Coverage Report

Created: 2025-07-12 07:02

/src/aac/libAACdec/src/aacdec_pns.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):   Josef Hoepfl
98
99
   Description: perceptual noise substitution tool
100
101
*******************************************************************************/
102
103
#include "aacdec_pns.h"
104
105
#include "aac_ram.h"
106
#include "aac_rom.h"
107
#include "channelinfo.h"
108
#include "block.h"
109
#include "FDK_bitstream.h"
110
111
#include "genericStds.h"
112
113
0
#define NOISE_OFFSET 90 /* cf. ISO 14496-3 p. 175 */
114
115
/*!
116
  \brief Reset InterChannel and PNS data
117
118
  The function resets the InterChannel and PNS data
119
*/
120
void CPns_ResetData(CPnsData *pPnsData,
121
0
                    CPnsInterChannelData *pPnsInterChannelData) {
122
0
  FDK_ASSERT(pPnsData != NULL);
123
0
  FDK_ASSERT(pPnsInterChannelData != NULL);
124
  /* Assign pointer always, since pPnsData is not persistent data */
125
0
  pPnsData->pPnsInterChannelData = pPnsInterChannelData;
126
0
  pPnsData->PnsActive = 0;
127
0
  pPnsData->CurrentEnergy = 0;
128
129
0
  FDKmemclear(pPnsData->pnsUsed, (8 * 16) * sizeof(UCHAR));
130
0
  FDKmemclear(pPnsInterChannelData->correlated, (8 * 16) * sizeof(UCHAR));
131
0
}
132
133
/*!
134
  \brief Update PNS noise generator state.
135
136
  The function sets the seed for PNS noise generation.
137
  It can be used to link two or more channels in terms of PNS.
138
*/
139
void CPns_UpdateNoiseState(CPnsData *pPnsData, INT *currentSeed,
140
3.62k
                           INT *randomSeed) {
141
  /* use pointer because seed has to be
142
     same, left and right channel ! */
143
3.62k
  pPnsData->currentSeed = currentSeed;
144
3.62k
  pPnsData->randomSeed = randomSeed;
145
3.62k
}
146
147
/*!
148
  \brief Indicates if PNS is used
149
150
  The function returns a value indicating whether PNS is used or not
151
  acordding to the noise energy
152
153
  \return  PNS used
154
*/
155
0
int CPns_IsPnsUsed(const CPnsData *pPnsData, const int group, const int band) {
156
0
  unsigned pns_band = group * 16 + band;
157
158
0
  return pPnsData->pnsUsed[pns_band] & (UCHAR)1;
159
0
}
160
161
/*!
162
  \brief Set correlation
163
164
  The function activates the noise correlation between the channel pair
165
*/
166
void CPns_SetCorrelation(CPnsData *pPnsData, const int group, const int band,
167
0
                         const int outofphase) {
168
0
  CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
169
0
  unsigned pns_band = group * 16 + band;
170
171
0
  pInterChannelData->correlated[pns_band] = (outofphase) ? 3 : 1;
172
0
}
173
174
/*!
175
  \brief Indicates if correlation is used
176
177
  The function indicates if the noise correlation between the channel pair
178
  is activated
179
180
  \return  PNS is correlated
181
*/
182
static int CPns_IsCorrelated(const CPnsData *pPnsData, const int group,
183
0
                             const int band) {
184
0
  CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
185
0
  unsigned pns_band = group * 16 + band;
186
187
0
  return (pInterChannelData->correlated[pns_band] & 0x01) ? 1 : 0;
188
0
}
189
190
/*!
191
  \brief Indicates if correlated out of phase mode is used.
192
193
  The function indicates if the noise correlation between the channel pair
194
  is activated in out-of-phase mode.
195
196
  \return  PNS is out-of-phase
197
*/
198
static int CPns_IsOutOfPhase(const CPnsData *pPnsData, const int group,
199
0
                             const int band) {
200
0
  CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
201
0
  unsigned pns_band = group * 16 + band;
202
203
0
  return (pInterChannelData->correlated[pns_band] & 0x02) ? 1 : 0;
204
0
}
205
206
/*!
207
  \brief Read PNS information
208
209
  The function reads the PNS information from the bitstream
210
*/
211
void CPns_Read(CPnsData *pPnsData, HANDLE_FDK_BITSTREAM bs,
212
               const CodeBookDescription *hcb, SHORT *pScaleFactor,
213
0
               UCHAR global_gain, int band, int group /* = 0 */) {
214
0
  int delta;
215
0
  UINT pns_band = group * 16 + band;
216
217
0
  if (pPnsData->PnsActive) {
218
    /* Next PNS band case */
219
0
    delta = CBlock_DecodeHuffmanWord(bs, hcb) - 60;
220
0
  } else {
221
    /* First PNS band case */
222
0
    int noiseStartValue = FDKreadBits(bs, 9);
223
224
0
    delta = noiseStartValue - 256;
225
0
    pPnsData->PnsActive = 1;
226
0
    pPnsData->CurrentEnergy = global_gain - NOISE_OFFSET;
227
0
  }
228
229
0
  pPnsData->CurrentEnergy += delta;
230
0
  pScaleFactor[pns_band] = pPnsData->CurrentEnergy;
231
232
0
  pPnsData->pnsUsed[pns_band] = 1;
233
0
}
234
235
/**
236
 * \brief Generate a vector of noise of given length. The noise values are
237
 *        scaled in order to yield a noise energy of 1.0
238
 * \param spec pointer to were the noise values will be written to.
239
 * \param size amount of noise values to be generated.
240
 * \param pRandomState pointer to the state of the random generator being used.
241
 * \return exponent of generated noise vector.
242
 */
243
static int GenerateRandomVector(FIXP_DBL *RESTRICT spec, int size,
244
0
                                int *pRandomState) {
245
0
  int i, invNrg_e = 0, nrg_e = 0;
246
0
  FIXP_DBL invNrg_m, nrg_m = FL2FXCONST_DBL(0.0f);
247
0
  FIXP_DBL *RESTRICT ptr = spec;
248
0
  int randomState = *pRandomState;
249
250
0
#define GEN_NOISE_NRG_SCALE 7
251
252
  /* Generate noise and calculate energy. */
253
0
  for (i = 0; i < size; i++) {
254
0
    randomState =
255
0
        (((INT64)1664525 * randomState) + (INT64)1013904223) & 0xFFFFFFFF;
256
0
    nrg_m = fPow2AddDiv2(nrg_m, (FIXP_DBL)randomState >> GEN_NOISE_NRG_SCALE);
257
0
    *ptr++ = (FIXP_DBL)randomState;
258
0
  }
259
0
  nrg_e = GEN_NOISE_NRG_SCALE * 2 + 1;
260
261
  /* weight noise with = 1 / sqrt_nrg; */
262
0
  invNrg_m = invSqrtNorm2(nrg_m << 1, &invNrg_e);
263
0
  invNrg_e += -((nrg_e - 1) >> 1);
264
265
0
  for (i = size; i--;) {
266
0
    spec[i] = fMult(spec[i], invNrg_m);
267
0
  }
268
269
  /* Store random state */
270
0
  *pRandomState = randomState;
271
272
0
  return invNrg_e;
273
0
}
274
275
static void ScaleBand(FIXP_DBL *RESTRICT spec, int size, int scaleFactor,
276
0
                      int specScale, int noise_e, int out_of_phase) {
277
0
  int i, shift, sfExponent;
278
0
  FIXP_DBL sfMatissa;
279
280
  /* Get gain from scale factor value = 2^(scaleFactor * 0.25) */
281
0
  sfMatissa = MantissaTable[scaleFactor & 0x03][0];
282
  /* sfExponent = (scaleFactor >> 2) + ExponentTable[scaleFactor & 0x03][0]; */
283
  /* Note:  ExponentTable[scaleFactor & 0x03][0] is always 1. */
284
0
  sfExponent = (scaleFactor >> 2) + 1;
285
286
0
  if (out_of_phase != 0) {
287
0
    sfMatissa = -sfMatissa;
288
0
  }
289
290
  /* +1 because of fMultDiv2 below. */
291
0
  shift = sfExponent - specScale + 1 + noise_e;
292
293
  /* Apply gain to noise values */
294
0
  if (shift >= 0) {
295
0
    shift = fixMin(shift, DFRACT_BITS - 1);
296
0
    for (i = size; i-- != 0;) {
297
0
      spec[i] = fMultDiv2(spec[i], sfMatissa) << shift;
298
0
    }
299
0
  } else {
300
0
    shift = fixMin(-shift, DFRACT_BITS - 1);
301
0
    for (i = size; i-- != 0;) {
302
0
      spec[i] = fMultDiv2(spec[i], sfMatissa) >> shift;
303
0
    }
304
0
  }
305
0
}
306
307
/*!
308
  \brief Apply PNS
309
310
  The function applies PNS (i.e. it generates noise) on the bands
311
  flagged as noisy bands
312
313
*/
314
void CPns_Apply(const CPnsData *pPnsData, const CIcsInfo *pIcsInfo,
315
                SPECTRAL_PTR pSpectrum, const SHORT *pSpecScale,
316
                const SHORT *pScaleFactor,
317
                const SamplingRateInfo *pSamplingRateInfo,
318
0
                const INT granuleLength, const int channel) {
319
0
  if (pPnsData->PnsActive) {
320
0
    const short *BandOffsets =
321
0
        GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo);
322
323
0
    int ScaleFactorBandsTransmitted = GetScaleFactorBandsTransmitted(pIcsInfo);
324
325
0
    for (int window = 0, group = 0; group < GetWindowGroups(pIcsInfo);
326
0
         group++) {
327
0
      for (int groupwin = 0; groupwin < GetWindowGroupLength(pIcsInfo, group);
328
0
           groupwin++, window++) {
329
0
        FIXP_DBL *spectrum = SPEC(pSpectrum, window, granuleLength);
330
331
0
        for (int band = 0; band < ScaleFactorBandsTransmitted; band++) {
332
0
          if (CPns_IsPnsUsed(pPnsData, group, band)) {
333
0
            UINT pns_band = window * 16 + band;
334
335
0
            int bandWidth = BandOffsets[band + 1] - BandOffsets[band];
336
0
            int noise_e;
337
338
0
            FDK_ASSERT(bandWidth >= 0);
339
340
0
            if (channel > 0 && CPns_IsCorrelated(pPnsData, group, band)) {
341
0
              noise_e =
342
0
                  GenerateRandomVector(spectrum + BandOffsets[band], bandWidth,
343
0
                                       &pPnsData->randomSeed[pns_band]);
344
0
            } else {
345
0
              pPnsData->randomSeed[pns_band] = *pPnsData->currentSeed;
346
347
0
              noise_e = GenerateRandomVector(spectrum + BandOffsets[band],
348
0
                                             bandWidth, pPnsData->currentSeed);
349
0
            }
350
351
0
            int outOfPhase = CPns_IsOutOfPhase(pPnsData, group, band);
352
353
0
            ScaleBand(spectrum + BandOffsets[band], bandWidth,
354
0
                      pScaleFactor[group * 16 + band], pSpecScale[window],
355
0
                      noise_e, outOfPhase);
356
0
          }
357
0
        }
358
0
      }
359
0
    }
360
0
  }
361
0
}