Coverage Report

Created: 2025-07-01 06:21

/src/aac/libAACdec/src/rvlcconceal.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  rvlc concealment
106
  \author Josef Hoepfl
107
*/
108
109
#include "rvlcconceal.h"
110
111
#include "block.h"
112
#include "rvlc.h"
113
114
/*---------------------------------------------------------------------------------------------
115
  function:      calcRefValFwd
116
117
  description:   The function determines the scalefactor which is closed to the
118
scalefactorband conceal_min. The same is done for intensity data and noise
119
energies.
120
-----------------------------------------------------------------------------------------------
121
  output:        - reference value scf
122
                 - reference value internsity data
123
                 - reference value noise energy
124
-----------------------------------------------------------------------------------------------
125
  return:        -
126
--------------------------------------------------------------------------------------------
127
*/
128
129
static void calcRefValFwd(CErRvlcInfo *pRvlc,
130
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
131
0
                          int *refIsFwd, int *refNrgFwd, int *refScfFwd) {
132
0
  int band, bnds, group, startBand;
133
0
  int idIs, idNrg, idScf;
134
0
  int conceal_min, conceal_group_min;
135
0
  int MaximumScaleFactorBands;
136
137
0
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
138
0
    MaximumScaleFactorBands = 16;
139
0
  else
140
0
    MaximumScaleFactorBands = 64;
141
142
0
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
143
0
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
144
145
  /* calculate first reference value for approach in forward direction */
146
0
  idIs = idNrg = idScf = 1;
147
148
  /* set reference values */
149
0
  *refIsFwd = -SF_OFFSET;
150
0
  *refNrgFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain -
151
0
               SF_OFFSET - 90 - 256;
152
0
  *refScfFwd =
153
0
      pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET;
154
155
0
  startBand = conceal_min - 1;
156
0
  for (group = conceal_group_min; group >= 0; group--) {
157
0
    for (band = startBand; band >= 0; band--) {
158
0
      bnds = 16 * group + band;
159
0
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
160
0
        case ZERO_HCB:
161
0
          break;
162
0
        case INTENSITY_HCB:
163
0
        case INTENSITY_HCB2:
164
0
          if (idIs) {
165
0
            *refIsFwd =
166
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
167
0
            idIs = 0; /* reference value has been set */
168
0
          }
169
0
          break;
170
0
        case NOISE_HCB:
171
0
          if (idNrg) {
172
0
            *refNrgFwd =
173
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
174
0
            idNrg = 0; /* reference value has been set */
175
0
          }
176
0
          break;
177
0
        default:
178
0
          if (idScf) {
179
0
            *refScfFwd =
180
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
181
0
            idScf = 0; /* reference value has been set */
182
0
          }
183
0
          break;
184
0
      }
185
0
    }
186
0
    startBand = pRvlc->maxSfbTransmitted - 1;
187
0
  }
188
0
}
189
190
/*---------------------------------------------------------------------------------------------
191
  function:      calcRefValBwd
192
193
  description:   The function determines the scalefactor which is closed to the
194
scalefactorband conceal_max. The same is done for intensity data and noise
195
energies.
196
-----------------------------------------------------------------------------------------------
197
  output:        - reference value scf
198
                 - reference value internsity data
199
                 - reference value noise energy
200
-----------------------------------------------------------------------------------------------
201
  return:        -
202
--------------------------------------------------------------------------------------------
203
*/
204
205
static void calcRefValBwd(CErRvlcInfo *pRvlc,
206
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
207
0
                          int *refIsBwd, int *refNrgBwd, int *refScfBwd) {
208
0
  int band, bnds, group, startBand;
209
0
  int idIs, idNrg, idScf;
210
0
  int conceal_max, conceal_group_max;
211
0
  int MaximumScaleFactorBands;
212
213
0
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
214
0
    MaximumScaleFactorBands = 16;
215
0
  else
216
0
    MaximumScaleFactorBands = 64;
217
218
0
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
219
0
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
220
221
  /* calculate first reference value for approach in backward direction */
222
0
  idIs = idNrg = idScf = 1;
223
224
  /* set reference values */
225
0
  *refIsBwd = pRvlc->dpcm_is_last_position - SF_OFFSET;
226
0
  *refNrgBwd = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position -
227
0
               SF_OFFSET - 90 - 256 + pRvlc->dpcm_noise_nrg;
228
0
  *refScfBwd = pRvlc->rev_global_gain - SF_OFFSET;
229
230
0
  startBand = conceal_max + 1;
231
232
  /* if needed, re-set reference values */
233
0
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
234
0
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
235
0
      bnds = 16 * group + band;
236
0
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
237
0
        case ZERO_HCB:
238
0
          break;
239
0
        case INTENSITY_HCB:
240
0
        case INTENSITY_HCB2:
241
0
          if (idIs) {
242
0
            *refIsBwd =
243
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
244
0
            idIs = 0; /* reference value has been set */
245
0
          }
246
0
          break;
247
0
        case NOISE_HCB:
248
0
          if (idNrg) {
249
0
            *refNrgBwd =
250
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
251
0
            idNrg = 0; /* reference value has been set */
252
0
          }
253
0
          break;
254
0
        default:
255
0
          if (idScf) {
256
0
            *refScfBwd =
257
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
258
0
            idScf = 0; /* reference value has been set */
259
0
          }
260
0
          break;
261
0
      }
262
0
    }
263
0
    startBand = 0;
264
0
  }
265
0
}
266
267
/*---------------------------------------------------------------------------------------------
268
  function:      BidirectionalEstimation_UseLowerScfOfCurrentFrame
269
270
  description:   This approach by means of bidirectional estimation is generally
271
performed when a single bit error has been detected, the bit error can be
272
isolated between 'conceal_min' and 'conceal_max' and the 'sf_concealment' flag
273
is not set. The sets of scalefactors decoded in forward and backward direction
274
are compared with each other. The smaller scalefactor will be considered as the
275
correct one respectively. The reconstruction of the scalefactors with this
276
approach archieve good results in audio quality. The strategy must be applied to
277
scalefactors, intensity data and noise energy seperately.
278
-----------------------------------------------------------------------------------------------
279
  output:        Concealed scalefactor, noise energy and intensity data between
280
conceal_min and conceal_max
281
-----------------------------------------------------------------------------------------------
282
  return:        -
283
--------------------------------------------------------------------------------------------
284
*/
285
286
void BidirectionalEstimation_UseLowerScfOfCurrentFrame(
287
0
    CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
288
0
  CErRvlcInfo *pRvlc =
289
0
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
290
0
  int band, bnds, startBand, endBand, group;
291
0
  int conceal_min, conceal_max;
292
0
  int conceal_group_min, conceal_group_max;
293
0
  int MaximumScaleFactorBands;
294
295
0
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
296
0
    MaximumScaleFactorBands = 16;
297
0
  } else {
298
0
    MaximumScaleFactorBands = 64;
299
0
  }
300
301
  /* If an error was detected just in forward or backward direction, set the
302
     corresponding border for concealment to a appropriate scalefactor band. The
303
     border is set to first or last sfb respectively, because the error will
304
     possibly not follow directly after the corrupt bit but just after decoding
305
     some more (wrong) scalefactors. */
306
0
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
307
308
0
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
309
0
    pRvlc->conceal_max =
310
0
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
311
312
0
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
313
0
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
314
0
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
315
0
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
316
317
0
  if (pRvlc->conceal_min == pRvlc->conceal_max) {
318
0
    int refIsFwd, refNrgFwd, refScfFwd;
319
0
    int refIsBwd, refNrgBwd, refScfBwd;
320
321
0
    bnds = pRvlc->conceal_min;
322
0
    calcRefValFwd(pRvlc, pAacDecoderChannelInfo, &refIsFwd, &refNrgFwd,
323
0
                  &refScfFwd);
324
0
    calcRefValBwd(pRvlc, pAacDecoderChannelInfo, &refIsBwd, &refNrgBwd,
325
0
                  &refScfBwd);
326
327
0
    switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
328
0
      case ZERO_HCB:
329
0
        break;
330
0
      case INTENSITY_HCB:
331
0
      case INTENSITY_HCB2:
332
0
        if (refIsFwd < refIsBwd)
333
0
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsFwd;
334
0
        else
335
0
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsBwd;
336
0
        break;
337
0
      case NOISE_HCB:
338
0
        if (refNrgFwd < refNrgBwd)
339
0
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgFwd;
340
0
        else
341
0
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgBwd;
342
0
        break;
343
0
      default:
344
0
        if (refScfFwd < refScfBwd)
345
0
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfFwd;
346
0
        else
347
0
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfBwd;
348
0
        break;
349
0
    }
350
0
  } else {
351
0
    pAacDecoderChannelInfo->pComData->overlay.aac
352
0
        .aRvlcScfFwd[pRvlc->conceal_max] =
353
0
        pAacDecoderChannelInfo->pComData->overlay.aac
354
0
            .aRvlcScfBwd[pRvlc->conceal_max];
355
0
    pAacDecoderChannelInfo->pComData->overlay.aac
356
0
        .aRvlcScfBwd[pRvlc->conceal_min] =
357
0
        pAacDecoderChannelInfo->pComData->overlay.aac
358
0
            .aRvlcScfFwd[pRvlc->conceal_min];
359
360
    /* consider the smaller of the forward and backward decoded value as the
361
     * correct one */
362
0
    startBand = conceal_min;
363
0
    if (conceal_group_min == conceal_group_max)
364
0
      endBand = conceal_max;
365
0
    else
366
0
      endBand = pRvlc->maxSfbTransmitted - 1;
367
368
0
    for (group = conceal_group_min; group <= conceal_group_max; group++) {
369
0
      for (band = startBand; band <= endBand; band++) {
370
0
        bnds = 16 * group + band;
371
0
        if (pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds] <
372
0
            pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds])
373
0
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
374
0
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
375
0
        else
376
0
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
377
0
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
378
0
      }
379
0
      startBand = 0;
380
0
      if ((group + 1) == conceal_group_max) endBand = conceal_max;
381
0
    }
382
0
  }
383
384
  /* now copy all data to the output buffer which needs not to be concealed */
385
0
  if (conceal_group_min == 0)
386
0
    endBand = conceal_min;
387
0
  else
388
0
    endBand = pRvlc->maxSfbTransmitted;
389
0
  for (group = 0; group <= conceal_group_min; group++) {
390
0
    for (band = 0; band < endBand; band++) {
391
0
      bnds = 16 * group + band;
392
0
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
393
0
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
394
0
    }
395
0
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
396
0
  }
397
398
0
  startBand = conceal_max + 1;
399
0
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
400
0
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
401
0
      bnds = 16 * group + band;
402
0
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
403
0
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
404
0
    }
405
0
    startBand = 0;
406
0
  }
407
0
}
408
409
/*---------------------------------------------------------------------------------------------
410
  function:      BidirectionalEstimation_UseScfOfPrevFrameAsReference
411
412
  description:   This approach by means of bidirectional estimation is generally
413
performed when a single bit error has been detected, the bit error can be
414
isolated between 'conceal_min' and 'conceal_max', the 'sf_concealment' flag is
415
set and the previous frame has the same block type as the current frame. The
416
scalefactor decoded in forward and backward direction and the scalefactor of the
417
previous frame are compared with each other. The smaller scalefactor will be
418
considered as the correct one. At this the codebook of the previous and current
419
frame must be of the same set (scf, nrg, is) in each scalefactorband. Otherwise
420
the scalefactor of the previous frame is not considered in the minimum
421
calculation. The reconstruction of the scalefactors with this approach archieve
422
good results in audio quality. The strategy must be applied to scalefactors,
423
intensity data and noise energy seperately.
424
-----------------------------------------------------------------------------------------------
425
  output:        Concealed scalefactor, noise energy and intensity data between
426
conceal_min and conceal_max
427
-----------------------------------------------------------------------------------------------
428
  return:        -
429
--------------------------------------------------------------------------------------------
430
*/
431
432
void BidirectionalEstimation_UseScfOfPrevFrameAsReference(
433
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
434
0
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
435
0
  CErRvlcInfo *pRvlc =
436
0
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
437
0
  int band, bnds, startBand, endBand, group;
438
0
  int conceal_min, conceal_max;
439
0
  int conceal_group_min, conceal_group_max;
440
0
  int MaximumScaleFactorBands;
441
0
  SHORT commonMin;
442
443
0
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
444
0
    MaximumScaleFactorBands = 16;
445
0
  } else {
446
0
    MaximumScaleFactorBands = 64;
447
0
  }
448
449
  /* If an error was detected just in forward or backward direction, set the
450
     corresponding border for concealment to a appropriate scalefactor band. The
451
     border is set to first or last sfb respectively, because the error will
452
     possibly not follow directly after the corrupt bit but just after decoding
453
     some more (wrong) scalefactors. */
454
0
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
455
456
0
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
457
0
    pRvlc->conceal_max =
458
0
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
459
460
0
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
461
0
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
462
0
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
463
0
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
464
465
0
  pAacDecoderChannelInfo->pComData->overlay.aac
466
0
      .aRvlcScfFwd[pRvlc->conceal_max] =
467
0
      pAacDecoderChannelInfo->pComData->overlay.aac
468
0
          .aRvlcScfBwd[pRvlc->conceal_max];
469
0
  pAacDecoderChannelInfo->pComData->overlay.aac
470
0
      .aRvlcScfBwd[pRvlc->conceal_min] =
471
0
      pAacDecoderChannelInfo->pComData->overlay.aac
472
0
          .aRvlcScfFwd[pRvlc->conceal_min];
473
474
  /* consider the smaller of the forward and backward decoded value as the
475
   * correct one */
476
0
  startBand = conceal_min;
477
0
  if (conceal_group_min == conceal_group_max)
478
0
    endBand = conceal_max;
479
0
  else
480
0
    endBand = pRvlc->maxSfbTransmitted - 1;
481
482
0
  for (group = conceal_group_min; group <= conceal_group_max; group++) {
483
0
    for (band = startBand; band <= endBand; band++) {
484
0
      bnds = 16 * group + band;
485
0
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
486
0
        case ZERO_HCB:
487
0
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
488
0
          break;
489
490
0
        case INTENSITY_HCB:
491
0
        case INTENSITY_HCB2:
492
0
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
493
0
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
494
0
              (pAacDecoderStaticChannelInfo->concealmentInfo
495
0
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
496
0
            commonMin = fMin(
497
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
498
0
                pAacDecoderChannelInfo->pComData->overlay.aac
499
0
                    .aRvlcScfBwd[bnds]);
500
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
501
0
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
502
0
                                    .aRvlcPreviousScaleFactor[bnds]);
503
0
          } else {
504
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
505
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
506
0
                pAacDecoderChannelInfo->pComData->overlay.aac
507
0
                    .aRvlcScfBwd[bnds]);
508
0
          }
509
0
          break;
510
511
0
        case NOISE_HCB:
512
0
          if (pAacDecoderStaticChannelInfo->concealmentInfo
513
0
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
514
0
            commonMin = fMin(
515
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
516
0
                pAacDecoderChannelInfo->pComData->overlay.aac
517
0
                    .aRvlcScfBwd[bnds]);
518
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
519
0
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
520
0
                                    .aRvlcPreviousScaleFactor[bnds]);
521
0
          } else {
522
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
523
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
524
0
                pAacDecoderChannelInfo->pComData->overlay.aac
525
0
                    .aRvlcScfBwd[bnds]);
526
0
          }
527
0
          break;
528
529
0
        default:
530
0
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
531
0
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
532
0
              (pAacDecoderStaticChannelInfo->concealmentInfo
533
0
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
534
0
              (pAacDecoderStaticChannelInfo->concealmentInfo
535
0
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
536
0
              (pAacDecoderStaticChannelInfo->concealmentInfo
537
0
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
538
0
            commonMin = fMin(
539
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
540
0
                pAacDecoderChannelInfo->pComData->overlay.aac
541
0
                    .aRvlcScfBwd[bnds]);
542
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
543
0
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
544
0
                                    .aRvlcPreviousScaleFactor[bnds]);
545
0
          } else {
546
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
547
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
548
0
                pAacDecoderChannelInfo->pComData->overlay.aac
549
0
                    .aRvlcScfBwd[bnds]);
550
0
          }
551
0
          break;
552
0
      }
553
0
    }
554
0
    startBand = 0;
555
0
    if ((group + 1) == conceal_group_max) endBand = conceal_max;
556
0
  }
557
558
  /* now copy all data to the output buffer which needs not to be concealed */
559
0
  if (conceal_group_min == 0)
560
0
    endBand = conceal_min;
561
0
  else
562
0
    endBand = pRvlc->maxSfbTransmitted;
563
0
  for (group = 0; group <= conceal_group_min; group++) {
564
0
    for (band = 0; band < endBand; band++) {
565
0
      bnds = 16 * group + band;
566
0
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
567
0
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
568
0
    }
569
0
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
570
0
  }
571
572
0
  startBand = conceal_max + 1;
573
0
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
574
0
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
575
0
      bnds = 16 * group + band;
576
0
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
577
0
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
578
0
    }
579
0
    startBand = 0;
580
0
  }
581
0
}
582
583
/*---------------------------------------------------------------------------------------------
584
  function:      StatisticalEstimation
585
586
  description:   This approach by means of statistical estimation is generally
587
performed when both the start value and the end value are different and no
588
further errors have been detected. Considering the forward and backward decoded
589
scalefactors, the set with the lower scalefactors in sum will be considered as
590
the correct one. The scalefactors are differentially encoded. Normally it would
591
reach to compare one pair of the forward and backward decoded scalefactors to
592
specify the lower set. But having detected no further errors does not
593
necessarily mean the absence of errors. Therefore all scalefactors decoded in
594
forward and backward direction are summed up seperately. The set with the lower
595
sum will be used. The strategy must be applied to scalefactors, intensity data
596
and noise energy seperately.
597
-----------------------------------------------------------------------------------------------
598
  output:        Concealed scalefactor, noise energy and intensity data
599
-----------------------------------------------------------------------------------------------
600
  return:        -
601
--------------------------------------------------------------------------------------------
602
*/
603
604
0
void StatisticalEstimation(CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
605
0
  CErRvlcInfo *pRvlc =
606
0
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
607
0
  int band, bnds, group;
608
0
  int sumIsFwd, sumIsBwd;   /* sum of intensity data forward/backward */
609
0
  int sumNrgFwd, sumNrgBwd; /* sum of noise energy data forward/backward */
610
0
  int sumScfFwd, sumScfBwd; /* sum of scalefactor data forward/backward */
611
0
  int useIsFwd, useNrgFwd, useScfFwd; /* the flags signals the elements which
612
                                         are used for the final result */
613
614
0
  sumIsFwd = sumIsBwd = sumNrgFwd = sumNrgBwd = sumScfFwd = sumScfBwd = 0;
615
0
  useIsFwd = useNrgFwd = useScfFwd = 0;
616
617
  /* calculate sum of each group (scf,nrg,is) of forward and backward direction
618
   */
619
0
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
620
0
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
621
0
      bnds = 16 * group + band;
622
0
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
623
0
        case ZERO_HCB:
624
0
          break;
625
626
0
        case INTENSITY_HCB:
627
0
        case INTENSITY_HCB2:
628
0
          sumIsFwd +=
629
0
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
630
0
          sumIsBwd +=
631
0
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
632
0
          break;
633
634
0
        case NOISE_HCB:
635
0
          sumNrgFwd +=
636
0
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
637
0
          sumNrgBwd +=
638
0
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
639
0
          break;
640
641
0
        default:
642
0
          sumScfFwd +=
643
0
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
644
0
          sumScfBwd +=
645
0
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
646
0
          break;
647
0
      }
648
0
    }
649
0
  }
650
651
  /* find for each group (scf,nrg,is) the correct direction */
652
0
  if (sumIsFwd < sumIsBwd) useIsFwd = 1;
653
654
0
  if (sumNrgFwd < sumNrgBwd) useNrgFwd = 1;
655
656
0
  if (sumScfFwd < sumScfBwd) useScfFwd = 1;
657
658
  /* conceal each group (scf,nrg,is) */
659
0
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
660
0
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
661
0
      bnds = 16 * group + band;
662
0
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
663
0
        case ZERO_HCB:
664
0
          break;
665
666
0
        case INTENSITY_HCB:
667
0
        case INTENSITY_HCB2:
668
0
          if (useIsFwd)
669
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
670
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
671
0
          else
672
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
673
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
674
0
          break;
675
676
0
        case NOISE_HCB:
677
0
          if (useNrgFwd)
678
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
679
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
680
0
          else
681
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
682
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
683
0
          break;
684
685
0
        default:
686
0
          if (useScfFwd)
687
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
688
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
689
0
          else
690
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
691
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
692
0
          break;
693
0
      }
694
0
    }
695
0
  }
696
0
}
697
698
/*---------------------------------------------------------------------------------------------
699
  description:   Approach by means of predictive interpolation
700
                 This approach by means of predictive estimation is generally
701
performed when the error cannot be isolated between 'conceal_min' and
702
'conceal_max', the 'sf_concealment' flag is set and the previous frame has the
703
same block type as the current frame. Check for each scalefactorband if the same
704
type of data (scalefactor, internsity data, noise energies) is transmitted. If
705
so use the scalefactor (intensity data, noise energy) in the current frame.
706
Otherwise set the scalefactor (intensity data, noise energy) for this
707
scalefactorband to zero.
708
-----------------------------------------------------------------------------------------------
709
  output:        Concealed scalefactor, noise energy and intensity data
710
-----------------------------------------------------------------------------------------------
711
  return:        -
712
--------------------------------------------------------------------------------------------
713
*/
714
715
void PredictiveInterpolation(
716
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
717
0
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
718
0
  CErRvlcInfo *pRvlc =
719
0
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
720
0
  int band, bnds, group;
721
0
  SHORT commonMin;
722
723
0
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
724
0
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
725
0
      bnds = 16 * group + band;
726
0
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
727
0
        case ZERO_HCB:
728
0
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
729
0
          break;
730
731
0
        case INTENSITY_HCB:
732
0
        case INTENSITY_HCB2:
733
0
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
734
0
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
735
0
              (pAacDecoderStaticChannelInfo->concealmentInfo
736
0
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
737
0
            commonMin = fMin(
738
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
739
0
                pAacDecoderChannelInfo->pComData->overlay.aac
740
0
                    .aRvlcScfBwd[bnds]);
741
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
742
0
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
743
0
                                    .aRvlcPreviousScaleFactor[bnds]);
744
0
          } else {
745
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
746
0
          }
747
0
          break;
748
749
0
        case NOISE_HCB:
750
0
          if (pAacDecoderStaticChannelInfo->concealmentInfo
751
0
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
752
0
            commonMin = fMin(
753
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
754
0
                pAacDecoderChannelInfo->pComData->overlay.aac
755
0
                    .aRvlcScfBwd[bnds]);
756
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
757
0
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
758
0
                                    .aRvlcPreviousScaleFactor[bnds]);
759
0
          } else {
760
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
761
0
          }
762
0
          break;
763
764
0
        default:
765
0
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
766
0
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
767
0
              (pAacDecoderStaticChannelInfo->concealmentInfo
768
0
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
769
0
              (pAacDecoderStaticChannelInfo->concealmentInfo
770
0
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
771
0
              (pAacDecoderStaticChannelInfo->concealmentInfo
772
0
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
773
0
            commonMin = fMin(
774
0
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
775
0
                pAacDecoderChannelInfo->pComData->overlay.aac
776
0
                    .aRvlcScfBwd[bnds]);
777
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
778
0
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
779
0
                                    .aRvlcPreviousScaleFactor[bnds]);
780
0
          } else {
781
0
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
782
0
          }
783
0
          break;
784
0
      }
785
0
    }
786
0
  }
787
0
}