/src/aac/libAACdec/src/ldfiltbank.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* ----------------------------------------------------------------------------- |
2 | | Software License for The Fraunhofer FDK AAC Codec Library for Android |
3 | | |
4 | | © Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten |
5 | | Forschung e.V. All rights reserved. |
6 | | |
7 | | 1. INTRODUCTION |
8 | | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
9 | | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
10 | | scheme for digital audio. This FDK AAC Codec software is intended to be used on |
11 | | a wide variety of Android devices. |
12 | | |
13 | | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
14 | | general perceptual audio codecs. AAC-ELD is considered the best-performing |
15 | | full-bandwidth communications codec by independent studies and is widely |
16 | | deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
17 | | specifications. |
18 | | |
19 | | Patent licenses for necessary patent claims for the FDK AAC Codec (including |
20 | | those of Fraunhofer) may be obtained through Via Licensing |
21 | | (www.vialicensing.com) or through the respective patent owners individually for |
22 | | the purpose of encoding or decoding bit streams in products that are compliant |
23 | | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
24 | | Android devices already license these patent claims through Via Licensing or |
25 | | directly from the patent owners, and therefore FDK AAC Codec software may |
26 | | already be covered under those patent licenses when it is used for those |
27 | | licensed purposes only. |
28 | | |
29 | | Commercially-licensed AAC software libraries, including floating-point versions |
30 | | with enhanced sound quality, are also available from Fraunhofer. Users are |
31 | | encouraged to check the Fraunhofer website for additional applications |
32 | | information and documentation. |
33 | | |
34 | | 2. COPYRIGHT LICENSE |
35 | | |
36 | | Redistribution and use in source and binary forms, with or without modification, |
37 | | are permitted without payment of copyright license fees provided that you |
38 | | satisfy the following conditions: |
39 | | |
40 | | You must retain the complete text of this software license in redistributions of |
41 | | the FDK AAC Codec or your modifications thereto in source code form. |
42 | | |
43 | | You must retain the complete text of this software license in the documentation |
44 | | and/or other materials provided with redistributions of the FDK AAC Codec or |
45 | | your modifications thereto in binary form. You must make available free of |
46 | | charge copies of the complete source code of the FDK AAC Codec and your |
47 | | modifications thereto to recipients of copies in binary form. |
48 | | |
49 | | The name of Fraunhofer may not be used to endorse or promote products derived |
50 | | from this library without prior written permission. |
51 | | |
52 | | You may not charge copyright license fees for anyone to use, copy or distribute |
53 | | the FDK AAC Codec software or your modifications thereto. |
54 | | |
55 | | Your modified versions of the FDK AAC Codec must carry prominent notices stating |
56 | | that you changed the software and the date of any change. For modified versions |
57 | | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
58 | | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
59 | | AAC Codec Library for Android." |
60 | | |
61 | | 3. NO PATENT LICENSE |
62 | | |
63 | | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
64 | | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
65 | | Fraunhofer provides no warranty of patent non-infringement with respect to this |
66 | | software. |
67 | | |
68 | | You may use this FDK AAC Codec software or modifications thereto only for |
69 | | purposes that are authorized by appropriate patent licenses. |
70 | | |
71 | | 4. DISCLAIMER |
72 | | |
73 | | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
74 | | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
75 | | including but not limited to the implied warranties of merchantability and |
76 | | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
77 | | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
78 | | or consequential damages, including but not limited to procurement of substitute |
79 | | goods or services; loss of use, data, or profits, or business interruption, |
80 | | however caused and on any theory of liability, whether in contract, strict |
81 | | liability, or tort (including negligence), arising in any way out of the use of |
82 | | this software, even if advised of the possibility of such damage. |
83 | | |
84 | | 5. CONTACT INFORMATION |
85 | | |
86 | | Fraunhofer Institute for Integrated Circuits IIS |
87 | | Attention: Audio and Multimedia Departments - FDK AAC LL |
88 | | Am Wolfsmantel 33 |
89 | | 91058 Erlangen, Germany |
90 | | |
91 | | www.iis.fraunhofer.de/amm |
92 | | amm-info@iis.fraunhofer.de |
93 | | ----------------------------------------------------------------------------- */ |
94 | | |
95 | | /**************************** AAC decoder library ****************************** |
96 | | |
97 | | Author(s): |
98 | | |
99 | | Description: low delay filterbank |
100 | | |
101 | | *******************************************************************************/ |
102 | | |
103 | | #include "ldfiltbank.h" |
104 | | |
105 | | #include "aac_rom.h" |
106 | | #include "dct.h" |
107 | | #include "FDK_tools_rom.h" |
108 | | #include "mdct.h" |
109 | | |
110 | 0 | #define LDFB_HEADROOM 2 |
111 | | |
112 | | #if defined(__arm__) |
113 | | #endif |
114 | | |
115 | | static void multE2_DinvF_fdk(PCM_DEC *output, FIXP_DBL *x, const FIXP_WTB *fb, |
116 | 0 | FIXP_DBL *z, const int N) { |
117 | 0 | int i; |
118 | | |
119 | | /* scale for FIXP_DBL -> PCM_DEC conversion: */ |
120 | 0 | const int scale = (DFRACT_BITS - PCM_OUT_BITS) - LDFB_HEADROOM + (3); |
121 | |
|
122 | | #if ((DFRACT_BITS - PCM_OUT_BITS - LDFB_HEADROOM + (3) - 1) > 0) |
123 | | FIXP_DBL rnd_val_wts0 = (FIXP_DBL)0; |
124 | | FIXP_DBL rnd_val_wts1 = (FIXP_DBL)0; |
125 | | #if ((DFRACT_BITS - PCM_OUT_BITS - LDFB_HEADROOM + (3) - WTS0 - 1) > 0) |
126 | | if (-WTS0 - 1 + scale) |
127 | | rnd_val_wts0 = (FIXP_DBL)(1 << (-WTS0 - 1 + scale - 1)); |
128 | | #endif |
129 | | if (-WTS1 - 1 + scale) |
130 | | rnd_val_wts1 = (FIXP_DBL)(1 << (-WTS1 - 1 + scale - 1)); |
131 | | #endif |
132 | |
|
133 | 0 | for (i = 0; i < N / 4; i++) { |
134 | 0 | FIXP_DBL z0, z2, tmp; |
135 | |
|
136 | 0 | z2 = x[N / 2 + i]; |
137 | 0 | z0 = fAddSaturate(z2, |
138 | 0 | (fMultDiv2(z[N / 2 + i], fb[2 * N + i]) >> (-WTS2 - 1))); |
139 | |
|
140 | 0 | z[N / 2 + i] = fAddSaturate( |
141 | 0 | x[N / 2 - 1 - i], |
142 | 0 | (fMultDiv2(z[N + i], fb[2 * N + N / 2 + i]) >> (-WTS2 - 1))); |
143 | |
|
144 | 0 | tmp = (fMultDiv2(z[N / 2 + i], fb[N + N / 2 - 1 - i]) + |
145 | 0 | fMultDiv2(z[i], fb[N + N / 2 + i])); |
146 | |
|
147 | | #if ((DFRACT_BITS - PCM_OUT_BITS - LDFB_HEADROOM + (3) - 1) > 0) |
148 | | FDK_ASSERT((-WTS1 - 1 + scale) >= 0); |
149 | | FDK_ASSERT(tmp <= ((FIXP_DBL)0x7FFFFFFF - |
150 | | rnd_val_wts1)); /* rounding must not cause overflow */ |
151 | | output[(N * 3 / 4 - 1 - i)] = (PCM_DEC)SATURATE_RIGHT_SHIFT( |
152 | | tmp + rnd_val_wts1, -WTS1 - 1 + scale, PCM_OUT_BITS); |
153 | | #else |
154 | 0 | FDK_ASSERT((WTS1 + 1 - scale) >= 0); |
155 | 0 | output[(N * 3 / 4 - 1 - i)] = |
156 | 0 | (PCM_DEC)SATURATE_LEFT_SHIFT(tmp, WTS1 + 1 - scale, PCM_OUT_BITS); |
157 | 0 | #endif |
158 | |
|
159 | 0 | z[i] = z0; |
160 | 0 | z[N + i] = z2; |
161 | 0 | } |
162 | | |
163 | 0 | for (i = N / 4; i < N / 2; i++) { |
164 | 0 | FIXP_DBL z0, z2, tmp0, tmp1; |
165 | |
|
166 | 0 | z2 = x[N / 2 + i]; |
167 | 0 | z0 = fAddSaturate(z2, |
168 | 0 | (fMultDiv2(z[N / 2 + i], fb[2 * N + i]) >> (-WTS2 - 1))); |
169 | |
|
170 | 0 | z[N / 2 + i] = fAddSaturate( |
171 | 0 | x[N / 2 - 1 - i], |
172 | 0 | (fMultDiv2(z[N + i], fb[2 * N + N / 2 + i]) >> (-WTS2 - 1))); |
173 | |
|
174 | 0 | tmp0 = (fMultDiv2(z[N / 2 + i], fb[N / 2 - 1 - i]) + |
175 | 0 | fMultDiv2(z[i], fb[N / 2 + i])); |
176 | 0 | tmp1 = (fMultDiv2(z[N / 2 + i], fb[N + N / 2 - 1 - i]) + |
177 | 0 | fMultDiv2(z[i], fb[N + N / 2 + i])); |
178 | |
|
179 | | #if ((DFRACT_BITS - PCM_OUT_BITS - LDFB_HEADROOM + (3) - 1) > 0) |
180 | | FDK_ASSERT((-WTS0 - 1 + scale) >= 0); |
181 | | FDK_ASSERT(tmp0 <= ((FIXP_DBL)0x7FFFFFFF - |
182 | | rnd_val_wts0)); /* rounding must not cause overflow */ |
183 | | FDK_ASSERT(tmp1 <= ((FIXP_DBL)0x7FFFFFFF - |
184 | | rnd_val_wts1)); /* rounding must not cause overflow */ |
185 | | output[(i - N / 4)] = (PCM_DEC)SATURATE_RIGHT_SHIFT( |
186 | | tmp0 + rnd_val_wts0, -WTS0 - 1 + scale, PCM_OUT_BITS); |
187 | | output[(N * 3 / 4 - 1 - i)] = (PCM_DEC)SATURATE_RIGHT_SHIFT( |
188 | | tmp1 + rnd_val_wts1, -WTS1 - 1 + scale, PCM_OUT_BITS); |
189 | | #else |
190 | 0 | FDK_ASSERT((WTS0 + 1 - scale) >= 0); |
191 | 0 | output[(i - N / 4)] = |
192 | 0 | (PCM_DEC)SATURATE_LEFT_SHIFT(tmp0, WTS0 + 1 - scale, PCM_OUT_BITS); |
193 | 0 | output[(N * 3 / 4 - 1 - i)] = |
194 | 0 | (PCM_DEC)SATURATE_LEFT_SHIFT(tmp1, WTS1 + 1 - scale, PCM_OUT_BITS); |
195 | 0 | #endif |
196 | 0 | z[i] = z0; |
197 | 0 | z[N + i] = z2; |
198 | 0 | } |
199 | | |
200 | | /* Exchange quarter parts of x to bring them in the "right" order */ |
201 | 0 | for (i = 0; i < N / 4; i++) { |
202 | 0 | FIXP_DBL tmp0 = fMultDiv2(z[i], fb[N / 2 + i]); |
203 | |
|
204 | | #if ((DFRACT_BITS - PCM_OUT_BITS - LDFB_HEADROOM + (3) - 1) > 0) |
205 | | FDK_ASSERT((-WTS0 - 1 + scale) >= 0); |
206 | | FDK_ASSERT(tmp0 <= ((FIXP_DBL)0x7FFFFFFF - |
207 | | rnd_val_wts0)); /* rounding must not cause overflow */ |
208 | | output[(N * 3 / 4 + i)] = (PCM_DEC)SATURATE_RIGHT_SHIFT( |
209 | | tmp0 + rnd_val_wts0, -WTS0 - 1 + scale, PCM_OUT_BITS); |
210 | | #else |
211 | 0 | FDK_ASSERT((WTS0 + 1 - scale) >= 0); |
212 | 0 | output[(N * 3 / 4 + i)] = |
213 | 0 | (PCM_DEC)SATURATE_LEFT_SHIFT(tmp0, WTS0 + 1 - scale, PCM_OUT_BITS); |
214 | 0 | #endif |
215 | 0 | } |
216 | 0 | } |
217 | | |
218 | | int InvMdctTransformLowDelay_fdk(FIXP_DBL *mdctData, const int mdctData_e, |
219 | | PCM_DEC *output, FIXP_DBL *fs_buffer, |
220 | 0 | const int N) { |
221 | 0 | const FIXP_WTB *coef; |
222 | 0 | FIXP_DBL gain = (FIXP_DBL)0; |
223 | 0 | int scale = mdctData_e + MDCT_OUT_HEADROOM - |
224 | 0 | LDFB_HEADROOM; /* The LDFB_HEADROOM is compensated inside |
225 | | multE2_DinvF_fdk() below */ |
226 | 0 | int i; |
227 | | |
228 | | /* Select LD window slope */ |
229 | 0 | switch (N) { |
230 | 0 | case 256: |
231 | 0 | coef = LowDelaySynthesis256; |
232 | 0 | break; |
233 | 0 | case 240: |
234 | 0 | coef = LowDelaySynthesis240; |
235 | 0 | break; |
236 | 0 | case 160: |
237 | 0 | coef = LowDelaySynthesis160; |
238 | 0 | break; |
239 | 0 | case 128: |
240 | 0 | coef = LowDelaySynthesis128; |
241 | 0 | break; |
242 | 0 | case 120: |
243 | 0 | coef = LowDelaySynthesis120; |
244 | 0 | break; |
245 | 0 | case 512: |
246 | 0 | coef = LowDelaySynthesis512; |
247 | 0 | break; |
248 | 0 | case 480: |
249 | 0 | default: |
250 | 0 | coef = LowDelaySynthesis480; |
251 | 0 | break; |
252 | 0 | } |
253 | | |
254 | | /* |
255 | | Apply exponent and 1/N factor. |
256 | | Note: "scale" is off by one because for LD_MDCT the window length is twice |
257 | | the window length of a regular MDCT. This is corrected inside |
258 | | multE2_DinvF_fdk(). Refer to ISO/IEC 14496-3:2009 page 277, |
259 | | chapter 4.6.20.2 "Low Delay Window". |
260 | | */ |
261 | 0 | imdct_gain(&gain, &scale, N); |
262 | |
|
263 | 0 | dct_IV(mdctData, N, &scale); |
264 | |
|
265 | 0 | if (N == 256 || N == 240 || N == 160) { |
266 | 0 | scale -= 1; |
267 | 0 | } else if (N == 128 || N == 120) { |
268 | 0 | scale -= 2; |
269 | 0 | } |
270 | |
|
271 | 0 | if (gain != (FIXP_DBL)0) { |
272 | 0 | for (i = 0; i < N; i++) { |
273 | 0 | mdctData[i] = fMult(mdctData[i], gain); |
274 | 0 | } |
275 | 0 | } |
276 | 0 | scaleValuesSaturate(mdctData, N, scale); |
277 | | |
278 | | /* Since all exponent and factors have been applied, current exponent is zero. |
279 | | */ |
280 | 0 | multE2_DinvF_fdk(output, mdctData, coef, fs_buffer, N); |
281 | |
|
282 | 0 | return (1); |
283 | 0 | } |