Coverage Report

Created: 2025-07-12 07:02

/src/aac/libFDK/src/qmf.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):   Markus Lohwasser, Josef Hoepfl, Manuel Jander
98
99
   Description: QMF filterbank
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  Complex qmf analysis/synthesis
106
  This module contains the qmf filterbank for analysis [
107
  cplxAnalysisQmfFiltering() ] and synthesis [ cplxSynthesisQmfFiltering() ]. It
108
  is a polyphase implementation of a complex exponential modulated filter bank.
109
  The analysis part usually runs at half the sample rate than the synthesis
110
  part. (So called "dual-rate" mode.)
111
112
  The coefficients of the prototype filter are specified in #qmf_pfilt640 (in
113
  sbr_rom.cpp). Thus only a 64 channel version (32 on the analysis side) with a
114
  640 tap prototype filter are used.
115
116
  \anchor PolyphaseFiltering <h2>About polyphase filtering</h2>
117
  The polyphase implementation of a filterbank requires filtering at the input
118
  and output. This is implemented as part of cplxAnalysisQmfFiltering() and
119
  cplxSynthesisQmfFiltering(). The implementation requires the filter
120
  coefficients in a specific structure as described in #sbr_qmf_64_640_qmf (in
121
  sbr_rom.cpp).
122
123
  This module comprises the computationally most expensive functions of the SBR
124
  decoder. The accuracy of computations is also important and has a direct
125
  impact on the overall sound quality. Therefore a special test program is
126
  available which can be used to only test the filterbank: main_audio.cpp
127
128
  This modules also uses scaling of data to provide better SNR on fixed-point
129
  processors. See #QMF_SCALE_FACTOR (in sbr_scale.h) for details. An interesting
130
  note: The function getScalefactor() can constitute a significant amount of
131
  computational complexity - very much depending on the bitrate. Since it is a
132
  rather small function, effective assembler optimization might be possible.
133
134
*/
135
136
#include "qmf.h"
137
138
#include "FDK_trigFcts.h"
139
#include "fixpoint_math.h"
140
#include "dct.h"
141
142
#define QSSCALE (0)
143
#define FX_DBL2FX_QSS(x) (x)
144
#define FX_QSS2FX_DBL(x) (x)
145
146
/* moved to qmf_pcm.h: -> qmfSynPrototypeFirSlot */
147
/* moved to qmf_pcm.h: -> qmfSynPrototypeFirSlot_NonSymmetric */
148
/* moved to qmf_pcm.h: -> qmfSynthesisFilteringSlot */
149
150
/*!
151
 *
152
 * \brief Perform real-valued forward modulation of the time domain
153
 *        data of timeIn and stores the real part of the subband
154
 *        samples in rSubband
155
 *
156
 */
157
static void qmfForwardModulationLP_even(
158
    HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank  */
159
    FIXP_DBL *timeIn,              /*!< Time Signal */
160
    FIXP_DBL *rSubband)            /*!< Real Output */
161
0
{
162
0
  int i;
163
0
  int L = anaQmf->no_channels;
164
0
  int M = L >> 1;
165
0
  int scale = 0;
166
0
  FIXP_DBL accu;
167
168
0
  const FIXP_DBL *timeInTmp1 = (FIXP_DBL *)&timeIn[3 * M];
169
0
  const FIXP_DBL *timeInTmp2 = timeInTmp1;
170
0
  FIXP_DBL *rSubbandTmp = rSubband;
171
172
0
  rSubband[0] = timeIn[3 * M] >> 1;
173
174
0
  for (i = M - 1; i != 0; i--) {
175
0
    accu = ((*--timeInTmp1) >> 1) + ((*++timeInTmp2) >> 1);
176
0
    *++rSubbandTmp = accu;
177
0
  }
178
179
0
  timeInTmp1 = &timeIn[2 * M];
180
0
  timeInTmp2 = &timeIn[0];
181
0
  rSubbandTmp = &rSubband[M];
182
183
0
  for (i = L - M; i != 0; i--) {
184
0
    accu = ((*timeInTmp1--) >> 1) - ((*timeInTmp2++) >> 1);
185
0
    *rSubbandTmp++ = accu;
186
0
  }
187
188
0
  dct_III(rSubband, timeIn, L, &scale);
189
0
}
190
191
#if !defined(FUNCTION_qmfForwardModulationLP_odd)
192
static void qmfForwardModulationLP_odd(
193
    HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank  */
194
    const FIXP_DBL *timeIn,        /*!< Time Signal */
195
    FIXP_DBL *rSubband)            /*!< Real Output */
196
0
{
197
0
  int i;
198
0
  int L = anaQmf->no_channels;
199
0
  int M = L >> 1;
200
0
  int shift = (anaQmf->no_channels >> 6) + 1;
201
202
0
  for (i = 0; i < M; i++) {
203
0
    rSubband[M + i] = (timeIn[L - 1 - i] >> 1) - (timeIn[i] >> shift);
204
0
    rSubband[M - 1 - i] =
205
0
        (timeIn[L + i] >> 1) + (timeIn[2 * L - 1 - i] >> shift);
206
0
  }
207
208
0
  dct_IV(rSubband, L, &shift);
209
0
}
210
#endif /* !defined(FUNCTION_qmfForwardModulationLP_odd) */
211
212
/*!
213
 *
214
 * \brief Perform complex-valued forward modulation of the time domain
215
 *        data of timeIn and stores the real part of the subband
216
 *        samples in rSubband, and the imaginary part in iSubband
217
 *
218
 *
219
 */
220
#if !defined(FUNCTION_qmfForwardModulationHQ)
221
static void qmfForwardModulationHQ(
222
    HANDLE_QMF_FILTER_BANK anaQmf,   /*!< Handle of Qmf Analysis Bank  */
223
    const FIXP_DBL *RESTRICT timeIn, /*!< Time Signal */
224
    FIXP_DBL *RESTRICT rSubband,     /*!< Real Output */
225
    FIXP_DBL *RESTRICT iSubband      /*!< Imaginary Output */
226
0
) {
227
0
  int i;
228
0
  int L = anaQmf->no_channels;
229
0
  int L2 = L << 1;
230
0
  int shift = 0;
231
232
  /* Time advance by one sample, which is equivalent to the complex
233
     rotation at the end of the analysis. Works only for STD mode. */
234
0
  if ((L == 64) && !(anaQmf->flags & (QMF_FLAG_CLDFB | QMF_FLAG_MPSLDFB))) {
235
0
    FIXP_DBL x, y;
236
237
    /*rSubband[0] = u[1] + u[0]*/
238
    /*iSubband[0] = u[1] - u[0]*/
239
0
    x = timeIn[1] >> 1;
240
0
    y = timeIn[0];
241
0
    rSubband[0] = x + (y >> 1);
242
0
    iSubband[0] = x - (y >> 1);
243
244
    /*rSubband[n] = u[n+1] - u[2M-n], n=1,...,M-1*/
245
    /*iSubband[n] = u[n+1] + u[2M-n], n=1,...,M-1*/
246
0
    for (i = 1; i < L; i++) {
247
0
      x = timeIn[i + 1] >> 1; /*u[n+1]  */
248
0
      y = timeIn[L2 - i];     /*u[2M-n] */
249
0
      rSubband[i] = x - (y >> 1);
250
0
      iSubband[i] = x + (y >> 1);
251
0
    }
252
0
  } else {
253
0
    for (i = 0; i < L; i += 2) {
254
0
      FIXP_DBL x0, x1, y0, y1;
255
256
0
      x0 = timeIn[i + 0] >> 1;
257
0
      x1 = timeIn[i + 1] >> 1;
258
0
      y0 = timeIn[L2 - 1 - i];
259
0
      y1 = timeIn[L2 - 2 - i];
260
261
0
      rSubband[i + 0] = x0 - (y0 >> 1);
262
0
      rSubband[i + 1] = x1 - (y1 >> 1);
263
0
      iSubband[i + 0] = x0 + (y0 >> 1);
264
0
      iSubband[i + 1] = x1 + (y1 >> 1);
265
0
    }
266
0
  }
267
268
0
  dct_IV(rSubband, L, &shift);
269
0
  dst_IV(iSubband, L, &shift);
270
271
  /* Do the complex rotation except for the case of 64 bands (in STD mode). */
272
0
  if ((L != 64) || (anaQmf->flags & (QMF_FLAG_CLDFB | QMF_FLAG_MPSLDFB))) {
273
0
    if (anaQmf->flags & QMF_FLAG_MPSLDFB_OPTIMIZE_MODULATION) {
274
0
      FIXP_DBL iBand;
275
0
      for (i = 0; i < fMin(anaQmf->lsb, L); i += 2) {
276
0
        iBand = rSubband[i];
277
0
        rSubband[i] = -iSubband[i];
278
0
        iSubband[i] = iBand;
279
280
0
        iBand = -rSubband[i + 1];
281
0
        rSubband[i + 1] = iSubband[i + 1];
282
0
        iSubband[i + 1] = iBand;
283
0
      }
284
0
    } else {
285
0
      const FIXP_QTW *sbr_t_cos;
286
0
      const FIXP_QTW *sbr_t_sin;
287
0
      const int len = L; /* was len = fMin(anaQmf->lsb, L) but in case of USAC
288
                            the signal above lsb is actually needed in some
289
                            cases (HBE?) */
290
0
      sbr_t_cos = anaQmf->t_cos;
291
0
      sbr_t_sin = anaQmf->t_sin;
292
293
0
      for (i = 0; i < len; i++) {
294
0
        cplxMult(&iSubband[i], &rSubband[i], iSubband[i], rSubband[i],
295
0
                 sbr_t_cos[i], sbr_t_sin[i]);
296
0
      }
297
0
    }
298
0
  }
299
0
}
300
#endif /* FUNCTION_qmfForwardModulationHQ */
301
302
/*!
303
 *
304
 * \brief Perform low power inverse modulation of the subband
305
 *        samples stored in rSubband (real part) and iSubband (imaginary
306
 *        part) and stores the result in pWorkBuffer.
307
 *
308
 */
309
inline static void qmfInverseModulationLP_even(
310
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */
311
    const FIXP_DBL *qmfReal, /*!< Pointer to qmf real subband slot (input) */
312
    const int scaleFactorLowBand,  /*!< Scalefactor for Low band */
313
    const int scaleFactorHighBand, /*!< Scalefactor for High band */
314
    FIXP_DBL *pTimeOut             /*!< Pointer to qmf subband slot (output)*/
315
0
) {
316
0
  int i;
317
0
  int L = synQmf->no_channels;
318
0
  int M = L >> 1;
319
0
  int scale = 0;
320
0
  FIXP_DBL tmp;
321
0
  FIXP_DBL *RESTRICT tReal = pTimeOut;
322
0
  FIXP_DBL *RESTRICT tImag = pTimeOut + L;
323
324
  /* Move input to output vector with offset */
325
0
  scaleValuesSaturate(&tReal[0], &qmfReal[0], synQmf->lsb, scaleFactorLowBand);
326
0
  scaleValuesSaturate(&tReal[0 + synQmf->lsb], &qmfReal[0 + synQmf->lsb],
327
0
                      synQmf->usb - synQmf->lsb, scaleFactorHighBand);
328
0
  FDKmemclear(&tReal[0 + synQmf->usb], (L - synQmf->usb) * sizeof(FIXP_DBL));
329
330
  /* Dct type-2 transform */
331
0
  dct_II(tReal, tImag, L, &scale);
332
333
  /* Expand output and replace inplace the output buffers */
334
0
  tImag[0] = tReal[M];
335
0
  tImag[M] = (FIXP_DBL)0;
336
0
  tmp = tReal[0];
337
0
  tReal[0] = tReal[M];
338
0
  tReal[M] = tmp;
339
340
0
  for (i = 1; i < M / 2; i++) {
341
    /* Imag */
342
0
    tmp = tReal[L - i];
343
0
    tImag[M - i] = tmp;
344
0
    tImag[i + M] = -tmp;
345
346
0
    tmp = tReal[M + i];
347
0
    tImag[i] = tmp;
348
0
    tImag[L - i] = -tmp;
349
350
    /* Real */
351
0
    tReal[M + i] = tReal[i];
352
0
    tReal[L - i] = tReal[M - i];
353
0
    tmp = tReal[i];
354
0
    tReal[i] = tReal[M - i];
355
0
    tReal[M - i] = tmp;
356
0
  }
357
  /* Remaining odd terms */
358
0
  tmp = tReal[M + M / 2];
359
0
  tImag[M / 2] = tmp;
360
0
  tImag[M / 2 + M] = -tmp;
361
362
0
  tReal[M + M / 2] = tReal[M / 2];
363
0
}
364
365
inline static void qmfInverseModulationLP_odd(
366
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */
367
    const FIXP_DBL *qmfReal, /*!< Pointer to qmf real subband slot (input) */
368
    const int scaleFactorLowBand,  /*!< Scalefactor for Low band */
369
    const int scaleFactorHighBand, /*!< Scalefactor for High band */
370
    FIXP_DBL *pTimeOut             /*!< Pointer to qmf subband slot (output)*/
371
0
) {
372
0
  int i;
373
0
  int L = synQmf->no_channels;
374
0
  int M = L >> 1;
375
0
  int shift = 0;
376
377
  /* Move input to output vector with offset */
378
0
  scaleValuesSaturate(pTimeOut + M, qmfReal, synQmf->lsb, scaleFactorLowBand);
379
0
  scaleValuesSaturate(pTimeOut + M + synQmf->lsb, qmfReal + synQmf->lsb,
380
0
                      synQmf->usb - synQmf->lsb, scaleFactorHighBand);
381
0
  FDKmemclear(pTimeOut + M + synQmf->usb, (L - synQmf->usb) * sizeof(FIXP_DBL));
382
383
0
  dct_IV(pTimeOut + M, L, &shift);
384
0
  for (i = 0; i < M; i++) {
385
0
    pTimeOut[i] = pTimeOut[L - 1 - i];
386
0
    pTimeOut[2 * L - 1 - i] = -pTimeOut[L + i];
387
0
  }
388
0
}
389
390
#ifndef FUNCTION_qmfInverseModulationHQ
391
/*!
392
 *
393
 * \brief Perform complex-valued inverse modulation of the subband
394
 *        samples stored in rSubband (real part) and iSubband (imaginary
395
 *        part) and stores the result in pWorkBuffer.
396
 *
397
 */
398
inline static void qmfInverseModulationHQ(
399
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank     */
400
    const FIXP_DBL *qmfReal,       /*!< Pointer to qmf real subband slot */
401
    const FIXP_DBL *qmfImag,       /*!< Pointer to qmf imag subband slot */
402
    const int scaleFactorLowBand,  /*!< Scalefactor for Low band         */
403
    const int scaleFactorHighBand, /*!< Scalefactor for High band        */
404
    FIXP_DBL *pWorkBuffer          /*!< WorkBuffer (output)              */
405
0
) {
406
0
  int i;
407
0
  int L = synQmf->no_channels;
408
0
  int M = L >> 1;
409
0
  int shift = 0;
410
0
  FIXP_DBL *RESTRICT tReal = pWorkBuffer;
411
0
  FIXP_DBL *RESTRICT tImag = pWorkBuffer + L;
412
413
0
  if (synQmf->flags & QMF_FLAG_CLDFB) {
414
0
    for (i = 0; i < synQmf->usb; i++) {
415
0
      cplxMultDiv2(&tImag[i], &tReal[i], qmfImag[i], qmfReal[i],
416
0
                   synQmf->t_cos[i], synQmf->t_sin[i]);
417
0
    }
418
0
    scaleValuesSaturate(&tReal[0], synQmf->lsb, scaleFactorLowBand + 1);
419
0
    scaleValuesSaturate(&tReal[0 + synQmf->lsb], synQmf->usb - synQmf->lsb,
420
0
                        scaleFactorHighBand + 1);
421
0
    scaleValuesSaturate(&tImag[0], synQmf->lsb, scaleFactorLowBand + 1);
422
0
    scaleValuesSaturate(&tImag[0 + synQmf->lsb], synQmf->usb - synQmf->lsb,
423
0
                        scaleFactorHighBand + 1);
424
0
  }
425
426
0
  if ((synQmf->flags & QMF_FLAG_CLDFB) == 0) {
427
0
    scaleValuesSaturate(&tReal[0], &qmfReal[0], synQmf->lsb,
428
0
                        scaleFactorLowBand);
429
0
    scaleValuesSaturate(&tReal[0 + synQmf->lsb], &qmfReal[0 + synQmf->lsb],
430
0
                        synQmf->usb - synQmf->lsb, scaleFactorHighBand);
431
0
    scaleValuesSaturate(&tImag[0], &qmfImag[0], synQmf->lsb,
432
0
                        scaleFactorLowBand);
433
0
    scaleValuesSaturate(&tImag[0 + synQmf->lsb], &qmfImag[0 + synQmf->lsb],
434
0
                        synQmf->usb - synQmf->lsb, scaleFactorHighBand);
435
0
  }
436
437
0
  FDKmemclear(&tReal[synQmf->usb],
438
0
              (synQmf->no_channels - synQmf->usb) * sizeof(FIXP_DBL));
439
0
  FDKmemclear(&tImag[synQmf->usb],
440
0
              (synQmf->no_channels - synQmf->usb) * sizeof(FIXP_DBL));
441
442
0
  dct_IV(tReal, L, &shift);
443
0
  dst_IV(tImag, L, &shift);
444
445
0
  if (synQmf->flags & QMF_FLAG_CLDFB) {
446
0
    for (i = 0; i < M; i++) {
447
0
      FIXP_DBL r1, i1, r2, i2;
448
0
      r1 = tReal[i];
449
0
      i2 = tImag[L - 1 - i];
450
0
      r2 = tReal[L - i - 1];
451
0
      i1 = tImag[i];
452
453
0
      tReal[i] = (r1 - i1) >> 1;
454
0
      tImag[L - 1 - i] = -(r1 + i1) >> 1;
455
0
      tReal[L - i - 1] = (r2 - i2) >> 1;
456
0
      tImag[i] = -(r2 + i2) >> 1;
457
0
    }
458
0
  } else {
459
    /* The array accesses are negative to compensate the missing minus sign in
460
     * the low and hi band gain. */
461
    /* 26 cycles on ARM926 */
462
0
    for (i = 0; i < M; i++) {
463
0
      FIXP_DBL r1, i1, r2, i2;
464
0
      r1 = -tReal[i];
465
0
      i2 = -tImag[L - 1 - i];
466
0
      r2 = -tReal[L - i - 1];
467
0
      i1 = -tImag[i];
468
469
0
      tReal[i] = (r1 - i1) >> 1;
470
0
      tImag[L - 1 - i] = -(r1 + i1) >> 1;
471
0
      tReal[L - i - 1] = (r2 - i2) >> 1;
472
0
      tImag[i] = -(r2 + i2) >> 1;
473
0
    }
474
0
  }
475
0
}
476
#endif /* #ifndef FUNCTION_qmfInverseModulationHQ */
477
478
/*!
479
 *
480
 * \brief Create QMF filter bank instance
481
 *
482
 * \return 0 if successful
483
 *
484
 */
485
static int qmfInitFilterBank(
486
    HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Handle to return */
487
    void *pFilterStates,          /*!< Handle to filter states */
488
    int noCols,                   /*!< Number of timeslots per frame */
489
    int lsb,                      /*!< Lower end of QMF frequency range */
490
    int usb,                      /*!< Upper end of QMF frequency range */
491
    int no_channels,              /*!< Number of channels (bands) */
492
    UINT flags,                   /*!< flags */
493
    int synflag)                  /*!< 1: synthesis; 0: analysis */
494
0
{
495
0
  FDKmemclear(h_Qmf, sizeof(QMF_FILTER_BANK));
496
497
0
  if (flags & QMF_FLAG_MPSLDFB) {
498
0
    flags |= QMF_FLAG_NONSYMMETRIC;
499
0
    flags |= QMF_FLAG_MPSLDFB_OPTIMIZE_MODULATION;
500
501
0
    h_Qmf->t_cos = NULL;
502
0
    h_Qmf->t_sin = NULL;
503
0
    h_Qmf->filterScale = QMF_MPSLDFB_PFT_SCALE;
504
0
    h_Qmf->p_stride = 1;
505
506
0
    switch (no_channels) {
507
0
      case 64:
508
0
        h_Qmf->p_filter = qmf_mpsldfb_640;
509
0
        h_Qmf->FilterSize = 640;
510
0
        break;
511
0
      case 32:
512
0
        h_Qmf->p_filter = qmf_mpsldfb_320;
513
0
        h_Qmf->FilterSize = 320;
514
0
        break;
515
0
      default:
516
0
        return -1;
517
0
    }
518
0
  }
519
520
0
  if (!(flags & QMF_FLAG_MPSLDFB) && (flags & QMF_FLAG_CLDFB)) {
521
0
    flags |= QMF_FLAG_NONSYMMETRIC;
522
0
    h_Qmf->filterScale = QMF_CLDFB_PFT_SCALE;
523
524
0
    h_Qmf->p_stride = 1;
525
0
    switch (no_channels) {
526
0
      case 64:
527
0
        h_Qmf->t_cos = qmf_phaseshift_cos64_cldfb;
528
0
        h_Qmf->t_sin = qmf_phaseshift_sin64_cldfb;
529
0
        h_Qmf->p_filter = qmf_cldfb_640;
530
0
        h_Qmf->FilterSize = 640;
531
0
        break;
532
0
      case 32:
533
0
        h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos32_cldfb_syn
534
0
                                 : qmf_phaseshift_cos32_cldfb_ana;
535
0
        h_Qmf->t_sin = qmf_phaseshift_sin32_cldfb;
536
0
        h_Qmf->p_filter = qmf_cldfb_320;
537
0
        h_Qmf->FilterSize = 320;
538
0
        break;
539
0
      case 16:
540
0
        h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos16_cldfb_syn
541
0
                                 : qmf_phaseshift_cos16_cldfb_ana;
542
0
        h_Qmf->t_sin = qmf_phaseshift_sin16_cldfb;
543
0
        h_Qmf->p_filter = qmf_cldfb_160;
544
0
        h_Qmf->FilterSize = 160;
545
0
        break;
546
0
      case 8:
547
0
        h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos8_cldfb_syn
548
0
                                 : qmf_phaseshift_cos8_cldfb_ana;
549
0
        h_Qmf->t_sin = qmf_phaseshift_sin8_cldfb;
550
0
        h_Qmf->p_filter = qmf_cldfb_80;
551
0
        h_Qmf->FilterSize = 80;
552
0
        break;
553
0
      default:
554
0
        return -1;
555
0
    }
556
0
  }
557
558
0
  if (!(flags & QMF_FLAG_MPSLDFB) && ((flags & QMF_FLAG_CLDFB) == 0)) {
559
0
    switch (no_channels) {
560
0
      case 64:
561
0
        h_Qmf->p_filter = qmf_pfilt640;
562
0
        h_Qmf->t_cos = qmf_phaseshift_cos64;
563
0
        h_Qmf->t_sin = qmf_phaseshift_sin64;
564
0
        h_Qmf->p_stride = 1;
565
0
        h_Qmf->FilterSize = 640;
566
0
        h_Qmf->filterScale = 0;
567
0
        break;
568
0
      case 40:
569
0
        if (synflag) {
570
0
          break;
571
0
        } else {
572
0
          h_Qmf->p_filter = qmf_pfilt400; /* Scaling factor 0.8 */
573
0
          h_Qmf->t_cos = qmf_phaseshift_cos40;
574
0
          h_Qmf->t_sin = qmf_phaseshift_sin40;
575
0
          h_Qmf->filterScale = 1;
576
0
          h_Qmf->p_stride = 1;
577
0
          h_Qmf->FilterSize = no_channels * 10;
578
0
        }
579
0
        break;
580
0
      case 32:
581
0
        h_Qmf->p_filter = qmf_pfilt640;
582
0
        if (flags & QMF_FLAG_DOWNSAMPLED) {
583
0
          h_Qmf->t_cos = qmf_phaseshift_cos_downsamp32;
584
0
          h_Qmf->t_sin = qmf_phaseshift_sin_downsamp32;
585
0
        } else {
586
0
          h_Qmf->t_cos = qmf_phaseshift_cos32;
587
0
          h_Qmf->t_sin = qmf_phaseshift_sin32;
588
0
        }
589
0
        h_Qmf->p_stride = 2;
590
0
        h_Qmf->FilterSize = 640;
591
0
        h_Qmf->filterScale = 0;
592
0
        break;
593
0
      case 20:
594
0
        h_Qmf->p_filter = qmf_pfilt200;
595
0
        h_Qmf->p_stride = 1;
596
0
        h_Qmf->FilterSize = 200;
597
0
        h_Qmf->filterScale = 0;
598
0
        break;
599
0
      case 12:
600
0
        h_Qmf->p_filter = qmf_pfilt120;
601
0
        h_Qmf->p_stride = 1;
602
0
        h_Qmf->FilterSize = 120;
603
0
        h_Qmf->filterScale = 0;
604
0
        break;
605
0
      case 8:
606
0
        h_Qmf->p_filter = qmf_pfilt640;
607
0
        h_Qmf->p_stride = 8;
608
0
        h_Qmf->FilterSize = 640;
609
0
        h_Qmf->filterScale = 0;
610
0
        break;
611
0
      case 16:
612
0
        h_Qmf->p_filter = qmf_pfilt640;
613
0
        h_Qmf->t_cos = qmf_phaseshift_cos16;
614
0
        h_Qmf->t_sin = qmf_phaseshift_sin16;
615
0
        h_Qmf->p_stride = 4;
616
0
        h_Qmf->FilterSize = 640;
617
0
        h_Qmf->filterScale = 0;
618
0
        break;
619
0
      case 24:
620
0
        h_Qmf->p_filter = qmf_pfilt240;
621
0
        h_Qmf->t_cos = qmf_phaseshift_cos24;
622
0
        h_Qmf->t_sin = qmf_phaseshift_sin24;
623
0
        h_Qmf->p_stride = 1;
624
0
        h_Qmf->FilterSize = 240;
625
0
        h_Qmf->filterScale = 1;
626
0
        break;
627
0
      default:
628
0
        return -1;
629
0
    }
630
0
  }
631
632
0
  h_Qmf->synScalefactor = h_Qmf->filterScale;
633
  // DCT|DST dependency
634
0
  switch (no_channels) {
635
0
    case 128:
636
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK + 1;
637
0
      break;
638
0
    case 40: {
639
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
640
0
    } break;
641
0
    case 64:
642
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK;
643
0
      break;
644
0
    case 8:
645
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 3;
646
0
      break;
647
0
    case 12:
648
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK;
649
0
      break;
650
0
    case 20:
651
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK + 1;
652
0
      break;
653
0
    case 32:
654
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
655
0
      break;
656
0
    case 16:
657
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 2;
658
0
      break;
659
0
    case 24:
660
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
661
0
      break;
662
0
    default:
663
0
      return -1;
664
0
  }
665
666
0
  h_Qmf->flags = flags;
667
668
0
  h_Qmf->no_channels = no_channels;
669
0
  h_Qmf->no_col = noCols;
670
671
0
  h_Qmf->lsb = fMin(lsb, h_Qmf->no_channels);
672
0
  h_Qmf->usb = synflag
673
0
                   ? fMin(usb, h_Qmf->no_channels)
674
0
                   : usb; /* was: h_Qmf->usb = fMin(usb, h_Qmf->no_channels); */
675
676
0
  h_Qmf->FilterStates = (void *)pFilterStates;
677
678
0
  h_Qmf->outScalefactor =
679
0
      (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK + h_Qmf->filterScale) +
680
0
      h_Qmf->synScalefactor;
681
682
0
  h_Qmf->outGain_m =
683
0
      (FIXP_DBL)0x80000000; /* default init value will be not applied */
684
0
  h_Qmf->outGain_e = 0;
685
686
0
  return (0);
687
0
}
688
689
/*!
690
 *
691
 * \brief Adjust synthesis qmf filter states
692
 *
693
 * \return void
694
 *
695
 */
696
static inline void qmfAdaptFilterStates(
697
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Filter Bank */
698
    int scaleFactorDiff)           /*!< Scale factor difference to be applied */
699
0
{
700
0
  if (synQmf == NULL || synQmf->FilterStates == NULL) {
701
0
    return;
702
0
  }
703
0
  if (scaleFactorDiff > 0) {
704
0
    scaleValuesSaturate((FIXP_QSS *)synQmf->FilterStates,
705
0
                        synQmf->no_channels * (QMF_NO_POLY * 2 - 1),
706
0
                        scaleFactorDiff);
707
0
  } else {
708
0
    scaleValues((FIXP_QSS *)synQmf->FilterStates,
709
0
                synQmf->no_channels * (QMF_NO_POLY * 2 - 1), scaleFactorDiff);
710
0
  }
711
0
}
712
713
/*!
714
 *
715
 * \brief Create QMF filter bank instance
716
 *
717
 *
718
 * \return 0 if succesful
719
 *
720
 */
721
int qmfInitSynthesisFilterBank(
722
    HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Returns handle */
723
    FIXP_QSS *pFilterStates,      /*!< Handle to filter states */
724
    int noCols,                   /*!< Number of timeslots per frame */
725
    int lsb,                      /*!< lower end of QMF */
726
    int usb,                      /*!< upper end of QMF */
727
    int no_channels,              /*!< Number of channels (bands) */
728
    int flags)                    /*!< Low Power flag */
729
0
{
730
0
  int oldOutScale = h_Qmf->outScalefactor;
731
0
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
732
0
                              no_channels, flags, 1);
733
0
  if (h_Qmf->FilterStates != NULL) {
734
0
    if (!(flags & QMF_FLAG_KEEP_STATES)) {
735
0
      FDKmemclear(
736
0
          h_Qmf->FilterStates,
737
0
          (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QSS));
738
0
    } else {
739
0
      qmfAdaptFilterStates(h_Qmf, oldOutScale - h_Qmf->outScalefactor);
740
0
    }
741
0
  }
742
743
0
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
744
0
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->usb);
745
746
0
  return err;
747
0
}
748
749
/*!
750
 *
751
 * \brief Change scale factor for output data and adjust qmf filter states
752
 *
753
 * \return void
754
 *
755
 */
756
void qmfChangeOutScalefactor(
757
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
758
    int outScalefactor             /*!< New scaling factor for output data */
759
0
) {
760
0
  if (synQmf == NULL) {
761
0
    return;
762
0
  }
763
764
  /* Add internal filterbank scale */
765
0
  outScalefactor +=
766
0
      (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK + synQmf->filterScale) +
767
0
      synQmf->synScalefactor;
768
769
  /* adjust filter states when scale factor has been changed */
770
0
  if (synQmf->outScalefactor != outScalefactor) {
771
0
    int diff;
772
773
0
    diff = synQmf->outScalefactor - outScalefactor;
774
775
0
    qmfAdaptFilterStates(synQmf, diff);
776
777
    /* save new scale factor */
778
0
    synQmf->outScalefactor = outScalefactor;
779
0
  }
780
0
}
781
782
/*!
783
 *
784
 * \brief Get scale factor change which was set by qmfChangeOutScalefactor()
785
 *
786
 * \return scaleFactor
787
 *
788
 */
789
int qmfGetOutScalefactor(
790
    HANDLE_QMF_FILTER_BANK synQmf) /*!< Handle of Qmf Synthesis Bank */
791
0
{
792
0
  int scaleFactor = synQmf->outScalefactor
793
0
                        ? (synQmf->outScalefactor -
794
0
                           (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK +
795
0
                            synQmf->filterScale + synQmf->synScalefactor))
796
0
                        : 0;
797
0
  return scaleFactor;
798
0
}
799
800
/*!
801
 *
802
 * \brief Change gain for output data
803
 *
804
 * \return void
805
 *
806
 */
807
void qmfChangeOutGain(
808
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
809
    FIXP_DBL outputGain,           /*!< New gain for output data (mantissa) */
810
    int outputGainScale            /*!< New gain for output data (exponent) */
811
0
) {
812
0
  synQmf->outGain_m = outputGain;
813
0
  synQmf->outGain_e = outputGainScale;
814
0
}
815
816
0
#define INT_PCM_QMFOUT INT_PCM
817
0
#define SAMPLE_BITS_QMFOUT SAMPLE_BITS
818
#include "qmf_pcm.h"
819
#if SAMPLE_BITS == 16
820
  /* also create a 32 bit output version */
821
#undef INT_PCM_QMFOUT
822
#undef SAMPLE_BITS_QMFOUT
823
#undef QMF_PCM_H
824
#undef FIXP_QAS
825
#undef QAS_BITS
826
#undef INT_PCM_QMFIN
827
0
#define INT_PCM_QMFOUT LONG
828
0
#define SAMPLE_BITS_QMFOUT 32
829
0
#define FIXP_QAS FIXP_DBL
830
#define QAS_BITS 32
831
#define INT_PCM_QMFIN LONG
832
#include "qmf_pcm.h"
833
#endif