/src/aac/libAACdec/src/aacdec_pns.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* ----------------------------------------------------------------------------- |
2 | | Software License for The Fraunhofer FDK AAC Codec Library for Android |
3 | | |
4 | | © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten |
5 | | Forschung e.V. All rights reserved. |
6 | | |
7 | | 1. INTRODUCTION |
8 | | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
9 | | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
10 | | scheme for digital audio. This FDK AAC Codec software is intended to be used on |
11 | | a wide variety of Android devices. |
12 | | |
13 | | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
14 | | general perceptual audio codecs. AAC-ELD is considered the best-performing |
15 | | full-bandwidth communications codec by independent studies and is widely |
16 | | deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
17 | | specifications. |
18 | | |
19 | | Patent licenses for necessary patent claims for the FDK AAC Codec (including |
20 | | those of Fraunhofer) may be obtained through Via Licensing |
21 | | (www.vialicensing.com) or through the respective patent owners individually for |
22 | | the purpose of encoding or decoding bit streams in products that are compliant |
23 | | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
24 | | Android devices already license these patent claims through Via Licensing or |
25 | | directly from the patent owners, and therefore FDK AAC Codec software may |
26 | | already be covered under those patent licenses when it is used for those |
27 | | licensed purposes only. |
28 | | |
29 | | Commercially-licensed AAC software libraries, including floating-point versions |
30 | | with enhanced sound quality, are also available from Fraunhofer. Users are |
31 | | encouraged to check the Fraunhofer website for additional applications |
32 | | information and documentation. |
33 | | |
34 | | 2. COPYRIGHT LICENSE |
35 | | |
36 | | Redistribution and use in source and binary forms, with or without modification, |
37 | | are permitted without payment of copyright license fees provided that you |
38 | | satisfy the following conditions: |
39 | | |
40 | | You must retain the complete text of this software license in redistributions of |
41 | | the FDK AAC Codec or your modifications thereto in source code form. |
42 | | |
43 | | You must retain the complete text of this software license in the documentation |
44 | | and/or other materials provided with redistributions of the FDK AAC Codec or |
45 | | your modifications thereto in binary form. You must make available free of |
46 | | charge copies of the complete source code of the FDK AAC Codec and your |
47 | | modifications thereto to recipients of copies in binary form. |
48 | | |
49 | | The name of Fraunhofer may not be used to endorse or promote products derived |
50 | | from this library without prior written permission. |
51 | | |
52 | | You may not charge copyright license fees for anyone to use, copy or distribute |
53 | | the FDK AAC Codec software or your modifications thereto. |
54 | | |
55 | | Your modified versions of the FDK AAC Codec must carry prominent notices stating |
56 | | that you changed the software and the date of any change. For modified versions |
57 | | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
58 | | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
59 | | AAC Codec Library for Android." |
60 | | |
61 | | 3. NO PATENT LICENSE |
62 | | |
63 | | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
64 | | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
65 | | Fraunhofer provides no warranty of patent non-infringement with respect to this |
66 | | software. |
67 | | |
68 | | You may use this FDK AAC Codec software or modifications thereto only for |
69 | | purposes that are authorized by appropriate patent licenses. |
70 | | |
71 | | 4. DISCLAIMER |
72 | | |
73 | | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
74 | | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
75 | | including but not limited to the implied warranties of merchantability and |
76 | | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
77 | | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
78 | | or consequential damages, including but not limited to procurement of substitute |
79 | | goods or services; loss of use, data, or profits, or business interruption, |
80 | | however caused and on any theory of liability, whether in contract, strict |
81 | | liability, or tort (including negligence), arising in any way out of the use of |
82 | | this software, even if advised of the possibility of such damage. |
83 | | |
84 | | 5. CONTACT INFORMATION |
85 | | |
86 | | Fraunhofer Institute for Integrated Circuits IIS |
87 | | Attention: Audio and Multimedia Departments - FDK AAC LL |
88 | | Am Wolfsmantel 33 |
89 | | 91058 Erlangen, Germany |
90 | | |
91 | | www.iis.fraunhofer.de/amm |
92 | | amm-info@iis.fraunhofer.de |
93 | | ----------------------------------------------------------------------------- */ |
94 | | |
95 | | /**************************** AAC decoder library ****************************** |
96 | | |
97 | | Author(s): Josef Hoepfl |
98 | | |
99 | | Description: perceptual noise substitution tool |
100 | | |
101 | | *******************************************************************************/ |
102 | | |
103 | | #include "aacdec_pns.h" |
104 | | |
105 | | #include "aac_ram.h" |
106 | | #include "aac_rom.h" |
107 | | #include "channelinfo.h" |
108 | | #include "block.h" |
109 | | #include "FDK_bitstream.h" |
110 | | |
111 | | #include "genericStds.h" |
112 | | |
113 | 0 | #define NOISE_OFFSET 90 /* cf. ISO 14496-3 p. 175 */ |
114 | | |
115 | | /*! |
116 | | \brief Reset InterChannel and PNS data |
117 | | |
118 | | The function resets the InterChannel and PNS data |
119 | | */ |
120 | | void CPns_ResetData(CPnsData *pPnsData, |
121 | 0 | CPnsInterChannelData *pPnsInterChannelData) { |
122 | 0 | FDK_ASSERT(pPnsData != NULL); |
123 | 0 | FDK_ASSERT(pPnsInterChannelData != NULL); |
124 | | /* Assign pointer always, since pPnsData is not persistent data */ |
125 | 0 | pPnsData->pPnsInterChannelData = pPnsInterChannelData; |
126 | 0 | pPnsData->PnsActive = 0; |
127 | 0 | pPnsData->CurrentEnergy = 0; |
128 | |
|
129 | 0 | FDKmemclear(pPnsData->pnsUsed, (8 * 16) * sizeof(UCHAR)); |
130 | 0 | FDKmemclear(pPnsInterChannelData->correlated, (8 * 16) * sizeof(UCHAR)); |
131 | 0 | } |
132 | | |
133 | | /*! |
134 | | \brief Update PNS noise generator state. |
135 | | |
136 | | The function sets the seed for PNS noise generation. |
137 | | It can be used to link two or more channels in terms of PNS. |
138 | | */ |
139 | | void CPns_UpdateNoiseState(CPnsData *pPnsData, INT *currentSeed, |
140 | 3.62k | INT *randomSeed) { |
141 | | /* use pointer because seed has to be |
142 | | same, left and right channel ! */ |
143 | 3.62k | pPnsData->currentSeed = currentSeed; |
144 | 3.62k | pPnsData->randomSeed = randomSeed; |
145 | 3.62k | } |
146 | | |
147 | | /*! |
148 | | \brief Indicates if PNS is used |
149 | | |
150 | | The function returns a value indicating whether PNS is used or not |
151 | | acordding to the noise energy |
152 | | |
153 | | \return PNS used |
154 | | */ |
155 | 0 | int CPns_IsPnsUsed(const CPnsData *pPnsData, const int group, const int band) { |
156 | 0 | unsigned pns_band = group * 16 + band; |
157 | |
|
158 | 0 | return pPnsData->pnsUsed[pns_band] & (UCHAR)1; |
159 | 0 | } |
160 | | |
161 | | /*! |
162 | | \brief Set correlation |
163 | | |
164 | | The function activates the noise correlation between the channel pair |
165 | | */ |
166 | | void CPns_SetCorrelation(CPnsData *pPnsData, const int group, const int band, |
167 | 0 | const int outofphase) { |
168 | 0 | CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData; |
169 | 0 | unsigned pns_band = group * 16 + band; |
170 | |
|
171 | 0 | pInterChannelData->correlated[pns_band] = (outofphase) ? 3 : 1; |
172 | 0 | } |
173 | | |
174 | | /*! |
175 | | \brief Indicates if correlation is used |
176 | | |
177 | | The function indicates if the noise correlation between the channel pair |
178 | | is activated |
179 | | |
180 | | \return PNS is correlated |
181 | | */ |
182 | | static int CPns_IsCorrelated(const CPnsData *pPnsData, const int group, |
183 | 0 | const int band) { |
184 | 0 | CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData; |
185 | 0 | unsigned pns_band = group * 16 + band; |
186 | |
|
187 | 0 | return (pInterChannelData->correlated[pns_band] & 0x01) ? 1 : 0; |
188 | 0 | } |
189 | | |
190 | | /*! |
191 | | \brief Indicates if correlated out of phase mode is used. |
192 | | |
193 | | The function indicates if the noise correlation between the channel pair |
194 | | is activated in out-of-phase mode. |
195 | | |
196 | | \return PNS is out-of-phase |
197 | | */ |
198 | | static int CPns_IsOutOfPhase(const CPnsData *pPnsData, const int group, |
199 | 0 | const int band) { |
200 | 0 | CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData; |
201 | 0 | unsigned pns_band = group * 16 + band; |
202 | |
|
203 | 0 | return (pInterChannelData->correlated[pns_band] & 0x02) ? 1 : 0; |
204 | 0 | } |
205 | | |
206 | | /*! |
207 | | \brief Read PNS information |
208 | | |
209 | | The function reads the PNS information from the bitstream |
210 | | */ |
211 | | void CPns_Read(CPnsData *pPnsData, HANDLE_FDK_BITSTREAM bs, |
212 | | const CodeBookDescription *hcb, SHORT *pScaleFactor, |
213 | 0 | UCHAR global_gain, int band, int group /* = 0 */) { |
214 | 0 | int delta; |
215 | 0 | UINT pns_band = group * 16 + band; |
216 | |
|
217 | 0 | if (pPnsData->PnsActive) { |
218 | | /* Next PNS band case */ |
219 | 0 | delta = CBlock_DecodeHuffmanWord(bs, hcb) - 60; |
220 | 0 | } else { |
221 | | /* First PNS band case */ |
222 | 0 | int noiseStartValue = FDKreadBits(bs, 9); |
223 | |
|
224 | 0 | delta = noiseStartValue - 256; |
225 | 0 | pPnsData->PnsActive = 1; |
226 | 0 | pPnsData->CurrentEnergy = global_gain - NOISE_OFFSET; |
227 | 0 | } |
228 | |
|
229 | 0 | pPnsData->CurrentEnergy += delta; |
230 | 0 | pScaleFactor[pns_band] = pPnsData->CurrentEnergy; |
231 | |
|
232 | 0 | pPnsData->pnsUsed[pns_band] = 1; |
233 | 0 | } |
234 | | |
235 | | /** |
236 | | * \brief Generate a vector of noise of given length. The noise values are |
237 | | * scaled in order to yield a noise energy of 1.0 |
238 | | * \param spec pointer to were the noise values will be written to. |
239 | | * \param size amount of noise values to be generated. |
240 | | * \param pRandomState pointer to the state of the random generator being used. |
241 | | * \return exponent of generated noise vector. |
242 | | */ |
243 | | static int GenerateRandomVector(FIXP_DBL *RESTRICT spec, int size, |
244 | 0 | int *pRandomState) { |
245 | 0 | int i, invNrg_e = 0, nrg_e = 0; |
246 | 0 | FIXP_DBL invNrg_m, nrg_m = FL2FXCONST_DBL(0.0f); |
247 | 0 | FIXP_DBL *RESTRICT ptr = spec; |
248 | 0 | int randomState = *pRandomState; |
249 | |
|
250 | 0 | #define GEN_NOISE_NRG_SCALE 7 |
251 | | |
252 | | /* Generate noise and calculate energy. */ |
253 | 0 | for (i = 0; i < size; i++) { |
254 | 0 | randomState = |
255 | 0 | (((INT64)1664525 * randomState) + (INT64)1013904223) & 0xFFFFFFFF; |
256 | 0 | nrg_m = fPow2AddDiv2(nrg_m, (FIXP_DBL)randomState >> GEN_NOISE_NRG_SCALE); |
257 | 0 | *ptr++ = (FIXP_DBL)randomState; |
258 | 0 | } |
259 | 0 | nrg_e = GEN_NOISE_NRG_SCALE * 2 + 1; |
260 | | |
261 | | /* weight noise with = 1 / sqrt_nrg; */ |
262 | 0 | invNrg_m = invSqrtNorm2(nrg_m << 1, &invNrg_e); |
263 | 0 | invNrg_e += -((nrg_e - 1) >> 1); |
264 | |
|
265 | 0 | for (i = size; i--;) { |
266 | 0 | spec[i] = fMult(spec[i], invNrg_m); |
267 | 0 | } |
268 | | |
269 | | /* Store random state */ |
270 | 0 | *pRandomState = randomState; |
271 | |
|
272 | 0 | return invNrg_e; |
273 | 0 | } |
274 | | |
275 | | static void ScaleBand(FIXP_DBL *RESTRICT spec, int size, int scaleFactor, |
276 | 0 | int specScale, int noise_e, int out_of_phase) { |
277 | 0 | int i, shift, sfExponent; |
278 | 0 | FIXP_DBL sfMatissa; |
279 | | |
280 | | /* Get gain from scale factor value = 2^(scaleFactor * 0.25) */ |
281 | 0 | sfMatissa = MantissaTable[scaleFactor & 0x03][0]; |
282 | | /* sfExponent = (scaleFactor >> 2) + ExponentTable[scaleFactor & 0x03][0]; */ |
283 | | /* Note: ExponentTable[scaleFactor & 0x03][0] is always 1. */ |
284 | 0 | sfExponent = (scaleFactor >> 2) + 1; |
285 | |
|
286 | 0 | if (out_of_phase != 0) { |
287 | 0 | sfMatissa = -sfMatissa; |
288 | 0 | } |
289 | | |
290 | | /* +1 because of fMultDiv2 below. */ |
291 | 0 | shift = sfExponent - specScale + 1 + noise_e; |
292 | | |
293 | | /* Apply gain to noise values */ |
294 | 0 | if (shift >= 0) { |
295 | 0 | shift = fixMin(shift, DFRACT_BITS - 1); |
296 | 0 | for (i = size; i-- != 0;) { |
297 | 0 | spec[i] = fMultDiv2(spec[i], sfMatissa) << shift; |
298 | 0 | } |
299 | 0 | } else { |
300 | 0 | shift = fixMin(-shift, DFRACT_BITS - 1); |
301 | 0 | for (i = size; i-- != 0;) { |
302 | 0 | spec[i] = fMultDiv2(spec[i], sfMatissa) >> shift; |
303 | 0 | } |
304 | 0 | } |
305 | 0 | } |
306 | | |
307 | | /*! |
308 | | \brief Apply PNS |
309 | | |
310 | | The function applies PNS (i.e. it generates noise) on the bands |
311 | | flagged as noisy bands |
312 | | |
313 | | */ |
314 | | void CPns_Apply(const CPnsData *pPnsData, const CIcsInfo *pIcsInfo, |
315 | | SPECTRAL_PTR pSpectrum, const SHORT *pSpecScale, |
316 | | const SHORT *pScaleFactor, |
317 | | const SamplingRateInfo *pSamplingRateInfo, |
318 | 0 | const INT granuleLength, const int channel) { |
319 | 0 | if (pPnsData->PnsActive) { |
320 | 0 | const short *BandOffsets = |
321 | 0 | GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo); |
322 | |
|
323 | 0 | int ScaleFactorBandsTransmitted = GetScaleFactorBandsTransmitted(pIcsInfo); |
324 | |
|
325 | 0 | for (int window = 0, group = 0; group < GetWindowGroups(pIcsInfo); |
326 | 0 | group++) { |
327 | 0 | for (int groupwin = 0; groupwin < GetWindowGroupLength(pIcsInfo, group); |
328 | 0 | groupwin++, window++) { |
329 | 0 | FIXP_DBL *spectrum = SPEC(pSpectrum, window, granuleLength); |
330 | |
|
331 | 0 | for (int band = 0; band < ScaleFactorBandsTransmitted; band++) { |
332 | 0 | if (CPns_IsPnsUsed(pPnsData, group, band)) { |
333 | 0 | UINT pns_band = window * 16 + band; |
334 | |
|
335 | 0 | int bandWidth = BandOffsets[band + 1] - BandOffsets[band]; |
336 | 0 | int noise_e; |
337 | |
|
338 | 0 | FDK_ASSERT(bandWidth >= 0); |
339 | | |
340 | 0 | if (channel > 0 && CPns_IsCorrelated(pPnsData, group, band)) { |
341 | 0 | noise_e = |
342 | 0 | GenerateRandomVector(spectrum + BandOffsets[band], bandWidth, |
343 | 0 | &pPnsData->randomSeed[pns_band]); |
344 | 0 | } else { |
345 | 0 | pPnsData->randomSeed[pns_band] = *pPnsData->currentSeed; |
346 | |
|
347 | 0 | noise_e = GenerateRandomVector(spectrum + BandOffsets[band], |
348 | 0 | bandWidth, pPnsData->currentSeed); |
349 | 0 | } |
350 | |
|
351 | 0 | int outOfPhase = CPns_IsOutOfPhase(pPnsData, group, band); |
352 | |
|
353 | 0 | ScaleBand(spectrum + BandOffsets[band], bandWidth, |
354 | 0 | pScaleFactor[group * 16 + band], pSpecScale[window], |
355 | 0 | noise_e, outOfPhase); |
356 | 0 | } |
357 | 0 | } |
358 | 0 | } |
359 | 0 | } |
360 | 0 | } |
361 | 0 | } |