwd = pRvlc->dpcm_is_last_position - SF_OFFSET; |
226 | 0 | *refNrgBwd = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position - |
227 | 0 | SF_OFFSET - 90 - 256 + pRvlc->dpcm_noise_nrg; |
228 | 0 | *refScfBwd = pRvlc->rev_global_gain - SF_OFFSET; |
229 | |
|
230 | 0 | startBand = conceal_max + 1; |
231 | | |
232 | | /* if needed, re-set reference values */ |
233 | 0 | for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) { |
234 | 0 | for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) { |
235 | 0 | bnds = 16 * group + band; |
236 | 0 | switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) { |
237 | 0 | case ZERO_HCB: |
238 | 0 | break; |
239 | 0 | case INTENSITY_HCB: |
240 | 0 | case INTENSITY_HCB2: |
241 | 0 | if (idIs) { |
242 | 0 | *refIsBwd = |
243 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
244 | 0 | idIs = 0; /* reference value has been set */ |
245 | 0 | } |
246 | 0 | break; |
247 | 0 | case NOISE_HCB: |
248 | 0 | if (idNrg) { |
249 | 0 | *refNrgBwd = |
250 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
251 | 0 | idNrg = 0; /* reference value has been set */ |
252 | 0 | } |
253 | 0 | break; |
254 | 0 | default: |
255 | 0 | if (idScf) { |
256 | 0 | *refScfBwd = |
257 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
258 | 0 | idScf = 0; /* reference value has been set */ |
259 | 0 | } |
260 | 0 | break; |
261 | 0 | } |
262 | 0 | } |
263 | 0 | startBand = 0; |
264 | 0 | } |
265 | 0 | } |
266 | | |
267 | | /*--------------------------------------------------------------------------------------------- |
268 | | function: BidirectionalEstimation_UseLowerScfOfCurrentFrame |
269 | | |
270 | | description: This approach by means of bidirectional estimation is generally |
271 | | performed when a single bit error has been detected, the bit error can be |
272 | | isolated between 'conceal_min' and 'conceal_max' and the 'sf_concealment' flag |
273 | | is not set. The sets of scalefactors decoded in forward and backward direction |
274 | | are compared with each other. The smaller scalefactor will be considered as the |
275 | | correct one respectively. The reconstruction of the scalefactors with this |
276 | | approach archieve good results in audio quality. The strategy must be applied to |
277 | | scalefactors, intensity data and noise energy seperately. |
278 | | ----------------------------------------------------------------------------------------------- |
279 | | output: Concealed scalefactor, noise energy and intensity data between |
280 | | conceal_min and conceal_max |
281 | | ----------------------------------------------------------------------------------------------- |
282 | | return: - |
283 | | -------------------------------------------------------------------------------------------- |
284 | | */ |
285 | | |
286 | | void BidirectionalEstimation_UseLowerScfOfCurrentFrame( |
287 | 0 | CAacDecoderChannelInfo *pAacDecoderChannelInfo) { |
288 | 0 | CErRvlcInfo *pRvlc = |
289 | 0 | &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo; |
290 | 0 | int band, bnds, startBand, endBand, group; |
291 | 0 | int conceal_min, conceal_max; |
292 | 0 | int conceal_group_min, conceal_group_max; |
293 | 0 | int MaximumScaleFactorBands; |
294 | |
|
295 | 0 | if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) { |
296 | 0 | MaximumScaleFactorBands = 16; |
297 | 0 | } else { |
298 | 0 | MaximumScaleFactorBands = 64; |
299 | 0 | } |
300 | | |
301 | | /* If an error was detected just in forward or backward direction, set the |
302 | | corresponding border for concealment to a appropriate scalefactor band. The |
303 | | border is set to first or last sfb respectively, because the error will |
304 | | possibly not follow directly after the corrupt bit but just after decoding |
305 | | some more (wrong) scalefactors. */ |
306 | 0 | if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0; |
307 | |
|
308 | 0 | if (pRvlc->conceal_max == CONCEAL_MAX_INIT) |
309 | 0 | pRvlc->conceal_max = |
310 | 0 | (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1; |
311 | |
|
312 | 0 | conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands; |
313 | 0 | conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands; |
314 | 0 | conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands; |
315 | 0 | conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands; |
316 | |
|
317 | 0 | if (pRvlc->conceal_min == pRvlc->conceal_max) { |
318 | 0 | int refIsFwd, refNrgFwd, refScfFwd; |
319 | 0 | int refIsBwd, refNrgBwd, refScfBwd; |
320 | |
|
321 | 0 | bnds = pRvlc->conceal_min; |
322 | 0 | calcRefValFwd(pRvlc, pAacDecoderChannelInfo, &refIsFwd, &refNrgFwd, |
323 | 0 | &refScfFwd); |
324 | 0 | calcRefValBwd(pRvlc, pAacDecoderChannelInfo, &refIsBwd, &refNrgBwd, |
325 | 0 | &refScfBwd); |
326 | |
|
327 | 0 | switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) { |
328 | 0 | case ZERO_HCB: |
329 | 0 | break; |
330 | 0 | case INTENSITY_HCB: |
331 | 0 | case INTENSITY_HCB2: |
332 | 0 | if (refIsFwd < refIsBwd) |
333 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsFwd; |
334 | 0 | else |
335 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsBwd; |
336 | 0 | break; |
337 | 0 | case NOISE_HCB: |
338 | 0 | if (refNrgFwd < refNrgBwd) |
339 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgFwd; |
340 | 0 | else |
341 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgBwd; |
342 | 0 | break; |
343 | 0 | default: |
344 | 0 | if (refScfFwd < refScfBwd) |
345 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfFwd; |
346 | 0 | else |
347 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfBwd; |
348 | 0 | break; |
349 | 0 | } |
350 | 0 | } else { |
351 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
352 | 0 | .aRvlcScfFwd[pRvlc->conceal_max] = |
353 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
354 | 0 | .aRvlcScfBwd[pRvlc->conceal_max]; |
355 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
356 | 0 | .aRvlcScfBwd[pRvlc->conceal_min] = |
357 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
358 | 0 | .aRvlcScfFwd[pRvlc->conceal_min]; |
359 | | |
360 | | /* consider the smaller of the forward and backward decoded value as the |
361 | | * correct one */ |
362 | 0 | startBand = conceal_min; |
363 | 0 | if (conceal_group_min == conceal_group_max) |
364 | 0 | endBand = conceal_max; |
365 | 0 | else |
366 | 0 | endBand = pRvlc->maxSfbTransmitted - 1; |
367 | |
|
368 | 0 | for (group = conceal_group_min; group <= conceal_group_max; group++) { |
369 | 0 | for (band = startBand; band <= endBand; band++) { |
370 | 0 | bnds = 16 * group + band; |
371 | 0 | if (pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds] < |
372 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]) |
373 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
374 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
375 | 0 | else |
376 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
377 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
378 | 0 | } |
379 | 0 | startBand = 0; |
380 | 0 | if ((group + 1) == conceal_group_max) endBand = conceal_max; |
381 | 0 | } |
382 | 0 | } |
383 | | |
384 | | /* now copy all data to the output buffer which needs not to be concealed */ |
385 | 0 | if (conceal_group_min == 0) |
386 | 0 | endBand = conceal_min; |
387 | 0 | else |
388 | 0 | endBand = pRvlc->maxSfbTransmitted; |
389 | 0 | for (group = 0; group <= conceal_group_min; group++) { |
390 | 0 | for (band = 0; band < endBand; band++) { |
391 | 0 | bnds = 16 * group + band; |
392 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
393 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
394 | 0 | } |
395 | 0 | if ((group + 1) == conceal_group_min) endBand = conceal_min; |
396 | 0 | } |
397 | |
|
398 | 0 | startBand = conceal_max + 1; |
399 | 0 | for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) { |
400 | 0 | for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) { |
401 | 0 | bnds = 16 * group + band; |
402 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
403 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
404 | 0 | } |
405 | 0 | startBand = 0; |
406 | 0 | } |
407 | 0 | } |
408 | | |
409 | | /*--------------------------------------------------------------------------------------------- |
410 | | function: BidirectionalEstimation_UseScfOfPrevFrameAsReference |
411 | | |
412 | | description: This approach by means of bidirectional estimation is generally |
413 | | performed when a single bit error has been detected, the bit error can be |
414 | | isolated between 'conceal_min' and 'conceal_max', the 'sf_concealment' flag is |
415 | | set and the previous frame has the same block type as the current frame. The |
416 | | scalefactor decoded in forward and backward direction and the scalefactor of the |
417 | | previous frame are compared with each other. The smaller scalefactor will be |
418 | | considered as the correct one. At this the codebook of the previous and current |
419 | | frame must be of the same set (scf, nrg, is) in each scalefactorband. Otherwise |
420 | | the scalefactor of the previous frame is not considered in the minimum |
421 | | calculation. The reconstruction of the scalefactors with this approach archieve |
422 | | good results in audio quality. The strategy must be applied to scalefactors, |
423 | | intensity data and noise energy seperately. |
424 | | ----------------------------------------------------------------------------------------------- |
425 | | output: Concealed scalefactor, noise energy and intensity data between |
426 | | conceal_min and conceal_max |
427 | | ----------------------------------------------------------------------------------------------- |
428 | | return: - |
429 | | -------------------------------------------------------------------------------------------- |
430 | | */ |
431 | | |
432 | | void BidirectionalEstimation_UseScfOfPrevFrameAsReference( |
433 | | CAacDecoderChannelInfo *pAacDecoderChannelInfo, |
434 | 0 | CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) { |
435 | 0 | CErRvlcInfo *pRvlc = |
436 | 0 | &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo; |
437 | 0 | int band, bnds, startBand, endBand, group; |
438 | 0 | int conceal_min, conceal_max; |
439 | 0 | int conceal_group_min, conceal_group_max; |
440 | 0 | int MaximumScaleFactorBands; |
441 | 0 | SHORT commonMin; |
442 | |
|
443 | 0 | if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) { |
444 | 0 | MaximumScaleFactorBands = 16; |
445 | 0 | } else { |
446 | 0 | MaximumScaleFactorBands = 64; |
447 | 0 | } |
448 | | |
449 | | /* If an error was detected just in forward or backward direction, set the |
450 | | corresponding border for concealment to a appropriate scalefactor band. The |
451 | | border is set to first or last sfb respectively, because the error will |
452 | | possibly not follow directly after the corrupt bit but just after decoding |
453 | | some more (wrong) scalefactors. */ |
454 | 0 | if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0; |
455 | |
|
456 | 0 | if (pRvlc->conceal_max == CONCEAL_MAX_INIT) |
457 | 0 | pRvlc->conceal_max = |
458 | 0 | (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1; |
459 | |
|
460 | 0 | conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands; |
461 | 0 | conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands; |
462 | 0 | conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands; |
463 | 0 | conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands; |
464 | |
|
465 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
466 | 0 | .aRvlcScfFwd[pRvlc->conceal_max] = |
467 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
468 | 0 | .aRvlcScfBwd[pRvlc->conceal_max]; |
469 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
470 | 0 | .aRvlcScfBwd[pRvlc->conceal_min] = |
471 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
472 | 0 | .aRvlcScfFwd[pRvlc->conceal_min]; |
473 | | |
474 | | /* consider the smaller of the forward and backward decoded value as the |
475 | | * correct one */ |
476 | 0 | startBand = conceal_min; |
477 | 0 | if (conceal_group_min == conceal_group_max) |
478 | 0 | endBand = conceal_max; |
479 | 0 | else |
480 | 0 | endBand = pRvlc->maxSfbTransmitted - 1; |
481 | |
|
482 | 0 | for (group = conceal_group_min; group <= conceal_group_max; group++) { |
483 | 0 | for (band = startBand; band <= endBand; band++) { |
484 | 0 | bnds = 16 * group + band; |
485 | 0 | switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) { |
486 | 0 | case ZERO_HCB: |
487 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0; |
488 | 0 | break; |
489 | | |
490 | 0 | case INTENSITY_HCB: |
491 | 0 | case INTENSITY_HCB2: |
492 | 0 | if ((pAacDecoderStaticChannelInfo->concealmentInfo |
493 | 0 | .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) || |
494 | 0 | (pAacDecoderStaticChannelInfo->concealmentInfo |
495 | 0 | .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) { |
496 | 0 | commonMin = fMin( |
497 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds], |
498 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
499 | 0 | .aRvlcScfBwd[bnds]); |
500 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
501 | 0 | fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo |
502 | 0 | .aRvlcPreviousScaleFactor[bnds]); |
503 | 0 | } else { |
504 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin( |
505 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds], |
506 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
507 | 0 | .aRvlcScfBwd[bnds]); |
508 | 0 | } |
509 | 0 | break; |
510 | | |
511 | 0 | case NOISE_HCB: |
512 | 0 | if (pAacDecoderStaticChannelInfo->concealmentInfo |
513 | 0 | .aRvlcPreviousCodebook[bnds] == NOISE_HCB) { |
514 | 0 | commonMin = fMin( |
515 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds], |
516 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
517 | 0 | .aRvlcScfBwd[bnds]); |
518 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
519 | 0 | fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo |
520 | 0 | .aRvlcPreviousScaleFactor[bnds]); |
521 | 0 | } else { |
522 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin( |
523 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds], |
524 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
525 | 0 | .aRvlcScfBwd[bnds]); |
526 | 0 | } |
527 | 0 | break; |
528 | | |
529 | 0 | default: |
530 | 0 | if ((pAacDecoderStaticChannelInfo->concealmentInfo |
531 | 0 | .aRvlcPreviousCodebook[bnds] != ZERO_HCB) && |
532 | 0 | (pAacDecoderStaticChannelInfo->concealmentInfo |
533 | 0 | .aRvlcPreviousCodebook[bnds] != NOISE_HCB) && |
534 | 0 | (pAacDecoderStaticChannelInfo->concealmentInfo |
535 | 0 | .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) && |
536 | 0 | (pAacDecoderStaticChannelInfo->concealmentInfo |
537 | 0 | .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) { |
538 | 0 | commonMin = fMin( |
539 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds], |
540 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
541 | 0 | .aRvlcScfBwd[bnds]); |
542 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
543 | 0 | fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo |
544 | 0 | .aRvlcPreviousScaleFactor[bnds]); |
545 | 0 | } else { |
546 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin( |
547 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds], |
548 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
549 | 0 | .aRvlcScfBwd[bnds]); |
550 | 0 | } |
551 | 0 | break; |
552 | 0 | } |
553 | 0 | } |
554 | 0 | startBand = 0; |
555 | 0 | if ((group + 1) == conceal_group_max) endBand = conceal_max; |
556 | 0 | } |
557 | | |
558 | | /* now copy all data to the output buffer which needs not to be concealed */ |
559 | 0 | if (conceal_group_min == 0) |
560 | 0 | endBand = conceal_min; |
561 | 0 | else |
562 | 0 | endBand = pRvlc->maxSfbTransmitted; |
563 | 0 | for (group = 0; group <= conceal_group_min; group++) { |
564 | 0 | for (band = 0; band < endBand; band++) { |
565 | 0 | bnds = 16 * group + band; |
566 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
567 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
568 | 0 | } |
569 | 0 | if ((group + 1) == conceal_group_min) endBand = conceal_min; |
570 | 0 | } |
571 | |
|
572 | 0 | startBand = conceal_max + 1; |
573 | 0 | for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) { |
574 | 0 | for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) { |
575 | 0 | bnds = 16 * group + band; |
576 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
577 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
578 | 0 | } |
579 | 0 | startBand = 0; |
580 | 0 | } |
581 | 0 | } |
582 | | |
583 | | /*--------------------------------------------------------------------------------------------- |
584 | | function: StatisticalEstimation |
585 | | |
586 | | description: This approach by means of statistical estimation is generally |
587 | | performed when both the start value and the end value are different and no |
588 | | further errors have been detected. Considering the forward and backward decoded |
589 | | scalefactors, the set with the lower scalefactors in sum will be considered as |
590 | | the correct one. The scalefactors are differentially encoded. Normally it would |
591 | | reach to compare one pair of the forward and backward decoded scalefactors to |
592 | | specify the lower set. But having detected no further errors does not |
593 | | necessarily mean the absence of errors. Therefore all scalefactors decoded in |
594 | | forward and backward direction are summed up seperately. The set with the lower |
595 | | sum will be used. The strategy must be applied to scalefactors, intensity data |
596 | | and noise energy seperately. |
597 | | ----------------------------------------------------------------------------------------------- |
598 | | output: Concealed scalefactor, noise energy and intensity data |
599 | | ----------------------------------------------------------------------------------------------- |
600 | | return: - |
601 | | -------------------------------------------------------------------------------------------- |
602 | | */ |
603 | | |
604 | 0 | void StatisticalEstimation(CAacDecoderChannelInfo *pAacDecoderChannelInfo) { |
605 | 0 | CErRvlcInfo *pRvlc = |
606 | 0 | &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo; |
607 | 0 | int band, bnds, group; |
608 | 0 | int sumIsFwd, sumIsBwd; /* sum of intensity data forward/backward */ |
609 | 0 | int sumNrgFwd, sumNrgBwd; /* sum of noise energy data forward/backward */ |
610 | 0 | int sumScfFwd, sumScfBwd; /* sum of scalefactor data forward/backward */ |
611 | 0 | int useIsFwd, useNrgFwd, useScfFwd; /* the flags signals the elements which |
612 | | are used for the final result */ |
613 | |
|
614 | 0 | sumIsFwd = sumIsBwd = sumNrgFwd = sumNrgBwd = sumScfFwd = sumScfBwd = 0; |
615 | 0 | useIsFwd = useNrgFwd = useScfFwd = 0; |
616 | | |
617 | | /* calculate sum of each group (scf,nrg,is) of forward and backward direction |
618 | | */ |
619 | 0 | for (group = 0; group < pRvlc->numWindowGroups; group++) { |
620 | 0 | for (band = 0; band < pRvlc->maxSfbTransmitted; band++) { |
621 | 0 | bnds = 16 * group + band; |
622 | 0 | switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) { |
623 | 0 | case ZERO_HCB: |
624 | 0 | break; |
625 | | |
626 | 0 | case INTENSITY_HCB: |
627 | 0 | case INTENSITY_HCB2: |
628 | 0 | sumIsFwd += |
629 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
630 | 0 | sumIsBwd += |
631 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
632 | 0 | break; |
633 | | |
634 | 0 | case NOISE_HCB: |
635 | 0 | sumNrgFwd += |
636 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
637 | 0 | sumNrgBwd += |
638 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
639 | 0 | break; |
640 | | |
641 | 0 | default: |
642 | 0 | sumScfFwd += |
643 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
644 | 0 | sumScfBwd += |
645 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
646 | 0 | break; |
647 | 0 | } |
648 | 0 | } |
649 | 0 | } |
650 | | |
651 | | /* find for each group (scf,nrg,is) the correct direction */ |
652 | 0 | if (sumIsFwd < sumIsBwd) useIsFwd = 1; |
653 | |
|
654 | 0 | if (sumNrgFwd < sumNrgBwd) useNrgFwd = 1; |
655 | |
|
656 | 0 | if (sumScfFwd < sumScfBwd) useScfFwd = 1; |
657 | | |
658 | | /* conceal each group (scf,nrg,is) */ |
659 | 0 | for (group = 0; group < pRvlc->numWindowGroups; group++) { |
660 | 0 | for (band = 0; band < pRvlc->maxSfbTransmitted; band++) { |
661 | 0 | bnds = 16 * group + band; |
662 | 0 | switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) { |
663 | 0 | case ZERO_HCB: |
664 | 0 | break; |
665 | | |
666 | 0 | case INTENSITY_HCB: |
667 | 0 | case INTENSITY_HCB2: |
668 | 0 | if (useIsFwd) |
669 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
670 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
671 | 0 | else |
672 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
673 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
674 | 0 | break; |
675 | | |
676 | 0 | case NOISE_HCB: |
677 | 0 | if (useNrgFwd) |
678 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
679 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
680 | 0 | else |
681 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
682 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
683 | 0 | break; |
684 | | |
685 | 0 | default: |
686 | 0 | if (useScfFwd) |
687 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
688 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds]; |
689 | 0 | else |
690 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
691 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds]; |
692 | 0 | break; |
693 | 0 | } |
694 | 0 | } |
695 | 0 | } |
696 | 0 | } |
697 | | |
698 | | /*--------------------------------------------------------------------------------------------- |
699 | | description: Approach by means of predictive interpolation |
700 | | This approach by means of predictive estimation is generally |
701 | | performed when the error cannot be isolated between 'conceal_min' and |
702 | | 'conceal_max', the 'sf_concealment' flag is set and the previous frame has the |
703 | | same block type as the current frame. Check for each scalefactorband if the same |
704 | | type of data (scalefactor, internsity data, noise energies) is transmitted. If |
705 | | so use the scalefactor (intensity data, noise energy) in the current frame. |
706 | | Otherwise set the scalefactor (intensity data, noise energy) for this |
707 | | scalefactorband to zero. |
708 | | ----------------------------------------------------------------------------------------------- |
709 | | output: Concealed scalefactor, noise energy and intensity data |
710 | | ----------------------------------------------------------------------------------------------- |
711 | | return: - |
712 | | -------------------------------------------------------------------------------------------- |
713 | | */ |
714 | | |
715 | | void PredictiveInterpolation( |
716 | | CAacDecoderChannelInfo *pAacDecoderChannelInfo, |
717 | 0 | CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) { |
718 | 0 | CErRvlcInfo *pRvlc = |
719 | 0 | &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo; |
720 | 0 | int band, bnds, group; |
721 | 0 | SHORT commonMin; |
722 | |
|
723 | 0 | for (group = 0; group < pRvlc->numWindowGroups; group++) { |
724 | 0 | for (band = 0; band < pRvlc->maxSfbTransmitted; band++) { |
725 | 0 | bnds = 16 * group + band; |
726 | 0 | switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) { |
727 | 0 | case ZERO_HCB: |
728 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0; |
729 | 0 | break; |
730 | | |
731 | 0 | case INTENSITY_HCB: |
732 | 0 | case INTENSITY_HCB2: |
733 | 0 | if ((pAacDecoderStaticChannelInfo->concealmentInfo |
734 | 0 | .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) || |
735 | 0 | (pAacDecoderStaticChannelInfo->concealmentInfo |
736 | 0 | .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) { |
737 | 0 | commonMin = fMin( |
738 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds], |
739 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
740 | 0 | .aRvlcScfBwd[bnds]); |
741 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
742 | 0 | fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo |
743 | 0 | .aRvlcPreviousScaleFactor[bnds]); |
744 | 0 | } else { |
745 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110; |
746 | 0 | } |
747 | 0 | break; |
748 | | |
749 | 0 | case NOISE_HCB: |
750 | 0 | if (pAacDecoderStaticChannelInfo->concealmentInfo |
751 | 0 | .aRvlcPreviousCodebook[bnds] == NOISE_HCB) { |
752 | 0 | commonMin = fMin( |
753 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds], |
754 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
755 | 0 | .aRvlcScfBwd[bnds]); |
756 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
757 | 0 | fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo |
758 | 0 | .aRvlcPreviousScaleFactor[bnds]); |
759 | 0 | } else { |
760 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110; |
761 | 0 | } |
762 | 0 | break; |
763 | | |
764 | 0 | default: |
765 | 0 | if ((pAacDecoderStaticChannelInfo->concealmentInfo |
766 | 0 | .aRvlcPreviousCodebook[bnds] != ZERO_HCB) && |
767 | 0 | (pAacDecoderStaticChannelInfo->concealmentInfo |
768 | 0 | .aRvlcPreviousCodebook[bnds] != NOISE_HCB) && |
769 | 0 | (pAacDecoderStaticChannelInfo->concealmentInfo |
770 | 0 | .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) && |
771 | 0 | (pAacDecoderStaticChannelInfo->concealmentInfo |
772 | 0 | .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) { |
773 | 0 | commonMin = fMin( |
774 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds], |
775 | 0 | pAacDecoderChannelInfo->pComData->overlay.aac |
776 | 0 | .aRvlcScfBwd[bnds]); |
777 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = |
778 | 0 | fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo |
779 | 0 | .aRvlcPreviousScaleFactor[bnds]); |
780 | 0 | } else { |
781 | 0 | pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0; |
782 | 0 | } |
783 | 0 | break; |
784 | 0 | } |
785 | 0 | } |
786 | 0 | } |
787 | 0 | } |