Coverage Report

Created: 2025-07-01 06:21

/src/aac/libSBRenc/src/invf_est.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** SBR encoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
#include "invf_est.h"
104
#include "sbr_misc.h"
105
106
#include "genericStds.h"
107
108
#define MAX_NUM_REGIONS 10
109
#define SCALE_FAC_QUO 512.0f
110
#define SCALE_FAC_NRG 256.0f
111
112
#ifndef min
113
0
#define min(a, b) (a < b ? a : b)
114
#endif
115
116
#ifndef max
117
0
#define max(a, b) (a > b ? a : b)
118
#endif
119
120
static const FIXP_DBL quantStepsSbr[4] = {
121
    0x00400000, 0x02800000, 0x03800000,
122
    0x04c00000}; /* table scaled with SCALE_FAC_QUO */
123
static const FIXP_DBL quantStepsOrig[4] = {
124
    0x00000000, 0x00c00000, 0x01c00000,
125
    0x02800000}; /* table scaled with SCALE_FAC_QUO */
126
static const FIXP_DBL nrgBorders[4] = {
127
    0x0c800000, 0x0f000000, 0x11800000,
128
    0x14000000}; /* table scaled with SCALE_FAC_NRG */
129
130
static const DETECTOR_PARAMETERS detectorParamsAAC = {
131
    quantStepsSbr,
132
    quantStepsOrig,
133
    nrgBorders,
134
    4, /* Number of borders SBR. */
135
    4, /* Number of borders orig. */
136
    4, /* Number of borders Nrg. */
137
    {
138
        /* Region space. */
139
        {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF,
140
         INVF_OFF}, /*    |      */
141
        {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF,
142
         INVF_OFF}, /*    |      */
143
        {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
144
         INVF_OFF}, /* regionSbr */
145
        {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
146
         INVF_OFF}, /*    |      */
147
        {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
148
         INVF_OFF} /*    |      */
149
    }, /*------------------------ regionOrig ---------------------------------*/
150
    {
151
        /* Region space transient. */
152
        {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
153
         INVF_OFF}, /*    |      */
154
        {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
155
         INVF_OFF}, /*    |      */
156
        {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF,
157
         INVF_OFF}, /* regionSbr */
158
        {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
159
         INVF_OFF}, /*    |      */
160
        {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
161
         INVF_OFF} /*    |      */
162
    }, /*------------------------ regionOrig ---------------------------------*/
163
    {-4, -3, -2, -1,
164
     0} /* Reduction factor of the inverse filtering for low energies.*/
165
};
166
167
static const FIXP_DBL hysteresis =
168
    0x00400000; /* Delta value for hysteresis. scaled with SCALE_FAC_QUO */
169
170
/*
171
 * AAC+SBR PARAMETERS for Speech
172
 *********************************/
173
static const DETECTOR_PARAMETERS detectorParamsAACSpeech = {
174
    quantStepsSbr,
175
    quantStepsOrig,
176
    nrgBorders,
177
    4, /* Number of borders SBR. */
178
    4, /* Number of borders orig. */
179
    4, /* Number of borders Nrg. */
180
    {
181
        /* Region space. */
182
        {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
183
         INVF_OFF}, /*    |      */
184
        {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
185
         INVF_OFF}, /*    |      */
186
        {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF,
187
         INVF_OFF}, /* regionSbr */
188
        {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
189
         INVF_OFF}, /*    |      */
190
        {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
191
         INVF_OFF} /*    |      */
192
    }, /*------------------------ regionOrig ---------------------------------*/
193
    {
194
        /* Region space transient. */
195
        {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
196
         INVF_OFF}, /*    |      */
197
        {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF,
198
         INVF_OFF}, /*    |      */
199
        {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF,
200
         INVF_OFF}, /* regionSbr */
201
        {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
202
         INVF_OFF}, /*    |      */
203
        {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF,
204
         INVF_OFF} /*    |      */
205
    }, /*------------------------ regionOrig ---------------------------------*/
206
    {-4, -3, -2, -1,
207
     0} /* Reduction factor of the inverse filtering for low energies.*/
208
};
209
210
/*
211
 * Smoothing filters.
212
 ************************/
213
typedef const FIXP_DBL FIR_FILTER[5];
214
215
static const FIR_FILTER fir_0 = {0x7fffffff, 0x00000000, 0x00000000, 0x00000000,
216
                                 0x00000000};
217
static const FIR_FILTER fir_1 = {0x2aaaaa80, 0x555554ff, 0x00000000, 0x00000000,
218
                                 0x00000000};
219
static const FIR_FILTER fir_2 = {0x10000000, 0x30000000, 0x40000000, 0x00000000,
220
                                 0x00000000};
221
static const FIR_FILTER fir_3 = {0x077f80e8, 0x199999a0, 0x2bb3b240, 0x33333340,
222
                                 0x00000000};
223
static const FIR_FILTER fir_4 = {0x04130598, 0x0ebdb000, 0x1becfa60, 0x2697a4c0,
224
                                 0x2aaaaa80};
225
226
static const FIR_FILTER *const fir_table[5] = {&fir_0, &fir_1, &fir_2, &fir_3,
227
                                               &fir_4};
228
229
/**************************************************************************/
230
/*!
231
  \brief     Calculates the values used for the detector.
232
233
234
  \return    none
235
236
*/
237
/**************************************************************************/
238
static void calculateDetectorValues(
239
    FIXP_DBL **quotaMatrixOrig, /*!< Matrix holding the tonality values of the
240
                                   original. */
241
    SCHAR *indexVector,         /*!< Index vector to obtain the patched data. */
242
    FIXP_DBL *nrgVector,        /*!< Energy vector. */
243
    DETECTOR_VALUES *detectorValues, /*!< pointer to DETECTOR_VALUES struct. */
244
    INT startChannel,                /*!< Start channel. */
245
    INT stopChannel,                 /*!< Stop channel. */
246
    INT startIndex,                  /*!< Start index. */
247
    INT stopIndex,                   /*!< Stop index. */
248
    INT numberOfStrongest /*!< The number of sorted tonal components to be
249
                             considered. */
250
0
) {
251
0
  INT i, temp, j;
252
253
0
  const FIXP_DBL *filter = *fir_table[INVF_SMOOTHING_LENGTH];
254
0
  FIXP_DBL origQuotaMeanStrongest, sbrQuotaMeanStrongest;
255
0
  FIXP_DBL origQuota, sbrQuota;
256
0
  FIXP_DBL invIndex, invChannel, invTemp;
257
0
  FIXP_DBL quotaVecOrig[64], quotaVecSbr[64];
258
259
0
  FDKmemclear(quotaVecOrig, 64 * sizeof(FIXP_DBL));
260
0
  FDKmemclear(quotaVecSbr, 64 * sizeof(FIXP_DBL));
261
262
0
  invIndex = GetInvInt(stopIndex - startIndex);
263
0
  invChannel = GetInvInt(stopChannel - startChannel);
264
265
  /*
266
   Calculate the mean value, over the current time segment, for the original,
267
   the HFR and the difference, over all channels in the current frequency range.
268
   NOTE: the averaging is done on the values quota/(1 - quota + RELAXATION).
269
   */
270
271
  /* The original, the sbr signal and the total energy */
272
0
  detectorValues->avgNrg = FL2FXCONST_DBL(0.0f);
273
0
  for (j = startIndex; j < stopIndex; j++) {
274
0
    for (i = startChannel; i < stopChannel; i++) {
275
0
      quotaVecOrig[i] += fMult(quotaMatrixOrig[j][i], invIndex);
276
277
0
      if (indexVector[i] != -1)
278
0
        quotaVecSbr[i] += fMult(quotaMatrixOrig[j][indexVector[i]], invIndex);
279
0
    }
280
0
    detectorValues->avgNrg += fMult(nrgVector[j], invIndex);
281
0
  }
282
283
  /*
284
   Calculate the mean value, over the current frequency range, for the original,
285
   the HFR and the difference. Also calculate the same mean values for the three
286
   vectors, but only includeing the x strongest copmponents.
287
   */
288
289
0
  origQuota = FL2FXCONST_DBL(0.0f);
290
0
  sbrQuota = FL2FXCONST_DBL(0.0f);
291
0
  for (i = startChannel; i < stopChannel; i++) {
292
0
    origQuota += fMultDiv2(quotaVecOrig[i], invChannel);
293
0
    sbrQuota += fMultDiv2(quotaVecSbr[i], invChannel);
294
0
  }
295
296
  /*
297
   Calculate the mean value for the x strongest components
298
  */
299
0
  FDKsbrEnc_Shellsort_fract(quotaVecOrig + startChannel,
300
0
                            stopChannel - startChannel);
301
0
  FDKsbrEnc_Shellsort_fract(quotaVecSbr + startChannel,
302
0
                            stopChannel - startChannel);
303
304
0
  origQuotaMeanStrongest = FL2FXCONST_DBL(0.0f);
305
0
  sbrQuotaMeanStrongest = FL2FXCONST_DBL(0.0f);
306
307
0
  temp = min(stopChannel - startChannel, numberOfStrongest);
308
0
  invTemp = GetInvInt(temp);
309
310
0
  for (i = 0; i < temp; i++) {
311
0
    origQuotaMeanStrongest +=
312
0
        fMultDiv2(quotaVecOrig[i + stopChannel - temp], invTemp);
313
0
    sbrQuotaMeanStrongest +=
314
0
        fMultDiv2(quotaVecSbr[i + stopChannel - temp], invTemp);
315
0
  }
316
317
  /*
318
   The value for the strongest component
319
  */
320
0
  detectorValues->origQuotaMax = quotaVecOrig[stopChannel - 1];
321
0
  detectorValues->sbrQuotaMax = quotaVecSbr[stopChannel - 1];
322
323
  /*
324
   Buffer values
325
  */
326
0
  FDKmemmove(detectorValues->origQuotaMean, detectorValues->origQuotaMean + 1,
327
0
             INVF_SMOOTHING_LENGTH * sizeof(FIXP_DBL));
328
0
  FDKmemmove(detectorValues->sbrQuotaMean, detectorValues->sbrQuotaMean + 1,
329
0
             INVF_SMOOTHING_LENGTH * sizeof(FIXP_DBL));
330
0
  FDKmemmove(detectorValues->origQuotaMeanStrongest,
331
0
             detectorValues->origQuotaMeanStrongest + 1,
332
0
             INVF_SMOOTHING_LENGTH * sizeof(FIXP_DBL));
333
0
  FDKmemmove(detectorValues->sbrQuotaMeanStrongest,
334
0
             detectorValues->sbrQuotaMeanStrongest + 1,
335
0
             INVF_SMOOTHING_LENGTH * sizeof(FIXP_DBL));
336
337
0
  detectorValues->origQuotaMean[INVF_SMOOTHING_LENGTH] = origQuota << 1;
338
0
  detectorValues->sbrQuotaMean[INVF_SMOOTHING_LENGTH] = sbrQuota << 1;
339
0
  detectorValues->origQuotaMeanStrongest[INVF_SMOOTHING_LENGTH] =
340
0
      origQuotaMeanStrongest << 1;
341
0
  detectorValues->sbrQuotaMeanStrongest[INVF_SMOOTHING_LENGTH] =
342
0
      sbrQuotaMeanStrongest << 1;
343
344
  /*
345
   Filter values
346
  */
347
0
  detectorValues->origQuotaMeanFilt = FL2FXCONST_DBL(0.0f);
348
0
  detectorValues->sbrQuotaMeanFilt = FL2FXCONST_DBL(0.0f);
349
0
  detectorValues->origQuotaMeanStrongestFilt = FL2FXCONST_DBL(0.0f);
350
0
  detectorValues->sbrQuotaMeanStrongestFilt = FL2FXCONST_DBL(0.0f);
351
352
0
  for (i = 0; i < INVF_SMOOTHING_LENGTH + 1; i++) {
353
0
    detectorValues->origQuotaMeanFilt +=
354
0
        fMult(detectorValues->origQuotaMean[i], filter[i]);
355
0
    detectorValues->sbrQuotaMeanFilt +=
356
0
        fMult(detectorValues->sbrQuotaMean[i], filter[i]);
357
0
    detectorValues->origQuotaMeanStrongestFilt +=
358
0
        fMult(detectorValues->origQuotaMeanStrongest[i], filter[i]);
359
0
    detectorValues->sbrQuotaMeanStrongestFilt +=
360
0
        fMult(detectorValues->sbrQuotaMeanStrongest[i], filter[i]);
361
0
  }
362
0
}
363
364
/**************************************************************************/
365
/*!
366
  \brief     Returns the region in which the input value belongs.
367
368
369
370
  \return    region.
371
372
*/
373
/**************************************************************************/
374
static INT findRegion(
375
    FIXP_DBL currVal,        /*!< The current value. */
376
    const FIXP_DBL *borders, /*!< The border of the regions. */
377
    const INT numBorders     /*!< The number of borders. */
378
0
) {
379
0
  INT i;
380
381
0
  if (currVal < borders[0]) {
382
0
    return 0;
383
0
  }
384
385
0
  for (i = 1; i < numBorders; i++) {
386
0
    if (currVal >= borders[i - 1] && currVal < borders[i]) {
387
0
      return i;
388
0
    }
389
0
  }
390
391
0
  if (currVal >= borders[numBorders - 1]) {
392
0
    return numBorders;
393
0
  }
394
395
0
  return 0; /* We never get here, it's just to avoid compiler warnings.*/
396
0
}
397
398
/**************************************************************************/
399
/*!
400
  \brief     Makes a clever decision based on the quota vector.
401
402
403
  \return     decision on which invf mode to use
404
405
*/
406
/**************************************************************************/
407
static INVF_MODE decisionAlgorithm(
408
    const DETECTOR_PARAMETERS
409
        *detectorParams, /*!< Struct with the detector parameters. */
410
    DETECTOR_VALUES *detectorValues, /*!< Struct with the detector values. */
411
    INT transientFlag,  /*!< Flag indicating if there is a transient present.*/
412
    INT *prevRegionSbr, /*!< The previous region in which the Sbr value was. */
413
    INT *prevRegionOrig /*!< The previous region in which the Orig value was. */
414
0
) {
415
0
  INT invFiltLevel, regionSbr, regionOrig, regionNrg;
416
417
  /*
418
   Current thresholds.
419
   */
420
0
  const INT numRegionsSbr = detectorParams->numRegionsSbr;
421
0
  const INT numRegionsOrig = detectorParams->numRegionsOrig;
422
0
  const INT numRegionsNrg = detectorParams->numRegionsNrg;
423
424
0
  FIXP_DBL quantStepsSbrTmp[MAX_NUM_REGIONS];
425
0
  FIXP_DBL quantStepsOrigTmp[MAX_NUM_REGIONS];
426
427
  /*
428
   Current detector values.
429
   */
430
0
  FIXP_DBL origQuotaMeanFilt;
431
0
  FIXP_DBL sbrQuotaMeanFilt;
432
0
  FIXP_DBL nrg;
433
434
  /* 0.375 = 3.0 / 8.0; 0.31143075889 = log2(RELAXATION)/64.0; 0.625 =
435
   * log(16)/64.0; 0.6875 = 44/64.0 */
436
0
  origQuotaMeanFilt =
437
0
      (fMultDiv2(FL2FXCONST_DBL(2.f * 0.375f),
438
0
                 (FIXP_DBL)(CalcLdData(max(detectorValues->origQuotaMeanFilt,
439
0
                                           (FIXP_DBL)1)) +
440
0
                            FL2FXCONST_DBL(0.31143075889f))))
441
0
      << 0; /* scaled by 1/2^9 */
442
0
  sbrQuotaMeanFilt =
443
0
      (fMultDiv2(FL2FXCONST_DBL(2.f * 0.375f),
444
0
                 (FIXP_DBL)(CalcLdData(max(detectorValues->sbrQuotaMeanFilt,
445
0
                                           (FIXP_DBL)1)) +
446
0
                            FL2FXCONST_DBL(0.31143075889f))))
447
0
      << 0; /* scaled by 1/2^9 */
448
  /* If energy is zero then we will get different results for different word
449
   * lengths. */
450
0
  nrg =
451
0
      (fMultDiv2(FL2FXCONST_DBL(2.f * 0.375f),
452
0
                 (FIXP_DBL)(CalcLdData(detectorValues->avgNrg + (FIXP_DBL)1) +
453
0
                            FL2FXCONST_DBL(0.0625f) + FL2FXCONST_DBL(0.6875f))))
454
0
      << 0; /* scaled by 1/2^8; 2^44 -> qmf energy scale */
455
456
0
  FDKmemcpy(quantStepsSbrTmp, detectorParams->quantStepsSbr,
457
0
            numRegionsSbr * sizeof(FIXP_DBL));
458
0
  FDKmemcpy(quantStepsOrigTmp, detectorParams->quantStepsOrig,
459
0
            numRegionsOrig * sizeof(FIXP_DBL));
460
461
0
  if (*prevRegionSbr < numRegionsSbr)
462
0
    quantStepsSbrTmp[*prevRegionSbr] =
463
0
        detectorParams->quantStepsSbr[*prevRegionSbr] + hysteresis;
464
0
  if (*prevRegionSbr > 0)
465
0
    quantStepsSbrTmp[*prevRegionSbr - 1] =
466
0
        detectorParams->quantStepsSbr[*prevRegionSbr - 1] - hysteresis;
467
468
0
  if (*prevRegionOrig < numRegionsOrig)
469
0
    quantStepsOrigTmp[*prevRegionOrig] =
470
0
        detectorParams->quantStepsOrig[*prevRegionOrig] + hysteresis;
471
0
  if (*prevRegionOrig > 0)
472
0
    quantStepsOrigTmp[*prevRegionOrig - 1] =
473
0
        detectorParams->quantStepsOrig[*prevRegionOrig - 1] - hysteresis;
474
475
0
  regionSbr = findRegion(sbrQuotaMeanFilt, quantStepsSbrTmp, numRegionsSbr);
476
0
  regionOrig = findRegion(origQuotaMeanFilt, quantStepsOrigTmp, numRegionsOrig);
477
0
  regionNrg = findRegion(nrg, detectorParams->nrgBorders, numRegionsNrg);
478
479
0
  *prevRegionSbr = regionSbr;
480
0
  *prevRegionOrig = regionOrig;
481
482
  /* Use different settings if a transient is present*/
483
0
  invFiltLevel =
484
0
      (transientFlag == 1)
485
0
          ? detectorParams->regionSpaceTransient[regionSbr][regionOrig]
486
0
          : detectorParams->regionSpace[regionSbr][regionOrig];
487
488
  /* Compensate for low energy.*/
489
0
  invFiltLevel =
490
0
      max(invFiltLevel + detectorParams->EnergyCompFactor[regionNrg], 0);
491
492
0
  return (INVF_MODE)(invFiltLevel);
493
0
}
494
495
/**************************************************************************/
496
/*!
497
  \brief     Estiamtion of the inverse filtering level required
498
             in the decoder.
499
500
   A second order LPC is calculated for every filterbank channel, using
501
   the covariance method. THe ratio between the energy of the predicted
502
   signal and the energy of the non-predictable signal is calcualted.
503
504
  \return    none.
505
506
*/
507
/**************************************************************************/
508
void FDKsbrEnc_qmfInverseFilteringDetector(
509
    HANDLE_SBR_INV_FILT_EST
510
        hInvFilt,           /*!< Handle to the SBR_INV_FILT_EST struct. */
511
    FIXP_DBL **quotaMatrix, /*!< The matrix holding the tonality values of the
512
                               original. */
513
    FIXP_DBL *nrgVector,    /*!< The energy vector. */
514
    SCHAR *indexVector,     /*!< Index vector to obtain the patched data. */
515
    INT startIndex,         /*!< Start index. */
516
    INT stopIndex,          /*!< Stop index. */
517
    INT transientFlag, /*!< Flag indicating if a transient is present or not.*/
518
    INVF_MODE *infVec  /*!< Vector holding the inverse filtering levels. */
519
0
) {
520
0
  INT band;
521
522
  /*
523
   * Do the inverse filtering level estimation.
524
   *****************************************************/
525
0
  for (band = 0; band < hInvFilt->noDetectorBands; band++) {
526
0
    INT startChannel = hInvFilt->freqBandTableInvFilt[band];
527
0
    INT stopChannel = hInvFilt->freqBandTableInvFilt[band + 1];
528
529
0
    calculateDetectorValues(quotaMatrix, indexVector, nrgVector,
530
0
                            &hInvFilt->detectorValues[band], startChannel,
531
0
                            stopChannel, startIndex, stopIndex,
532
0
                            hInvFilt->numberOfStrongest);
533
534
0
    infVec[band] = decisionAlgorithm(
535
0
        hInvFilt->detectorParams, &hInvFilt->detectorValues[band],
536
0
        transientFlag, &hInvFilt->prevRegionSbr[band],
537
0
        &hInvFilt->prevRegionOrig[band]);
538
0
  }
539
0
}
540
541
/**************************************************************************/
542
/*!
543
  \brief     Initialize an instance of the inverse filtering level estimator.
544
545
546
  \return   errorCode, noError if successful.
547
548
*/
549
/**************************************************************************/
550
INT FDKsbrEnc_initInvFiltDetector(
551
    HANDLE_SBR_INV_FILT_EST
552
        hInvFilt, /*!< Pointer to a handle to the SBR_INV_FILT_EST struct. */
553
    INT *freqBandTableDetector, /*!< Frequency band table for the inverse
554
                                   filtering. */
555
    INT numDetectorBands,       /*!< Number of inverse filtering bands. */
556
    UINT
557
        useSpeechConfig /*!< Flag: adapt tuning parameters according to speech*/
558
0
) {
559
0
  INT i;
560
561
0
  FDKmemclear(hInvFilt, sizeof(SBR_INV_FILT_EST));
562
563
0
  hInvFilt->detectorParams =
564
0
      (useSpeechConfig) ? &detectorParamsAACSpeech : &detectorParamsAAC;
565
566
0
  hInvFilt->noDetectorBandsMax = numDetectorBands;
567
568
  /*
569
     Memory initialisation
570
  */
571
0
  for (i = 0; i < hInvFilt->noDetectorBandsMax; i++) {
572
0
    FDKmemclear(&hInvFilt->detectorValues[i], sizeof(DETECTOR_VALUES));
573
0
    hInvFilt->prevInvfMode[i] = INVF_OFF;
574
0
    hInvFilt->prevRegionOrig[i] = 0;
575
0
    hInvFilt->prevRegionSbr[i] = 0;
576
0
  }
577
578
  /*
579
  Reset the inverse fltering detector.
580
  */
581
0
  FDKsbrEnc_resetInvFiltDetector(hInvFilt, freqBandTableDetector,
582
0
                                 hInvFilt->noDetectorBandsMax);
583
584
0
  return (0);
585
0
}
586
587
/**************************************************************************/
588
/*!
589
  \brief     resets sbr inverse filtering structure.
590
591
592
593
  \return   errorCode, noError if successful.
594
595
*/
596
/**************************************************************************/
597
INT FDKsbrEnc_resetInvFiltDetector(
598
    HANDLE_SBR_INV_FILT_EST
599
        hInvFilt,               /*!< Handle to the SBR_INV_FILT_EST struct. */
600
    INT *freqBandTableDetector, /*!< Frequency band table for the inverse
601
                                   filtering. */
602
    INT numDetectorBands)       /*!< Number of inverse filtering bands. */
603
0
{
604
0
  hInvFilt->numberOfStrongest = 1;
605
0
  FDKmemcpy(hInvFilt->freqBandTableInvFilt, freqBandTableDetector,
606
0
            (numDetectorBands + 1) * sizeof(INT));
607
0
  hInvFilt->noDetectorBands = numDetectorBands;
608
609
0
  return (0);
610
0
}