Coverage Report

Created: 2025-07-01 06:21

/src/aac/libAACenc/src/aacenc_tns.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC encoder library ******************************
96
97
   Author(s):   Alex Groeschel, Tobias Chalupka
98
99
   Description: Temporal noise shaping
100
101
*******************************************************************************/
102
103
#include "aacenc_tns.h"
104
#include "psy_const.h"
105
#include "psy_configuration.h"
106
#include "tns_func.h"
107
#include "aacEnc_rom.h"
108
#include "aacenc_tns.h"
109
#include "FDK_lpc.h"
110
111
0
#define FILTER_DIRECTION 0 /* 0 = up, 1 = down */
112
113
static const FIXP_DBL acfWindowLong[12 + 3 + 1] = {
114
    0x7fffffff, 0x7fb80000, 0x7ee00000, 0x7d780000, 0x7b800000, 0x78f80000,
115
    0x75e00000, 0x72380000, 0x6e000000, 0x69380000, 0x63e00000, 0x5df80000,
116
    0x57800000, 0x50780000, 0x48e00000, 0x40b80000};
117
118
static const FIXP_DBL acfWindowShort[4 + 3 + 1] = {
119
    0x7fffffff, 0x7e000000, 0x78000000, 0x6e000000,
120
    0x60000000, 0x4e000000, 0x38000000, 0x1e000000};
121
122
typedef struct {
123
  INT bitRateFrom[2];                  /* noneSbr=0, useSbr=1 */
124
  INT bitRateTo[2];                    /* noneSbr=0, useSbr=1 */
125
  TNS_PARAMETER_TABULATED paramTab[2]; /* mono=0, stereo=1 */
126
127
} TNS_INFO_TAB;
128
129
0
#define TNS_TIMERES_SCALE (1)
130
#define FL2_TIMERES_FIX(a) (FL2FXCONST_DBL(a / (float)(1 << TNS_TIMERES_SCALE)))
131
132
static const TNS_INFO_TAB tnsInfoTab[] = {
133
    {{16000, 13500},
134
     {32000, 28000},
135
     {{{1, 1},
136
       {1437, 1500},
137
       {1400, 600},
138
       {12, 12},
139
       {FILTER_DIRECTION, FILTER_DIRECTION},
140
       {3, 1},
141
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.2f)},
142
       1},
143
      {{1, 1},
144
       {1437, 1500},
145
       {1400, 600},
146
       {12, 12},
147
       {FILTER_DIRECTION, FILTER_DIRECTION},
148
       {3, 1},
149
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.2f)},
150
       1}}},
151
    {{32001, 28001},
152
     {60000, 52000},
153
     {{{1, 1},
154
       {1437, 1500},
155
       {1400, 600},
156
       {12, 10},
157
       {FILTER_DIRECTION, FILTER_DIRECTION},
158
       {3, 1},
159
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
160
       1},
161
      {{1, 1},
162
       {1437, 1500},
163
       {1400, 600},
164
       {12, 10},
165
       {FILTER_DIRECTION, FILTER_DIRECTION},
166
       {3, 1},
167
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
168
       1}}},
169
    {{60001, 52001},
170
     {384000, 384000},
171
     {{{1, 1},
172
       {1437, 1500},
173
       {1400, 600},
174
       {12, 8},
175
       {FILTER_DIRECTION, FILTER_DIRECTION},
176
       {3, 1},
177
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
178
       1},
179
      {{1, 1},
180
       {1437, 1500},
181
       {1400, 600},
182
       {12, 8},
183
       {FILTER_DIRECTION, FILTER_DIRECTION},
184
       {3, 1},
185
       {FL2_TIMERES_FIX(0.4f), FL2_TIMERES_FIX(1.0f)},
186
       1}}}};
187
188
typedef struct {
189
  INT samplingRate;
190
  SCHAR maxBands[2]; /* long=0; short=1 */
191
192
} TNS_MAX_TAB_ENTRY;
193
194
static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab1024[] = {
195
    {96000, {31, 9}},  {88200, {31, 9}},  {64000, {34, 10}}, {48000, {40, 14}},
196
    {44100, {42, 14}}, {32000, {51, 14}}, {24000, {46, 14}}, {22050, {46, 14}},
197
    {16000, {42, 14}}, {12000, {42, 14}}, {11025, {42, 14}}, {8000, {39, 14}}};
198
199
static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab120[] = {
200
    {48000, {12, -1}}, /* 48000 */
201
    {44100, {12, -1}}, /* 44100 */
202
    {32000, {15, -1}}, /* 32000 */
203
    {24000, {15, -1}}, /* 24000 */
204
    {22050, {15, -1}}  /* 22050 */
205
};
206
207
static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab128[] = {
208
    {48000, {12, -1}}, /* 48000 */
209
    {44100, {12, -1}}, /* 44100 */
210
    {32000, {15, -1}}, /* 32000 */
211
    {24000, {15, -1}}, /* 24000 */
212
    {22050, {15, -1}}  /* 22050 */
213
};
214
215
static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab240[] = {
216
    {96000, {22, -1}}, /* 96000 */
217
    {48000, {22, -1}}, /* 48000 */
218
    {44100, {22, -1}}, /* 44100 */
219
    {32000, {21, -1}}, /* 32000 */
220
    {24000, {21, -1}}, /* 24000 */
221
    {22050, {21, -1}}  /* 22050 */
222
};
223
224
static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab256[] = {
225
    {96000, {25, -1}}, /* 96000 */
226
    {48000, {25, -1}}, /* 48000 */
227
    {44100, {25, -1}}, /* 44100 */
228
    {32000, {24, -1}}, /* 32000 */
229
    {24000, {24, -1}}, /* 24000 */
230
    {22050, {24, -1}}  /* 22050 */
231
};
232
static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab480[] = {{48000, {31, -1}},
233
                                                      {44100, {32, -1}},
234
                                                      {32000, {37, -1}},
235
                                                      {24000, {30, -1}},
236
                                                      {22050, {30, -1}}};
237
238
static const TNS_MAX_TAB_ENTRY tnsMaxBandsTab512[] = {{48000, {31, -1}},
239
                                                      {44100, {32, -1}},
240
                                                      {32000, {37, -1}},
241
                                                      {24000, {31, -1}},
242
                                                      {22050, {31, -1}}};
243
244
static void FDKaacEnc_Parcor2Index(const FIXP_LPC *parcor, INT *RESTRICT index,
245
                                   const INT order, const INT bitsPerCoeff);
246
247
static void FDKaacEnc_Index2Parcor(const INT *index, FIXP_LPC *RESTRICT parcor,
248
                                   const INT order, const INT bitsPerCoeff);
249
250
static void FDKaacEnc_CalcGaussWindow(FIXP_DBL *win, const int winSize,
251
                                      const INT samplingRate,
252
                                      const INT transformResolution,
253
                                      const FIXP_DBL timeResolution,
254
                                      const INT timeResolution_e);
255
256
static const TNS_PARAMETER_TABULATED *FDKaacEnc_GetTnsParam(const INT bitRate,
257
                                                            const INT channels,
258
0
                                                            const INT sbrLd) {
259
0
  int i;
260
0
  const TNS_PARAMETER_TABULATED *tnsConfigTab = NULL;
261
262
0
  for (i = 0; i < (int)(sizeof(tnsInfoTab) / sizeof(TNS_INFO_TAB)); i++) {
263
0
    if ((bitRate >= tnsInfoTab[i].bitRateFrom[sbrLd ? 1 : 0]) &&
264
0
        bitRate <= tnsInfoTab[i].bitRateTo[sbrLd ? 1 : 0]) {
265
0
      tnsConfigTab = &tnsInfoTab[i].paramTab[(channels == 1) ? 0 : 1];
266
0
    }
267
0
  }
268
269
0
  return tnsConfigTab;
270
0
}
271
272
static INT getTnsMaxBands(const INT sampleRate, const INT granuleLength,
273
0
                          const INT isShortBlock) {
274
0
  int i;
275
0
  INT numBands = -1;
276
0
  const TNS_MAX_TAB_ENTRY *pMaxBandsTab = NULL;
277
0
  int maxBandsTabSize = 0;
278
279
0
  switch (granuleLength) {
280
0
    case 960:
281
0
    case 1024:
282
0
      pMaxBandsTab = tnsMaxBandsTab1024;
283
0
      maxBandsTabSize = sizeof(tnsMaxBandsTab1024) / sizeof(TNS_MAX_TAB_ENTRY);
284
0
      break;
285
0
    case 120:
286
0
      pMaxBandsTab = tnsMaxBandsTab120;
287
0
      maxBandsTabSize = sizeof(tnsMaxBandsTab120) / sizeof(TNS_MAX_TAB_ENTRY);
288
0
      break;
289
0
    case 128:
290
0
      pMaxBandsTab = tnsMaxBandsTab128;
291
0
      maxBandsTabSize = sizeof(tnsMaxBandsTab128) / sizeof(TNS_MAX_TAB_ENTRY);
292
0
      break;
293
0
    case 240:
294
0
      pMaxBandsTab = tnsMaxBandsTab240;
295
0
      maxBandsTabSize = sizeof(tnsMaxBandsTab240) / sizeof(TNS_MAX_TAB_ENTRY);
296
0
      break;
297
0
    case 256:
298
0
      pMaxBandsTab = tnsMaxBandsTab256;
299
0
      maxBandsTabSize = sizeof(tnsMaxBandsTab256) / sizeof(TNS_MAX_TAB_ENTRY);
300
0
      break;
301
0
    case 480:
302
0
      pMaxBandsTab = tnsMaxBandsTab480;
303
0
      maxBandsTabSize = sizeof(tnsMaxBandsTab480) / sizeof(TNS_MAX_TAB_ENTRY);
304
0
      break;
305
0
    case 512:
306
0
      pMaxBandsTab = tnsMaxBandsTab512;
307
0
      maxBandsTabSize = sizeof(tnsMaxBandsTab512) / sizeof(TNS_MAX_TAB_ENTRY);
308
0
      break;
309
0
    default:
310
0
      numBands = -1;
311
0
  }
312
313
0
  if (pMaxBandsTab != NULL) {
314
0
    for (i = 0; i < maxBandsTabSize; i++) {
315
0
      numBands = pMaxBandsTab[i].maxBands[(!isShortBlock) ? 0 : 1];
316
0
      if (sampleRate >= pMaxBandsTab[i].samplingRate) {
317
0
        break;
318
0
      }
319
0
    }
320
0
  }
321
322
0
  return numBands;
323
0
}
324
325
/***************************************************************************/
326
/*!
327
  \brief     FDKaacEnc_FreqToBandWidthRounding
328
329
  Returns index of nearest band border
330
331
  \param frequency
332
  \param sampling frequency
333
  \param total number of bands
334
  \param pointer to table of band borders
335
336
  \return band border
337
****************************************************************************/
338
339
INT FDKaacEnc_FreqToBandWidthRounding(const INT freq, const INT fs,
340
                                      const INT numOfBands,
341
0
                                      const INT *bandStartOffset) {
342
0
  INT lineNumber, band;
343
344
  /*  assert(freq >= 0);  */
345
0
  lineNumber = (freq * bandStartOffset[numOfBands] * 4 / fs + 1) / 2;
346
347
  /* freq > fs/2 */
348
0
  if (lineNumber >= bandStartOffset[numOfBands]) return numOfBands;
349
350
  /* find band the line number lies in */
351
0
  for (band = 0; band < numOfBands; band++) {
352
0
    if (bandStartOffset[band + 1] > lineNumber) break;
353
0
  }
354
355
  /* round to nearest band border */
356
0
  if (lineNumber - bandStartOffset[band] >
357
0
      bandStartOffset[band + 1] - lineNumber) {
358
0
    band++;
359
0
  }
360
361
0
  return (band);
362
0
}
363
364
/*****************************************************************************
365
366
    functionname: FDKaacEnc_InitTnsConfiguration
367
    description:  fill TNS_CONFIG structure with sensible content
368
    returns:
369
    input:        bitrate, samplerate, number of channels,
370
                  blocktype (long or short),
371
                  TNS Config struct (modified),
372
                  psy config struct,
373
                  tns active flag
374
    output:
375
376
*****************************************************************************/
377
AAC_ENCODER_ERROR FDKaacEnc_InitTnsConfiguration(
378
    INT bitRate, INT sampleRate, INT channels, INT blockType, INT granuleLength,
379
    INT isLowDelay, INT ldSbrPresent, TNS_CONFIG *tC, PSY_CONFIGURATION *pC,
380
0
    INT active, INT useTnsPeak) {
381
0
  int i;
382
  // float acfTimeRes   = (blockType == SHORT_WINDOW) ? 0.125f : 0.046875f;
383
384
0
  if (channels <= 0) return (AAC_ENCODER_ERROR)1;
385
386
0
  tC->isLowDelay = isLowDelay;
387
388
  /* initialize TNS filter flag, order, and coefficient resolution (in bits per
389
   * coeff) */
390
0
  tC->tnsActive = (active) ? TRUE : FALSE;
391
0
  tC->maxOrder = (blockType == SHORT_WINDOW) ? 5 : 12; /* maximum: 7, 20 */
392
0
  if (bitRate < 16000) tC->maxOrder -= 2;
393
0
  tC->coefRes = (blockType == SHORT_WINDOW) ? 3 : 4;
394
395
  /* LPC stop line: highest MDCT line to be coded, but do not go beyond
396
   * TNS_MAX_BANDS! */
397
0
  tC->lpcStopBand = getTnsMaxBands(sampleRate, granuleLength,
398
0
                                   (blockType == SHORT_WINDOW) ? 1 : 0);
399
400
0
  if (tC->lpcStopBand < 0) {
401
0
    return (AAC_ENCODER_ERROR)1;
402
0
  }
403
404
0
  tC->lpcStopBand = fMin(tC->lpcStopBand, pC->sfbActive);
405
0
  tC->lpcStopLine = pC->sfbOffset[tC->lpcStopBand];
406
407
0
  switch (granuleLength) {
408
0
    case 960:
409
0
    case 1024:
410
      /* TNS start line: skip lower MDCT lines to prevent artifacts due to
411
       * filter mismatch */
412
0
      if (blockType == SHORT_WINDOW) {
413
0
        tC->lpcStartBand[LOFILT] = 0;
414
0
      } else {
415
0
        tC->lpcStartBand[LOFILT] =
416
0
            (sampleRate < 9391) ? 2 : ((sampleRate < 18783) ? 4 : 8);
417
0
      }
418
0
      tC->lpcStartLine[LOFILT] = pC->sfbOffset[tC->lpcStartBand[LOFILT]];
419
420
0
      i = tC->lpcStopBand;
421
0
      while (pC->sfbOffset[i] >
422
0
             (tC->lpcStartLine[LOFILT] +
423
0
              (tC->lpcStopLine - tC->lpcStartLine[LOFILT]) / 4))
424
0
        i--;
425
0
      tC->lpcStartBand[HIFILT] = i;
426
0
      tC->lpcStartLine[HIFILT] = pC->sfbOffset[i];
427
428
0
      tC->confTab.threshOn[HIFILT] = 1437;
429
0
      tC->confTab.threshOn[LOFILT] = 1500;
430
431
0
      tC->confTab.tnsLimitOrder[HIFILT] = tC->maxOrder;
432
0
      tC->confTab.tnsLimitOrder[LOFILT] = fMax(0, tC->maxOrder - 7);
433
434
0
      tC->confTab.tnsFilterDirection[HIFILT] = FILTER_DIRECTION;
435
0
      tC->confTab.tnsFilterDirection[LOFILT] = FILTER_DIRECTION;
436
437
0
      tC->confTab.acfSplit[HIFILT] =
438
0
          -1; /* signal Merged4to2QuartersAutoCorrelation in
439
                 FDKaacEnc_MergedAutoCorrelation*/
440
0
      tC->confTab.acfSplit[LOFILT] =
441
0
          -1; /* signal Merged4to2QuartersAutoCorrelation in
442
                 FDKaacEnc_MergedAutoCorrelation */
443
444
0
      tC->confTab.filterEnabled[HIFILT] = 1;
445
0
      tC->confTab.filterEnabled[LOFILT] = 1;
446
0
      tC->confTab.seperateFiltersAllowed = 1;
447
448
      /* compute autocorrelation window based on maximum filter order for given
449
       * block type */
450
      /* for (i = 0; i <= tC->maxOrder + 3; i++) {
451
           float acfWinTemp = acfTimeRes * i;
452
           acfWindow[i] = FL2FXCONST_DBL(1.0f - acfWinTemp * acfWinTemp);
453
         }
454
      */
455
0
      if (blockType == SHORT_WINDOW) {
456
0
        FDKmemcpy(tC->acfWindow[HIFILT], acfWindowShort,
457
0
                  fMin((LONG)sizeof(acfWindowShort),
458
0
                       (LONG)sizeof(tC->acfWindow[HIFILT])));
459
0
        FDKmemcpy(tC->acfWindow[LOFILT], acfWindowShort,
460
0
                  fMin((LONG)sizeof(acfWindowShort),
461
0
                       (LONG)sizeof(tC->acfWindow[HIFILT])));
462
0
      } else {
463
0
        FDKmemcpy(tC->acfWindow[HIFILT], acfWindowLong,
464
0
                  fMin((LONG)sizeof(acfWindowLong),
465
0
                       (LONG)sizeof(tC->acfWindow[HIFILT])));
466
0
        FDKmemcpy(tC->acfWindow[LOFILT], acfWindowLong,
467
0
                  fMin((LONG)sizeof(acfWindowLong),
468
0
                       (LONG)sizeof(tC->acfWindow[HIFILT])));
469
0
      }
470
0
      break;
471
0
    case 480:
472
0
    case 512: {
473
0
      const TNS_PARAMETER_TABULATED *pCfg =
474
0
          FDKaacEnc_GetTnsParam(bitRate, channels, ldSbrPresent);
475
0
      if (pCfg != NULL) {
476
0
        FDKmemcpy(&(tC->confTab), pCfg, sizeof(tC->confTab));
477
478
0
        tC->lpcStartBand[HIFILT] = FDKaacEnc_FreqToBandWidthRounding(
479
0
            pCfg->filterStartFreq[HIFILT], sampleRate, pC->sfbCnt,
480
0
            pC->sfbOffset);
481
0
        tC->lpcStartLine[HIFILT] = pC->sfbOffset[tC->lpcStartBand[HIFILT]];
482
0
        tC->lpcStartBand[LOFILT] = FDKaacEnc_FreqToBandWidthRounding(
483
0
            pCfg->filterStartFreq[LOFILT], sampleRate, pC->sfbCnt,
484
0
            pC->sfbOffset);
485
0
        tC->lpcStartLine[LOFILT] = pC->sfbOffset[tC->lpcStartBand[LOFILT]];
486
487
0
        FDKaacEnc_CalcGaussWindow(
488
0
            tC->acfWindow[HIFILT], tC->maxOrder + 1, sampleRate, granuleLength,
489
0
            pCfg->tnsTimeResolution[HIFILT], TNS_TIMERES_SCALE);
490
0
        FDKaacEnc_CalcGaussWindow(
491
0
            tC->acfWindow[LOFILT], tC->maxOrder + 1, sampleRate, granuleLength,
492
0
            pCfg->tnsTimeResolution[LOFILT], TNS_TIMERES_SCALE);
493
0
      } else {
494
0
        tC->tnsActive =
495
0
            FALSE; /* no configuration available, disable tns tool */
496
0
      }
497
0
    } break;
498
0
    default:
499
0
      tC->tnsActive = FALSE; /* no configuration available, disable tns tool */
500
0
  }
501
502
0
  return AAC_ENC_OK;
503
0
}
504
505
/***************************************************************************/
506
/*!
507
  \brief     FDKaacEnc_ScaleUpSpectrum
508
509
  Scales up spectrum lines in a given frequency section
510
511
  \param scaled spectrum
512
  \param original spectrum
513
  \param frequency line to start scaling
514
  \param frequency line to enc scaling
515
516
  \return scale factor
517
518
****************************************************************************/
519
static inline INT FDKaacEnc_ScaleUpSpectrum(FIXP_DBL *dest, const FIXP_DBL *src,
520
                                            const INT startLine,
521
0
                                            const INT stopLine) {
522
0
  INT i, scale;
523
524
0
  FIXP_DBL maxVal = FL2FXCONST_DBL(0.f);
525
526
  /* Get highest value in given spectrum */
527
0
  for (i = startLine; i < stopLine; i++) {
528
0
    maxVal = fixMax(maxVal, fixp_abs(src[i]));
529
0
  }
530
0
  scale = CountLeadingBits(maxVal);
531
532
  /* Scale spectrum according to highest value */
533
0
  for (i = startLine; i < stopLine; i++) {
534
0
    dest[i] = src[i] << scale;
535
0
  }
536
537
0
  return scale;
538
0
}
539
540
/***************************************************************************/
541
/*!
542
  \brief     FDKaacEnc_CalcAutoCorrValue
543
544
  Calculate autocorellation value for one lag
545
546
  \param pointer to spectrum
547
  \param start line
548
  \param stop line
549
  \param lag to be calculated
550
  \param scaling of the lag
551
552
****************************************************************************/
553
static inline FIXP_DBL FDKaacEnc_CalcAutoCorrValue(const FIXP_DBL *spectrum,
554
                                                   const INT startLine,
555
                                                   const INT stopLine,
556
                                                   const INT lag,
557
0
                                                   const INT scale) {
558
0
  int i;
559
0
  FIXP_DBL result = FL2FXCONST_DBL(0.f);
560
561
  /* This versions allows to save memory accesses, when computing pow2 */
562
  /* It is of interest for ARM, XTENSA without parallel memory access  */
563
0
  if (lag == 0) {
564
0
    for (i = startLine; i < stopLine; i++) {
565
0
      result += (fPow2(spectrum[i]) >> scale);
566
0
    }
567
0
  } else {
568
0
    for (i = startLine; i < (stopLine - lag); i++) {
569
0
      result += (fMult(spectrum[i], spectrum[i + lag]) >> scale);
570
0
    }
571
0
  }
572
573
0
  return result;
574
0
}
575
576
/***************************************************************************/
577
/*!
578
  \brief     FDKaacEnc_AutoCorrNormFac
579
580
  Autocorrelation function for 1st and 2nd half of the spectrum
581
582
  \param pointer to spectrum
583
  \param pointer to autocorrelation window
584
  \param filter start line
585
586
****************************************************************************/
587
static inline FIXP_DBL FDKaacEnc_AutoCorrNormFac(const FIXP_DBL value,
588
0
                                                 const INT scale, INT *sc) {
589
0
#define HLM_MIN_NRG 0.0000000037252902984619140625f /* 2^-28 */
590
0
#define MAX_INV_NRGFAC (1.f / HLM_MIN_NRG)
591
592
0
  FIXP_DBL retValue;
593
0
  FIXP_DBL A, B;
594
595
0
  if (scale >= 0) {
596
0
    A = value;
597
0
    B = FL2FXCONST_DBL(HLM_MIN_NRG) >> fixMin(DFRACT_BITS - 1, scale);
598
0
  } else {
599
0
    A = value >> fixMin(DFRACT_BITS - 1, (-scale));
600
0
    B = FL2FXCONST_DBL(HLM_MIN_NRG);
601
0
  }
602
603
0
  if (A > B) {
604
0
    int shift = 0;
605
0
    FIXP_DBL tmp = invSqrtNorm2(value, &shift);
606
607
0
    retValue = fMult(tmp, tmp);
608
0
    *sc += (2 * shift);
609
0
  } else {
610
    /* MAX_INV_NRGFAC*FDKpow(2,-28) = 1/2^-28 * 2^-28 = 1.0 */
611
0
    retValue =
612
0
        /*FL2FXCONST_DBL(MAX_INV_NRGFAC*FDKpow(2,-28))*/ (FIXP_DBL)MAXVAL_DBL;
613
0
    *sc += scale + 28;
614
0
  }
615
616
0
  return retValue;
617
0
}
618
619
static void FDKaacEnc_MergedAutoCorrelation(
620
    const FIXP_DBL *spectrum, const INT isLowDelay,
621
    const FIXP_DBL acfWindow[MAX_NUM_OF_FILTERS][TNS_MAX_ORDER + 3 + 1],
622
    const INT lpcStartLine[MAX_NUM_OF_FILTERS], const INT lpcStopLine,
623
    const INT maxOrder, const INT acfSplit[MAX_NUM_OF_FILTERS], FIXP_DBL *_rxx1,
624
0
    FIXP_DBL *_rxx2) {
625
0
  int i, idx0, idx1, idx2, idx3, idx4, lag;
626
0
  FIXP_DBL rxx1_0, rxx2_0, rxx3_0, rxx4_0;
627
628
  /* buffer for temporal spectrum */
629
0
  C_ALLOC_SCRATCH_START(pSpectrum, FIXP_DBL, (1024))
630
631
  /* MDCT line indices separating the 1st, 2nd, 3rd, and 4th analysis quarters
632
   */
633
0
  if ((acfSplit[LOFILT] == -1) || (acfSplit[HIFILT] == -1)) {
634
    /* autocorrelation function for 1st, 2nd, 3rd, and 4th quarter of the
635
     * spectrum */
636
0
    idx0 = lpcStartLine[LOFILT];
637
0
    i = lpcStopLine - lpcStartLine[LOFILT];
638
0
    idx1 = idx0 + i / 4;
639
0
    idx2 = idx0 + i / 2;
640
0
    idx3 = idx0 + i * 3 / 4;
641
0
    idx4 = lpcStopLine;
642
0
  } else {
643
0
    FDK_ASSERT(acfSplit[LOFILT] == 1);
644
0
    FDK_ASSERT(acfSplit[HIFILT] == 3);
645
0
    i = (lpcStopLine - lpcStartLine[HIFILT]) / 3;
646
0
    idx0 = lpcStartLine[LOFILT];
647
0
    idx1 = lpcStartLine[HIFILT];
648
0
    idx2 = idx1 + i;
649
0
    idx3 = idx2 + i;
650
0
    idx4 = lpcStopLine;
651
0
  }
652
653
  /* copy spectrum to temporal buffer and scale up as much as possible */
654
0
  INT sc1 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx0, idx1);
655
0
  INT sc2 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx1, idx2);
656
0
  INT sc3 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx2, idx3);
657
0
  INT sc4 = FDKaacEnc_ScaleUpSpectrum(pSpectrum, spectrum, idx3, idx4);
658
659
  /* get scaling values for summation */
660
0
  INT nsc1, nsc2, nsc3, nsc4;
661
0
  for (nsc1 = 1; (1 << nsc1) < (idx1 - idx0); nsc1++)
662
0
    ;
663
0
  for (nsc2 = 1; (1 << nsc2) < (idx2 - idx1); nsc2++)
664
0
    ;
665
0
  for (nsc3 = 1; (1 << nsc3) < (idx3 - idx2); nsc3++)
666
0
    ;
667
0
  for (nsc4 = 1; (1 << nsc4) < (idx4 - idx3); nsc4++)
668
0
    ;
669
670
  /* compute autocorrelation value at lag zero, i. e. energy, for each quarter
671
   */
672
0
  rxx1_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, 0, nsc1);
673
0
  rxx2_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx1, idx2, 0, nsc2);
674
0
  rxx3_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx2, idx3, 0, nsc3);
675
0
  rxx4_0 = FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx3, idx4, 0, nsc4);
676
677
  /* compute energy normalization factors, i. e. 1/energy (saves some divisions)
678
   */
679
0
  if (rxx1_0 != FL2FXCONST_DBL(0.f)) {
680
0
    INT sc_fac1 = -1;
681
0
    FIXP_DBL fac1 =
682
0
        FDKaacEnc_AutoCorrNormFac(rxx1_0, ((-2 * sc1) + nsc1), &sc_fac1);
683
0
    _rxx1[0] = scaleValue(fMult(rxx1_0, fac1), sc_fac1);
684
685
0
    if (isLowDelay) {
686
0
      for (lag = 1; lag <= maxOrder; lag++) {
687
        /* compute energy-normalized and windowed autocorrelation values at this
688
         * lag */
689
0
        FIXP_DBL x1 =
690
0
            FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, lag, nsc1);
691
0
        _rxx1[lag] =
692
0
            fMult(scaleValue(fMult(x1, fac1), sc_fac1), acfWindow[LOFILT][lag]);
693
0
      }
694
0
    } else {
695
0
      for (lag = 1; lag <= maxOrder; lag++) {
696
0
        if ((3 * lag) <= maxOrder + 3) {
697
0
          FIXP_DBL x1 =
698
0
              FDKaacEnc_CalcAutoCorrValue(pSpectrum, idx0, idx1, lag, nsc1);
699
0
          _rxx1[lag] = fMult(scaleValue(fMult(x1, fac1), sc_fac1),
700
0
                             acfWindow[LOFILT][3 * lag]);
701
0
        }
702
0
      }
703
0
    }
704
0
  }
705
706
  /* auto corr over upper 3/4 of spectrum */
707
0
  if (!((rxx2_0 == FL2FXCONST_DBL(0.f)) && (rxx3_0 == FL2FXCONST_DBL(0.f)) &&
708
0
        (rxx4_0 == FL2FXCONST_DBL(0.f)))) {
709
0
    FIXP_DBL fac2, fac3, fac4;
710
0
    fac2 = fac3 = fac4 = FL2FXCONST_DBL(0.f);
711
0
    INT sc_fac2, sc_fac3, sc_fac4;
712
0
    sc_fac2 = sc_fac3 = sc_fac4 = 0;
713
714
0
    if (rxx2_0 != FL2FXCONST_DBL(0.f)) {
715
0
      fac2 = FDKaacEnc_AutoCorrNormFac(rxx2_0, ((-2 * sc2) + nsc2), &sc_fac2);
716
0
      sc_fac2 -= 2;
717
0
    }
718
0
    if (rxx3_0 != FL2FXCONST_DBL(0.f)) {
719
0
      fac3 = FDKaacEnc_AutoCorrNormFac(rxx3_0, ((-2 * sc3) + nsc3), &sc_fac3);
720
0
      sc_fac3 -= 2;
721
0
    }
722
0
    if (rxx4_0 != FL2FXCONST_DBL(0.f)) {
723
0
      fac4 = FDKaacEnc_AutoCorrNormFac(rxx4_0, ((-2 * sc4) + nsc4), &sc_fac4);
724
0
      sc_fac4 -= 2;
725
0
    }
726
727
0
    _rxx2[0] = scaleValue(fMult(rxx2_0, fac2), sc_fac2) +
728
0
               scaleValue(fMult(rxx3_0, fac3), sc_fac3) +
729
0
               scaleValue(fMult(rxx4_0, fac4), sc_fac4);
730
731
0
    for (lag = 1; lag <= maxOrder; lag++) {
732
      /* merge quarters 2, 3, 4 into one autocorrelation; quarter 1 stays
733
       * separate */
734
0
      FIXP_DBL x2 = scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue(
735
0
                                         pSpectrum, idx1, idx2, lag, nsc2),
736
0
                                     fac2),
737
0
                               sc_fac2) +
738
0
                    scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue(
739
0
                                         pSpectrum, idx2, idx3, lag, nsc3),
740
0
                                     fac3),
741
0
                               sc_fac3) +
742
0
                    scaleValue(fMult(FDKaacEnc_CalcAutoCorrValue(
743
0
                                         pSpectrum, idx3, idx4, lag, nsc4),
744
0
                                     fac4),
745
0
                               sc_fac4);
746
747
0
      _rxx2[lag] = fMult(x2, acfWindow[HIFILT][lag]);
748
0
    }
749
0
  }
750
751
0
  C_ALLOC_SCRATCH_END(pSpectrum, FIXP_DBL, (1024))
752
0
}
753
754
/*****************************************************************************
755
    functionname: FDKaacEnc_TnsDetect
756
    description:  do decision, if TNS shall be used or not
757
    returns:
758
    input:        tns data structure (modified),
759
                  tns config structure,
760
                  scalefactor size and table,
761
                  spectrum,
762
                  subblock num, blocktype,
763
                  sfb-wise energy.
764
765
*****************************************************************************/
766
INT FDKaacEnc_TnsDetect(TNS_DATA *tnsData, const TNS_CONFIG *tC,
767
                        TNS_INFO *tnsInfo, INT sfbCnt, const FIXP_DBL *spectrum,
768
0
                        INT subBlockNumber, INT blockType) {
769
  /* autocorrelation function for 1st, 2nd, 3rd, and 4th quarter of the
770
   * spectrum. */
771
0
  FIXP_DBL rxx1[TNS_MAX_ORDER + 1]; /* higher part */
772
0
  FIXP_DBL rxx2[TNS_MAX_ORDER + 1]; /* lower part */
773
0
  FIXP_LPC parcor_tmp[TNS_MAX_ORDER];
774
775
0
  int i;
776
777
0
  FDKmemclear(rxx1, sizeof(rxx1));
778
0
  FDKmemclear(rxx2, sizeof(rxx2));
779
780
0
  TNS_SUBBLOCK_INFO *tsbi =
781
0
      (blockType == SHORT_WINDOW)
782
0
          ? &tnsData->dataRaw.Short.subBlockInfo[subBlockNumber]
783
0
          : &tnsData->dataRaw.Long.subBlockInfo;
784
785
0
  tnsData->filtersMerged = FALSE;
786
787
0
  tsbi->tnsActive[HIFILT] = FALSE;
788
0
  tsbi->predictionGain[HIFILT] = 1000;
789
0
  tsbi->tnsActive[LOFILT] = FALSE;
790
0
  tsbi->predictionGain[LOFILT] = 1000;
791
792
0
  tnsInfo->numOfFilters[subBlockNumber] = 0;
793
0
  tnsInfo->coefRes[subBlockNumber] = tC->coefRes;
794
0
  for (i = 0; i < tC->maxOrder; i++) {
795
0
    tnsInfo->coef[subBlockNumber][HIFILT][i] =
796
0
        tnsInfo->coef[subBlockNumber][LOFILT][i] = 0;
797
0
  }
798
799
0
  tnsInfo->length[subBlockNumber][HIFILT] =
800
0
      tnsInfo->length[subBlockNumber][LOFILT] = 0;
801
0
  tnsInfo->order[subBlockNumber][HIFILT] =
802
0
      tnsInfo->order[subBlockNumber][LOFILT] = 0;
803
804
0
  if ((tC->tnsActive) && (tC->maxOrder > 0)) {
805
0
    int sumSqrCoef;
806
807
0
    FDKaacEnc_MergedAutoCorrelation(
808
0
        spectrum, tC->isLowDelay, tC->acfWindow, tC->lpcStartLine,
809
0
        tC->lpcStopLine, tC->maxOrder, tC->confTab.acfSplit, rxx1, rxx2);
810
811
    /* compute higher TNS filter coefficients in lattice form (ParCor) with
812
     * LeRoux-Gueguen/Schur algorithm */
813
0
    {
814
0
      FIXP_DBL predictionGain_m;
815
0
      INT predictionGain_e;
816
817
0
      CLpc_AutoToParcor(rxx2, 0, parcor_tmp, tC->confTab.tnsLimitOrder[HIFILT],
818
0
                        &predictionGain_m, &predictionGain_e);
819
0
      tsbi->predictionGain[HIFILT] =
820
0
          (INT)fMultNorm(predictionGain_m, predictionGain_e, 1000, 31, 31);
821
0
    }
822
823
    /* non-linear quantization of TNS lattice coefficients with given resolution
824
     */
825
0
    FDKaacEnc_Parcor2Index(parcor_tmp, tnsInfo->coef[subBlockNumber][HIFILT],
826
0
                           tC->confTab.tnsLimitOrder[HIFILT], tC->coefRes);
827
828
    /* reduce filter order by truncating trailing zeros, compute sum(abs(coefs))
829
     */
830
0
    for (i = tC->confTab.tnsLimitOrder[HIFILT] - 1; i >= 0; i--) {
831
0
      if (tnsInfo->coef[subBlockNumber][HIFILT][i] != 0) {
832
0
        break;
833
0
      }
834
0
    }
835
836
0
    tnsInfo->order[subBlockNumber][HIFILT] = i + 1;
837
838
0
    sumSqrCoef = 0;
839
0
    for (; i >= 0; i--) {
840
0
      sumSqrCoef += tnsInfo->coef[subBlockNumber][HIFILT][i] *
841
0
                    tnsInfo->coef[subBlockNumber][HIFILT][i];
842
0
    }
843
844
0
    tnsInfo->direction[subBlockNumber][HIFILT] =
845
0
        tC->confTab.tnsFilterDirection[HIFILT];
846
0
    tnsInfo->length[subBlockNumber][HIFILT] = sfbCnt - tC->lpcStartBand[HIFILT];
847
848
    /* disable TNS if predictionGain is less than 3dB or sumSqrCoef is too small
849
     */
850
0
    if ((tsbi->predictionGain[HIFILT] > tC->confTab.threshOn[HIFILT]) ||
851
0
        (sumSqrCoef > (tC->confTab.tnsLimitOrder[HIFILT] / 2 + 2))) {
852
0
      tsbi->tnsActive[HIFILT] = TRUE;
853
0
      tnsInfo->numOfFilters[subBlockNumber]++;
854
855
      /* compute second filter for lower quarter; only allowed for long windows!
856
       */
857
0
      if ((blockType != SHORT_WINDOW) && (tC->confTab.filterEnabled[LOFILT]) &&
858
0
          (tC->confTab.seperateFiltersAllowed)) {
859
        /* compute second filter for lower frequencies */
860
861
        /* compute TNS filter in lattice (ParCor) form with LeRoux-Gueguen
862
         * algorithm */
863
0
        INT predGain;
864
0
        {
865
0
          FIXP_DBL predictionGain_m;
866
0
          INT predictionGain_e;
867
868
0
          CLpc_AutoToParcor(rxx1, 0, parcor_tmp,
869
0
                            tC->confTab.tnsLimitOrder[LOFILT],
870
0
                            &predictionGain_m, &predictionGain_e);
871
0
          predGain =
872
0
              (INT)fMultNorm(predictionGain_m, predictionGain_e, 1000, 31, 31);
873
0
        }
874
875
        /* non-linear quantization of TNS lattice coefficients with given
876
         * resolution */
877
0
        FDKaacEnc_Parcor2Index(parcor_tmp,
878
0
                               tnsInfo->coef[subBlockNumber][LOFILT],
879
0
                               tC->confTab.tnsLimitOrder[LOFILT], tC->coefRes);
880
881
        /* reduce filter order by truncating trailing zeros, compute
882
         * sum(abs(coefs)) */
883
0
        for (i = tC->confTab.tnsLimitOrder[LOFILT] - 1; i >= 0; i--) {
884
0
          if (tnsInfo->coef[subBlockNumber][LOFILT][i] != 0) {
885
0
            break;
886
0
          }
887
0
        }
888
0
        tnsInfo->order[subBlockNumber][LOFILT] = i + 1;
889
890
0
        sumSqrCoef = 0;
891
0
        for (; i >= 0; i--) {
892
0
          sumSqrCoef += tnsInfo->coef[subBlockNumber][LOFILT][i] *
893
0
                        tnsInfo->coef[subBlockNumber][LOFILT][i];
894
0
        }
895
896
0
        tnsInfo->direction[subBlockNumber][LOFILT] =
897
0
            tC->confTab.tnsFilterDirection[LOFILT];
898
0
        tnsInfo->length[subBlockNumber][LOFILT] =
899
0
            tC->lpcStartBand[HIFILT] - tC->lpcStartBand[LOFILT];
900
901
        /* filter lower quarter if gain is high enough, but not if it's too high
902
         */
903
0
        if (((predGain > tC->confTab.threshOn[LOFILT]) &&
904
0
             (predGain < (16000 * tC->confTab.tnsLimitOrder[LOFILT]))) ||
905
0
            ((sumSqrCoef > 9) &&
906
0
             (sumSqrCoef < 22 * tC->confTab.tnsLimitOrder[LOFILT]))) {
907
          /* compare lower to upper filter; if they are very similar, merge them
908
           */
909
0
          tsbi->tnsActive[LOFILT] = TRUE;
910
0
          sumSqrCoef = 0;
911
0
          for (i = 0; i < tC->confTab.tnsLimitOrder[LOFILT]; i++) {
912
0
            sumSqrCoef += fAbs(tnsInfo->coef[subBlockNumber][HIFILT][i] -
913
0
                               tnsInfo->coef[subBlockNumber][LOFILT][i]);
914
0
          }
915
0
          if ((sumSqrCoef < 2) &&
916
0
              (tnsInfo->direction[subBlockNumber][LOFILT] ==
917
0
               tnsInfo->direction[subBlockNumber][HIFILT])) {
918
0
            tnsData->filtersMerged = TRUE;
919
0
            tnsInfo->length[subBlockNumber][HIFILT] =
920
0
                sfbCnt - tC->lpcStartBand[LOFILT];
921
0
            for (; i < tnsInfo->order[subBlockNumber][HIFILT]; i++) {
922
0
              if (fAbs(tnsInfo->coef[subBlockNumber][HIFILT][i]) > 1) {
923
0
                break;
924
0
              }
925
0
            }
926
0
            for (i--; i >= 0; i--) {
927
0
              if (tnsInfo->coef[subBlockNumber][HIFILT][i] != 0) {
928
0
                break;
929
0
              }
930
0
            }
931
0
            if (i < tnsInfo->order[subBlockNumber][HIFILT]) {
932
0
              tnsInfo->order[subBlockNumber][HIFILT] = i + 1;
933
0
            }
934
0
          } else {
935
0
            tnsInfo->numOfFilters[subBlockNumber]++;
936
0
          }
937
0
        } /* filter lower part */
938
0
        tsbi->predictionGain[LOFILT] = predGain;
939
940
0
      } /* second filter allowed  */
941
0
    }   /* if predictionGain > 1437 ... */
942
0
  }     /* maxOrder > 0 && tnsActive */
943
944
0
  return 0;
945
0
}
946
947
/***************************************************************************/
948
/*!
949
  \brief     FDKaacLdEnc_TnsSync
950
951
  synchronize TNS parameters when TNS gain difference small (relative)
952
953
  \param pointer to TNS data structure (destination)
954
  \param pointer to TNS data structure (source)
955
  \param pointer to TNS config structure
956
  \param number of sub-block
957
  \param block type
958
959
  \return void
960
****************************************************************************/
961
void FDKaacEnc_TnsSync(TNS_DATA *tnsDataDest, const TNS_DATA *tnsDataSrc,
962
                       TNS_INFO *tnsInfoDest, TNS_INFO *tnsInfoSrc,
963
                       const INT blockTypeDest, const INT blockTypeSrc,
964
0
                       const TNS_CONFIG *tC) {
965
0
  int i, w, absDiff, nWindows;
966
0
  TNS_SUBBLOCK_INFO *sbInfoDest;
967
0
  const TNS_SUBBLOCK_INFO *sbInfoSrc;
968
969
  /* if one channel contains short blocks and the other not, do not synchronize
970
   */
971
0
  if ((blockTypeSrc == SHORT_WINDOW && blockTypeDest != SHORT_WINDOW) ||
972
0
      (blockTypeDest == SHORT_WINDOW && blockTypeSrc != SHORT_WINDOW)) {
973
0
    return;
974
0
  }
975
976
0
  if (blockTypeDest != SHORT_WINDOW) {
977
0
    sbInfoDest = &tnsDataDest->dataRaw.Long.subBlockInfo;
978
0
    sbInfoSrc = &tnsDataSrc->dataRaw.Long.subBlockInfo;
979
0
    nWindows = 1;
980
0
  } else {
981
0
    sbInfoDest = &tnsDataDest->dataRaw.Short.subBlockInfo[0];
982
0
    sbInfoSrc = &tnsDataSrc->dataRaw.Short.subBlockInfo[0];
983
0
    nWindows = 8;
984
0
  }
985
986
0
  for (w = 0; w < nWindows; w++) {
987
0
    const TNS_SUBBLOCK_INFO *pSbInfoSrcW = sbInfoSrc + w;
988
0
    TNS_SUBBLOCK_INFO *pSbInfoDestW = sbInfoDest + w;
989
0
    INT doSync = 1, absDiffSum = 0;
990
991
    /* if TNS is active in at least one channel, check if ParCor coefficients of
992
     * higher filter are similar */
993
0
    if (pSbInfoDestW->tnsActive[HIFILT] || pSbInfoSrcW->tnsActive[HIFILT]) {
994
0
      for (i = 0; i < tC->maxOrder; i++) {
995
0
        absDiff = fAbs(tnsInfoDest->coef[w][HIFILT][i] -
996
0
                       tnsInfoSrc->coef[w][HIFILT][i]);
997
0
        absDiffSum += absDiff;
998
        /* if coefficients diverge too much between channels, do not synchronize
999
         */
1000
0
        if ((absDiff > 1) || (absDiffSum > 2)) {
1001
0
          doSync = 0;
1002
0
          break;
1003
0
        }
1004
0
      }
1005
1006
0
      if (doSync) {
1007
        /* if no significant difference was detected, synchronize coefficient
1008
         * sets */
1009
0
        if (pSbInfoSrcW->tnsActive[HIFILT]) {
1010
          /* no dest filter, or more dest than source filters: use one dest
1011
           * filter */
1012
0
          if ((!pSbInfoDestW->tnsActive[HIFILT]) ||
1013
0
              ((pSbInfoDestW->tnsActive[HIFILT]) &&
1014
0
               (tnsInfoDest->numOfFilters[w] > tnsInfoSrc->numOfFilters[w]))) {
1015
0
            pSbInfoDestW->tnsActive[HIFILT] = tnsInfoDest->numOfFilters[w] = 1;
1016
0
          }
1017
0
          tnsDataDest->filtersMerged = tnsDataSrc->filtersMerged;
1018
0
          tnsInfoDest->order[w][HIFILT] = tnsInfoSrc->order[w][HIFILT];
1019
0
          tnsInfoDest->length[w][HIFILT] = tnsInfoSrc->length[w][HIFILT];
1020
0
          tnsInfoDest->direction[w][HIFILT] = tnsInfoSrc->direction[w][HIFILT];
1021
0
          tnsInfoDest->coefCompress[w][HIFILT] =
1022
0
              tnsInfoSrc->coefCompress[w][HIFILT];
1023
1024
0
          for (i = 0; i < tC->maxOrder; i++) {
1025
0
            tnsInfoDest->coef[w][HIFILT][i] = tnsInfoSrc->coef[w][HIFILT][i];
1026
0
          }
1027
0
        } else
1028
0
          pSbInfoDestW->tnsActive[HIFILT] = tnsInfoDest->numOfFilters[w] = 0;
1029
0
      }
1030
0
    }
1031
0
  }
1032
0
}
1033
1034
/***************************************************************************/
1035
/*!
1036
  \brief     FDKaacEnc_TnsEncode
1037
1038
  perform TNS encoding
1039
1040
  \param pointer to TNS info structure
1041
  \param pointer to TNS data structure
1042
  \param number of sfbs
1043
  \param pointer to TNS config structure
1044
  \param low-pass line
1045
  \param pointer to spectrum
1046
  \param number of sub-block
1047
  \param block type
1048
1049
  \return ERROR STATUS
1050
****************************************************************************/
1051
INT FDKaacEnc_TnsEncode(TNS_INFO *tnsInfo, TNS_DATA *tnsData,
1052
                        const INT numOfSfb, const TNS_CONFIG *tC,
1053
                        const INT lowPassLine, FIXP_DBL *spectrum,
1054
0
                        const INT subBlockNumber, const INT blockType) {
1055
0
  INT i, startLine, stopLine;
1056
1057
0
  if (((blockType == SHORT_WINDOW) &&
1058
0
       (!tnsData->dataRaw.Short.subBlockInfo[subBlockNumber]
1059
0
             .tnsActive[HIFILT])) ||
1060
0
      ((blockType != SHORT_WINDOW) &&
1061
0
       (!tnsData->dataRaw.Long.subBlockInfo.tnsActive[HIFILT]))) {
1062
0
    return 1;
1063
0
  }
1064
1065
0
  startLine = (tnsData->filtersMerged) ? tC->lpcStartLine[LOFILT]
1066
0
                                       : tC->lpcStartLine[HIFILT];
1067
0
  stopLine = tC->lpcStopLine;
1068
1069
0
  for (i = 0; i < tnsInfo->numOfFilters[subBlockNumber]; i++) {
1070
0
    INT lpcGainFactor;
1071
0
    FIXP_LPC LpcCoeff[TNS_MAX_ORDER];
1072
0
    FIXP_DBL workBuffer[TNS_MAX_ORDER];
1073
0
    FIXP_LPC parcor_tmp[TNS_MAX_ORDER];
1074
1075
0
    FDKaacEnc_Index2Parcor(tnsInfo->coef[subBlockNumber][i], parcor_tmp,
1076
0
                           tnsInfo->order[subBlockNumber][i], tC->coefRes);
1077
1078
0
    lpcGainFactor = CLpc_ParcorToLpc(
1079
0
        parcor_tmp, LpcCoeff, tnsInfo->order[subBlockNumber][i], workBuffer);
1080
1081
0
    FDKmemclear(workBuffer, TNS_MAX_ORDER * sizeof(FIXP_DBL));
1082
0
    CLpc_Analysis(&spectrum[startLine], stopLine - startLine, LpcCoeff,
1083
0
                  lpcGainFactor, tnsInfo->order[subBlockNumber][i], workBuffer,
1084
0
                  NULL);
1085
1086
    /* update for second filter */
1087
0
    startLine = tC->lpcStartLine[LOFILT];
1088
0
    stopLine = tC->lpcStartLine[HIFILT];
1089
0
  }
1090
1091
0
  return (0);
1092
0
}
1093
1094
static void FDKaacEnc_CalcGaussWindow(FIXP_DBL *win, const int winSize,
1095
                                      const INT samplingRate,
1096
                                      const INT transformResolution,
1097
                                      const FIXP_DBL timeResolution,
1098
0
                                      const INT timeResolution_e) {
1099
0
#define PI_E (2)
1100
0
#define PI_M FL2FXCONST_DBL(3.1416f / (float)(1 << PI_E))
1101
1102
0
#define EULER_E (2)
1103
0
#define EULER_M FL2FXCONST_DBL(2.7183 / (float)(1 << EULER_E))
1104
1105
0
#define COEFF_LOOP_SCALE (4)
1106
1107
0
  INT i, e1, e2, gaussExp_e;
1108
0
  FIXP_DBL gaussExp_m;
1109
1110
  /* calc. window exponent from time resolution:
1111
   *
1112
   *   gaussExp = PI * samplingRate * 0.001f * timeResolution /
1113
   * transformResolution; gaussExp = -0.5f * gaussExp * gaussExp;
1114
   */
1115
0
  gaussExp_m = fMultNorm(
1116
0
      timeResolution,
1117
0
      fMult(PI_M,
1118
0
            fDivNorm((FIXP_DBL)(samplingRate),
1119
0
                     (FIXP_DBL)(LONG)(transformResolution * 1000.f), &e1)),
1120
0
      &e2);
1121
0
  gaussExp_m = -fPow2Div2(gaussExp_m);
1122
0
  gaussExp_e = 2 * (e1 + e2 + timeResolution_e + PI_E);
1123
1124
0
  FDK_ASSERT(winSize < (1 << COEFF_LOOP_SCALE));
1125
1126
  /* calc. window coefficients
1127
   *   win[i] = (float)exp( gaussExp * (i+0.5) * (i+0.5) );
1128
   */
1129
0
  for (i = 0; i < winSize; i++) {
1130
0
    win[i] = fPow(
1131
0
        EULER_M, EULER_E,
1132
0
        fMult(gaussExp_m,
1133
0
              fPow2((i * FL2FXCONST_DBL(1.f / (float)(1 << COEFF_LOOP_SCALE)) +
1134
0
                     FL2FXCONST_DBL(.5f / (float)(1 << COEFF_LOOP_SCALE))))),
1135
0
        gaussExp_e + 2 * COEFF_LOOP_SCALE, &e1);
1136
1137
0
    win[i] = scaleValueSaturate(win[i], e1);
1138
0
  }
1139
0
}
1140
1141
0
static INT FDKaacEnc_Search3(FIXP_LPC parcor) {
1142
0
  INT i, index = 0;
1143
1144
0
  for (i = 0; i < 8; i++) {
1145
0
    if (parcor > FDKaacEnc_tnsCoeff3Borders[i]) index = i;
1146
0
  }
1147
0
  return (index - 4);
1148
0
}
1149
1150
0
static INT FDKaacEnc_Search4(FIXP_LPC parcor) {
1151
0
  INT i, index = 0;
1152
1153
0
  for (i = 0; i < 16; i++) {
1154
0
    if (parcor > FDKaacEnc_tnsCoeff4Borders[i]) index = i;
1155
0
  }
1156
0
  return (index - 8);
1157
0
}
1158
1159
/*****************************************************************************
1160
1161
    functionname: FDKaacEnc_Parcor2Index
1162
1163
*****************************************************************************/
1164
static void FDKaacEnc_Parcor2Index(const FIXP_LPC *parcor, INT *RESTRICT index,
1165
0
                                   const INT order, const INT bitsPerCoeff) {
1166
0
  INT i;
1167
0
  for (i = 0; i < order; i++) {
1168
0
    if (bitsPerCoeff == 3)
1169
0
      index[i] = FDKaacEnc_Search3(parcor[i]);
1170
0
    else
1171
0
      index[i] = FDKaacEnc_Search4(parcor[i]);
1172
0
  }
1173
0
}
1174
1175
/*****************************************************************************
1176
1177
    functionname: FDKaacEnc_Index2Parcor
1178
    description:  inverse quantization for reflection coefficients
1179
    returns:      -
1180
    input:        quantized values, ptr. to reflection coefficients,
1181
                  no. of coefficients, resolution
1182
    output:       reflection coefficients
1183
1184
*****************************************************************************/
1185
static void FDKaacEnc_Index2Parcor(const INT *index, FIXP_LPC *RESTRICT parcor,
1186
0
                                   const INT order, const INT bitsPerCoeff) {
1187
0
  INT i;
1188
0
  for (i = 0; i < order; i++)
1189
0
    parcor[i] = bitsPerCoeff == 4 ? FDKaacEnc_tnsEncCoeff4[index[i] + 8]
1190
0
                                  : FDKaacEnc_tnsEncCoeff3[index[i] + 4];
1191
0
}