Coverage Report

Created: 2025-07-11 06:54

/src/aac/libFDK/src/dct.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file   dct.cpp
105
  \brief  DCT Implementations
106
  Library functions to calculate standard DCTs. This will most likely be
107
  replaced by hand-optimized functions for the specific target processor.
108
109
  Three different implementations of the dct type II and the dct type III
110
  transforms are provided.
111
112
  By default implementations which are based on a single, standard complex
113
  FFT-kernel are used (dctII_f() and dctIII_f()). These are specifically helpful
114
  in cases where optimized FFT libraries are already available. The FFT used in
115
  these implementation is FFT rad2 from FDK_tools.
116
117
  Of course, one might also use DCT-libraries should they be available. The DCT
118
  and DST type IV implementations are only available in a version based on a
119
  complex FFT kernel.
120
*/
121
122
#include "dct.h"
123
124
#include "FDK_tools_rom.h"
125
#include "fft.h"
126
127
void dct_getTables(const FIXP_WTP **ptwiddle, const FIXP_STP **sin_twiddle,
128
85.7M
                   int *sin_step, int length) {
129
85.7M
  const FIXP_WTP *twiddle;
130
85.7M
  int ld2_length;
131
132
  /* Get ld2 of length - 2 + 1
133
      -2: because first table entry is window of size 4
134
      +1: because we already include +1 because of ceil(log2(length)) */
135
85.7M
  ld2_length = DFRACT_BITS - 1 - fNormz((FIXP_DBL)length) - 1;
136
137
  /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */
138
85.7M
  switch ((length) >> (ld2_length - 1)) {
139
68.4M
    case 0x4: /* radix 2 */
140
68.4M
      *sin_twiddle = SineTable1024;
141
68.4M
      *sin_step = 1 << (10 - ld2_length);
142
68.4M
      twiddle = windowSlopes[0][0][ld2_length - 1];
143
68.4M
      break;
144
472k
    case 0x7: /* 10 ms */
145
472k
      *sin_twiddle = SineTable480;
146
472k
      *sin_step = 1 << (8 - ld2_length);
147
472k
      twiddle = windowSlopes[0][1][ld2_length];
148
472k
      break;
149
16.5M
    case 0x6: /* 3/4 of radix 2 */
150
16.5M
      *sin_twiddle = SineTable384;
151
16.5M
      *sin_step = 1 << (8 - ld2_length);
152
16.5M
      twiddle = windowSlopes[0][2][ld2_length];
153
16.5M
      break;
154
228k
    case 0x5: /* 5/16 of radix 2*/
155
228k
      *sin_twiddle = SineTable80;
156
228k
      *sin_step = 1 << (6 - ld2_length);
157
228k
      twiddle = windowSlopes[0][3][ld2_length];
158
228k
      break;
159
0
    default:
160
0
      *sin_twiddle = NULL;
161
0
      *sin_step = 0;
162
0
      twiddle = NULL;
163
0
      break;
164
85.7M
  }
165
166
85.7M
  if (ptwiddle != NULL) {
167
77.3M
    FDK_ASSERT(twiddle != NULL);
168
77.3M
    *ptwiddle = twiddle;
169
77.3M
  }
170
171
85.7M
  FDK_ASSERT(*sin_step > 0);
172
85.7M
}
173
174
#if !defined(FUNCTION_dct_III)
175
void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */
176
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
177
             int L,          /*!< lenght of transform */
178
1.19M
             int *pDat_e) {
179
1.19M
  const FIXP_WTP *sin_twiddle;
180
1.19M
  int i;
181
1.19M
  FIXP_DBL xr, accu1, accu2;
182
1.19M
  int inc, index;
183
1.19M
  int M = L >> 1;
184
185
1.19M
  FDK_ASSERT(L % 4 == 0);
186
1.19M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
187
1.19M
  inc >>= 1;
188
189
1.19M
  FIXP_DBL *pTmp_0 = &tmp[2];
190
1.19M
  FIXP_DBL *pTmp_1 = &tmp[(M - 1) * 2];
191
192
1.19M
  index = 4 * inc;
193
194
  /* This loop performs multiplication for index i (i*inc) */
195
9.54M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
196
8.34M
    FIXP_DBL accu3, accu4, accu5, accu6;
197
198
8.34M
    cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle[i * inc]);
199
8.34M
    cplxMultDiv2(&accu4, &accu3, pDat[M + i], pDat[M - i],
200
8.34M
                 sin_twiddle[(M - i) * inc]);
201
8.34M
    accu3 >>= 1;
202
8.34M
    accu4 >>= 1;
203
204
    /* This method is better for ARM926, that uses operand2 shifted right by 1
205
     * always */
206
8.34M
    if (2 * i < (M / 2)) {
207
3.57M
      cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1 >> 1)),
208
3.57M
                   ((accu2 >> 1) + accu4), sin_twiddle[index]);
209
4.77M
    } else {
210
4.77M
      cplxMultDiv2(&accu6, &accu5, ((accu2 >> 1) + accu4),
211
4.77M
                   (accu3 - (accu1 >> 1)), sin_twiddle[index]);
212
4.77M
      accu6 = -accu6;
213
4.77M
    }
214
8.34M
    xr = (accu1 >> 1) + accu3;
215
8.34M
    pTmp_0[0] = (xr >> 1) - accu5;
216
8.34M
    pTmp_1[0] = (xr >> 1) + accu5;
217
218
8.34M
    xr = (accu2 >> 1) - accu4;
219
8.34M
    pTmp_0[1] = (xr >> 1) - accu6;
220
8.34M
    pTmp_1[1] = -((xr >> 1) + accu6);
221
222
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
223
     * short tables. */
224
8.34M
    if (2 * i < ((M / 2) - 1)) {
225
3.57M
      index += 4 * inc;
226
4.77M
    } else if (2 * i >= ((M / 2))) {
227
4.77M
      index -= 4 * inc;
228
4.77M
    }
229
8.34M
  }
230
231
1.19M
  xr = fMultDiv2(pDat[M], sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
232
1.19M
  tmp[0] = ((pDat[0] >> 1) + xr) >> 1;
233
1.19M
  tmp[1] = ((pDat[0] >> 1) - xr) >> 1;
234
235
1.19M
  cplxMultDiv2(&accu2, &accu1, pDat[L - (M / 2)], pDat[M / 2],
236
1.19M
               sin_twiddle[M * inc / 2]);
237
1.19M
  tmp[M] = accu1 >> 1;
238
1.19M
  tmp[M + 1] = accu2 >> 1;
239
240
  /* dit_fft expects 1 bit scaled input values */
241
1.19M
  fft(M, tmp, pDat_e);
242
243
  /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */
244
1.19M
  pTmp_1 = &tmp[L];
245
10.7M
  for (i = M >> 1; i--;) {
246
9.54M
    FIXP_DBL tmp1, tmp2, tmp3, tmp4;
247
9.54M
    tmp1 = *tmp++;
248
9.54M
    tmp2 = *tmp++;
249
9.54M
    tmp3 = *--pTmp_1;
250
9.54M
    tmp4 = *--pTmp_1;
251
9.54M
    *pDat++ = tmp1;
252
9.54M
    *pDat++ = tmp3;
253
9.54M
    *pDat++ = tmp2;
254
9.54M
    *pDat++ = tmp4;
255
9.54M
  }
256
257
1.19M
  *pDat_e += 2;
258
1.19M
}
259
260
void dst_III(FIXP_DBL *pDat, /*!< pointer to input/output */
261
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
262
             int L,          /*!< lenght of transform */
263
0
             int *pDat_e) {
264
0
  int L2 = L >> 1;
265
0
  int i;
266
0
  FIXP_DBL t;
267
268
  /* note: DCT III is reused here, direct DST III implementation might be more
269
   * efficient */
270
271
  /* mirror input */
272
0
  for (i = 0; i < L2; i++) {
273
0
    t = pDat[i];
274
0
    pDat[i] = pDat[L - 1 - i];
275
0
    pDat[L - 1 - i] = t;
276
0
  }
277
278
  /* DCT-III */
279
0
  dct_III(pDat, tmp, L, pDat_e);
280
281
  /* flip signs at odd indices */
282
0
  for (i = 1; i < L; i += 2) pDat[i] = -pDat[i];
283
0
}
284
285
#endif
286
287
#if !defined(FUNCTION_dct_II)
288
void dct_II(
289
    FIXP_DBL *pDat, /*!< pointer to input/output */
290
    FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
291
    int L, /*!< lenght of transform (has to be a multiple of 8 (or 4 in case
292
              DCT_II_L_MULTIPLE_OF_4_SUPPORT is defined) */
293
7.21M
    int *pDat_e) {
294
7.21M
  const FIXP_WTP *sin_twiddle;
295
7.21M
  FIXP_DBL accu1, accu2;
296
7.21M
  FIXP_DBL *pTmp_0, *pTmp_1;
297
298
7.21M
  int i;
299
7.21M
  int inc, index = 0;
300
7.21M
  int M = L >> 1;
301
302
7.21M
  FDK_ASSERT(L % 4 == 0);
303
7.21M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
304
7.21M
  inc >>= 1;
305
306
7.21M
  {
307
82.8M
    for (i = 0; i < M; i++) {
308
75.5M
      tmp[i] = pDat[2 * i] >> 2;
309
75.5M
      tmp[L - 1 - i] = pDat[2 * i + 1] >> 2;
310
75.5M
    }
311
7.21M
  }
312
313
7.21M
  fft(M, tmp, pDat_e);
314
315
7.21M
  pTmp_0 = &tmp[2];
316
7.21M
  pTmp_1 = &tmp[(M - 1) * 2];
317
318
7.21M
  index = inc * 4;
319
320
37.7M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
321
30.5M
    FIXP_DBL a1, a2;
322
30.5M
    FIXP_DBL accu3, accu4;
323
324
30.5M
    a1 = ((pTmp_0[1] >> 1) + (pTmp_1[1] >> 1));
325
30.5M
    a2 = ((pTmp_1[0] >> 1) - (pTmp_0[0] >> 1));
326
327
30.5M
    if (2 * i < (M / 2)) {
328
13.5M
      cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle[index]);
329
17.0M
    } else {
330
17.0M
      cplxMultDiv2(&accu1, &accu2, a1, a2, sin_twiddle[index]);
331
17.0M
      accu1 = -accu1;
332
17.0M
    }
333
30.5M
    accu1 <<= 1;
334
30.5M
    accu2 <<= 1;
335
336
30.5M
    a1 = ((pTmp_0[0] >> 1) + (pTmp_1[0] >> 1));
337
30.5M
    a2 = ((pTmp_0[1] >> 1) - (pTmp_1[1] >> 1));
338
339
30.5M
    cplxMult(&accu3, &accu4, (accu1 + a2), (a1 + accu2), sin_twiddle[i * inc]);
340
30.5M
    pDat[L - i] = -accu3;
341
30.5M
    pDat[i] = accu4;
342
343
30.5M
    cplxMult(&accu3, &accu4, (accu1 - a2), (a1 - accu2),
344
30.5M
             sin_twiddle[(M - i) * inc]);
345
30.5M
    pDat[M + i] = -accu3;
346
30.5M
    pDat[M - i] = accu4;
347
348
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
349
     * short tables. */
350
30.5M
    if (2 * i < ((M / 2) - 1)) {
351
9.84M
      index += 4 * inc;
352
20.7M
    } else if (2 * i >= ((M / 2))) {
353
17.0M
      index -= 4 * inc;
354
17.0M
    }
355
30.5M
  }
356
357
7.21M
  cplxMult(&accu1, &accu2, tmp[M], tmp[M + 1], sin_twiddle[(M / 2) * inc]);
358
7.21M
  pDat[L - (M / 2)] = accu2;
359
7.21M
  pDat[M / 2] = accu1;
360
361
7.21M
  pDat[0] = tmp[0] + tmp[1];
362
7.21M
  pDat[M] = fMult(tmp[0] - tmp[1],
363
7.21M
                  sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
364
365
7.21M
  *pDat_e += 2;
366
7.21M
}
367
#endif
368
369
#if !defined(FUNCTION_dct_IV)
370
371
42.0M
void dct_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
372
42.0M
  int sin_step = 0;
373
42.0M
  int M = L >> 1;
374
375
42.0M
  const FIXP_WTP *twiddle;
376
42.0M
  const FIXP_STP *sin_twiddle;
377
378
42.0M
  FDK_ASSERT(L >= 4);
379
380
42.0M
  FDK_ASSERT(L >= 4);
381
382
42.0M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
383
384
42.0M
  {
385
42.0M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
386
42.0M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
387
42.0M
    int i;
388
389
    /* 29 cycles on ARM926 */
390
624M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
391
582M
      FIXP_DBL accu1, accu2, accu3, accu4;
392
393
582M
      accu1 = pDat_1[1];
394
582M
      accu2 = pDat_0[0];
395
582M
      accu3 = pDat_0[1];
396
582M
      accu4 = pDat_1[0];
397
398
582M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
399
582M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
400
401
582M
      pDat_0[0] = accu2 >> 1;
402
582M
      pDat_0[1] = accu1 >> 1;
403
582M
      pDat_1[0] = accu4 >> 1;
404
582M
      pDat_1[1] = -(accu3 >> 1);
405
582M
    }
406
42.0M
    if (M & 1) {
407
0
      FIXP_DBL accu1, accu2;
408
409
0
      accu1 = pDat_1[1];
410
0
      accu2 = pDat_0[0];
411
412
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
413
414
0
      pDat_0[0] = accu2 >> 1;
415
0
      pDat_0[1] = accu1 >> 1;
416
0
    }
417
42.0M
  }
418
419
42.0M
  fft(M, pDat, pDat_e);
420
421
42.0M
  {
422
42.0M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
423
42.0M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
424
42.0M
    FIXP_DBL accu1, accu2, accu3, accu4;
425
42.0M
    int idx, i;
426
427
    /* Sin and Cos values are 0.0f and 1.0f */
428
42.0M
    accu1 = pDat_1[0];
429
42.0M
    accu2 = pDat_1[1];
430
431
42.0M
    pDat_1[1] = -pDat_0[1];
432
433
    /* 28 cycles for ARM926 */
434
582M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
435
540M
      FIXP_STP twd = sin_twiddle[idx];
436
540M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
437
540M
      pDat_0[1] = accu3;
438
540M
      pDat_1[0] = accu4;
439
440
540M
      pDat_0 += 2;
441
540M
      pDat_1 -= 2;
442
443
540M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
444
445
540M
      accu1 = pDat_1[0];
446
540M
      accu2 = pDat_1[1];
447
448
540M
      pDat_1[1] = -accu3;
449
540M
      pDat_0[0] = accu4;
450
540M
    }
451
452
42.0M
    if ((M & 1) == 0) {
453
      /* Last Sin and Cos value pair are the same */
454
42.0M
      accu1 = fMult(accu1, WTC(0x5a82799a));
455
42.0M
      accu2 = fMult(accu2, WTC(0x5a82799a));
456
457
42.0M
      pDat_1[0] = accu1 + accu2;
458
42.0M
      pDat_0[1] = accu1 - accu2;
459
42.0M
    }
460
42.0M
  }
461
462
  /* Add twiddeling scale. */
463
42.0M
  *pDat_e += 2;
464
42.0M
}
465
#endif /* defined (FUNCTION_dct_IV) */
466
467
#if !defined(FUNCTION_dst_IV)
468
35.3M
void dst_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
469
35.3M
  int sin_step = 0;
470
35.3M
  int M = L >> 1;
471
472
35.3M
  const FIXP_WTP *twiddle;
473
35.3M
  const FIXP_STP *sin_twiddle;
474
475
35.3M
  FDK_ASSERT(L >= 4);
476
477
35.3M
  FDK_ASSERT(L >= 4);
478
479
35.3M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
480
481
35.3M
  {
482
35.3M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
483
35.3M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
484
35.3M
    int i;
485
486
    /* 34 cycles on ARM926 */
487
432M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
488
397M
      FIXP_DBL accu1, accu2, accu3, accu4;
489
490
397M
      accu1 = pDat_1[1] >> 1;
491
397M
      accu2 = -(pDat_0[0] >> 1);
492
397M
      accu3 = pDat_0[1] >> 1;
493
397M
      accu4 = -(pDat_1[0] >> 1);
494
495
397M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
496
397M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
497
498
397M
      pDat_0[0] = accu2;
499
397M
      pDat_0[1] = accu1;
500
397M
      pDat_1[0] = accu4;
501
397M
      pDat_1[1] = -accu3;
502
397M
    }
503
35.3M
    if (M & 1) {
504
0
      FIXP_DBL accu1, accu2;
505
506
0
      accu1 = pDat_1[1];
507
0
      accu2 = -pDat_0[0];
508
509
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
510
511
0
      pDat_0[0] = accu2 >> 1;
512
0
      pDat_0[1] = accu1 >> 1;
513
0
    }
514
35.3M
  }
515
516
35.3M
  fft(M, pDat, pDat_e);
517
518
35.3M
  {
519
35.3M
    FIXP_DBL *RESTRICT pDat_0;
520
35.3M
    FIXP_DBL *RESTRICT pDat_1;
521
35.3M
    FIXP_DBL accu1, accu2, accu3, accu4;
522
35.3M
    int idx, i;
523
524
35.3M
    pDat_0 = &pDat[0];
525
35.3M
    pDat_1 = &pDat[L - 2];
526
527
    /* Sin and Cos values are 0.0f and 1.0f */
528
35.3M
    accu1 = pDat_1[0];
529
35.3M
    accu2 = pDat_1[1];
530
531
35.3M
    pDat_1[1] = -pDat_0[0];
532
35.3M
    pDat_0[0] = pDat_0[1];
533
534
397M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
535
361M
      FIXP_STP twd = sin_twiddle[idx];
536
537
361M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
538
361M
      pDat_1[0] = -accu3;
539
361M
      pDat_0[1] = -accu4;
540
541
361M
      pDat_0 += 2;
542
361M
      pDat_1 -= 2;
543
544
361M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
545
546
361M
      accu1 = pDat_1[0];
547
361M
      accu2 = pDat_1[1];
548
549
361M
      pDat_0[0] = accu3;
550
361M
      pDat_1[1] = -accu4;
551
361M
    }
552
553
35.3M
    if ((M & 1) == 0) {
554
      /* Last Sin and Cos value pair are the same */
555
35.3M
      accu1 = fMult(accu1, WTC(0x5a82799a));
556
35.3M
      accu2 = fMult(accu2, WTC(0x5a82799a));
557
558
35.3M
      pDat_0[1] = -accu1 - accu2;
559
35.3M
      pDat_1[0] = accu2 - accu1;
560
35.3M
    }
561
35.3M
  }
562
563
  /* Add twiddeling scale. */
564
35.3M
  *pDat_e += 2;
565
35.3M
}
566
#endif /* !defined(FUNCTION_dst_IV) */