Coverage Report

Created: 2025-07-18 06:08

/src/aac/libSACdec/src/sac_stp.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2021 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/*********************** MPEG surround decoder library *************************
96
97
   Author(s):
98
99
   Description: SAC Dec subband processing
100
101
*******************************************************************************/
102
103
#include "sac_stp.h"
104
#include "sac_calcM1andM2.h"
105
#include "sac_bitdec.h"
106
#include "FDK_matrixCalloc.h"
107
#include "sac_rom.h"
108
109
2.64M
#define SF_FREQ_DOMAIN_HEADROOM (2 * (1))
110
111
18.5M
#define BP_GF_START 6
112
883k
#define BP_GF_SIZE 25
113
75.7k
#define HP_SIZE 9
114
883k
#define STP_UPDATE_ENERGY_RATE 32
115
116
#define SF_WET 5
117
#define SF_DRY \
118
0
  3 /* SF_DRY == 2 would produce good conformance test results as well */
119
#define SF_DRY_NRG                                                           \
120
17.6M
  (4 - 1) /* 8.495f = sum(BP_GF__FDK[i])                                     \
121
             i=0,..,(sizeof(BP_GF__FDK)/sizeof(FIXP_CFG)-1) => energy        \
122
             calculation needs 4 bits headroom, headroom can be reduced by 1 \
123
             bit due to fPow2Div2() usage */
124
#define SF_WET_NRG                                                           \
125
35.3M
  (4 - 1) /* 8.495f = sum(BP_GF__FDK[i])                                     \
126
             i=0,..,(sizeof(BP_GF__FDK)/sizeof(FIXP_CFG)-1) => energy        \
127
             calculation needs 4 bits headroom, headroom can be reduced by 1 \
128
             bit due to fPow2Div2() usage */
129
#define SF_PRODUCT_BP_GF 13
130
#define SF_PRODUCT_BP_GF_GF 26
131
#define SF_SCALE 2
132
133
49.2k
#define SF_SCALE_LD64 FL2FXCONST_DBL(0.03125)      /* LD64((1<<SF_SCALE))*/
134
2.64M
#define STP_LPF_COEFF1__FDK FL2FXCONST_DBL(0.950f) /* 0.95 */
135
2.64M
#define ONE_MINUS_STP_LPF_COEFF1__FDK FL2FXCONST_DBL(0.05f) /* 1.0 - 0.95 */
136
1.76M
#define STP_LPF_COEFF2__FDK FL2FXCONST_DBL(0.450f)          /* 0.45 */
137
#define ONE_MINUS_STP_LPF_COEFF2__FDK \
138
1.76M
  FL2FXCONST_DBL(1.0f - 0.450f) /* 1.0 - 0.45 */
139
#define STP_SCALE_LIMIT__FDK \
140
1.76M
  FL2FXCONST_DBL(2.82f / (float)(1 << SF_SCALE)) /* scaled by SF_SCALE */
141
#define ONE_DIV_STP_SCALE_LIMIT__FDK                                          \
142
3.09M
  FL2FXCONST_DBL(1.0f / 2.82f / (float)(1 << SF_SCALE)) /* scaled by SF_SCALE \
143
                                                         */
144
#define ABS_THR__FDK       \
145
  FL2FXCONST_DBL(ABS_THR / \
146
                 ((float)(1 << (22 + 22 - 26)))) /* scaled by 18 bits */
147
#define ABS_THR2__FDK                      \
148
  FL2FXCONST_DBL(ABS_THR * 32.0f * 32.0f / \
149
                 ((float)(1 << (22 + 22 - 26)))) /* scaled by 10 bits */
150
#define STP_SCALE_LIMIT_HI \
151
391k
  FL2FXCONST_DBL(3.02222222222 / (1 << SF_SCALE)) /* see 4. below */
152
#define STP_SCALE_LIMIT_LO \
153
6.08k
  FL2FXCONST_DBL(0.28289992119 / (1 << SF_SCALE)) /* see 4. below */
154
#define STP_SCALE_LIMIT_HI_LD64                 \
155
446k
  FL2FXCONST_DBL(0.04986280452) /* see 4. below \
156
                                 */
157
#define STP_SCALE_LIMIT_LO_LD64                 \
158
55.3k
  FL2FXCONST_DBL(0.05692613500) /* see 4. below \
159
                                 */
160
161
/*  Scale factor calculation for the diffuse signal needs adapted thresholds
162
    for STP_SCALE_LIMIT and 1/STP_SCALE_LIMIT:
163
164
    1. scale = sqrt(DryNrg/WetNrg)
165
166
    2. Damping of scale factor
167
       scale2 = 0.1 + 0.9 * scale
168
169
    3. Limiting of scale factor
170
          STP_SCALE_LIMIT           >=        scale2        >= 1/STP_SCALE_LIMIT
171
       => STP_SCALE_LIMIT           >=  (0.1 + 0.9 * scale) >= 1/STP_SCALE_LIMIT
172
       => (STP_SCALE_LIMIT-0.1)/0.9 >=        scale         >=
173
   (1/STP_SCALE_LIMIT-0.1)/0.9
174
175
    3. Limiting of scale factor before sqrt calculation
176
       ((STP_SCALE_LIMIT-0.1)/0.9)^2 >= (scale^2) >=
177
   ((1/STP_SCALE_LIMIT-0.1)/0.9)^2 (STP_SCALE_LIMIT_HI)^2        >= (scale^2) >=
178
   (STP_SCALE_LIMIT_LO)^2
179
180
    4. Thresholds for limiting of scale factor
181
       STP_SCALE_LIMIT_HI      = ((2.82-0.1)/0.9)
182
       STP_SCALE_LIMIT_LO      = (((1.0/2.82)-0.1)/0.9)
183
       STP_SCALE_LIMIT_HI_LD64 = LD64(STP_SCALE_LIMIT_HI*STP_SCALE_LIMIT_HI)
184
       STP_SCALE_LIMIT_LO_LD64 = LD64(STP_SCALE_LIMIT_LO*STP_SCALE_LIMIT_LO)
185
*/
186
187
#define CALC_WET_SCALE(dryIdx, wetIdx)                                         \
188
446k
  if ((DryEnerLD64[dryIdx] - STP_SCALE_LIMIT_HI_LD64) > WetEnerLD64[wetIdx]) { \
189
391k
    scale[wetIdx] = STP_SCALE_LIMIT_HI;                                        \
190
391k
  } else if (DryEnerLD64[dryIdx] <                                             \
191
55.3k
             (WetEnerLD64[wetIdx] - STP_SCALE_LIMIT_LO_LD64)) {                \
192
6.08k
    scale[wetIdx] = STP_SCALE_LIMIT_LO;                                        \
193
49.2k
  } else {                                                                     \
194
49.2k
    tmp = ((DryEnerLD64[dryIdx] - WetEnerLD64[wetIdx]) >> 1) - SF_SCALE_LD64;  \
195
49.2k
    scale[wetIdx] = CalcInvLdData(tmp);                                        \
196
49.2k
  }
197
198
struct STP_DEC {
199
  FIXP_DBL runDryEner[MAX_INPUT_CHANNELS];
200
  FIXP_DBL runWetEner[MAX_OUTPUT_CHANNELS];
201
  FIXP_DBL oldDryEnerLD64[MAX_INPUT_CHANNELS];
202
  FIXP_DBL oldWetEnerLD64[MAX_OUTPUT_CHANNELS];
203
  FIXP_DBL prev_tp_scale[MAX_OUTPUT_CHANNELS];
204
  const FIXP_CFG *BP;
205
  const FIXP_CFG *BP_GF;
206
  int update_old_ener;
207
};
208
209
inline void combineSignalCplx(FIXP_DBL *hybOutputRealDry,
210
                              FIXP_DBL *hybOutputImagDry,
211
                              FIXP_DBL *hybOutputRealWet,
212
1.75M
                              FIXP_DBL *hybOutputImagWet, int bands) {
213
1.75M
  int n;
214
215
39.3M
  for (n = bands - 1; n >= 0; n--) {
216
37.6M
    *hybOutputRealDry = fAddSaturate(*hybOutputRealDry, *hybOutputRealWet);
217
37.6M
    *hybOutputImagDry = fAddSaturate(*hybOutputImagDry, *hybOutputImagWet);
218
37.6M
    hybOutputRealDry++, hybOutputRealWet++;
219
37.6M
    hybOutputImagDry++, hybOutputImagWet++;
220
37.6M
  }
221
1.75M
}
222
223
inline void combineSignalCplxScale1(FIXP_DBL *hybOutputRealDry,
224
                                    FIXP_DBL *hybOutputImagDry,
225
                                    FIXP_DBL *hybOutputRealWet,
226
                                    FIXP_DBL *hybOutputImagWet,
227
                                    const FIXP_CFG *pBP, FIXP_DBL scaleX,
228
12.6k
                                    int bands) {
229
12.6k
  int n;
230
12.6k
  FIXP_DBL scaleY;
231
50.5k
  for (n = bands - 1; n >= 0; n--) {
232
37.8k
    scaleY = fMult(scaleX, *pBP);
233
37.8k
    *hybOutputRealDry = SATURATE_LEFT_SHIFT(
234
37.8k
        (*hybOutputRealDry >> SF_SCALE) + fMult(*hybOutputRealWet, scaleY),
235
37.8k
        SF_SCALE, DFRACT_BITS);
236
37.8k
    *hybOutputImagDry = SATURATE_LEFT_SHIFT(
237
37.8k
        (*hybOutputImagDry >> SF_SCALE) + fMult(*hybOutputImagWet, scaleY),
238
37.8k
        SF_SCALE, DFRACT_BITS);
239
37.8k
    hybOutputRealDry++, hybOutputRealWet++;
240
37.8k
    hybOutputImagDry++, hybOutputImagWet++;
241
37.8k
    pBP++;
242
37.8k
  }
243
12.6k
}
244
245
inline void combineSignalCplxScale2(FIXP_DBL *hybOutputRealDry,
246
                                    FIXP_DBL *hybOutputImagDry,
247
                                    FIXP_DBL *hybOutputRealWet,
248
                                    FIXP_DBL *hybOutputImagWet, FIXP_DBL scaleX,
249
12.6k
                                    int bands) {
250
12.6k
  int n;
251
252
480k
  for (n = bands - 1; n >= 0; n--) {
253
468k
    *hybOutputRealDry = SATURATE_LEFT_SHIFT(
254
468k
        (*hybOutputRealDry >> SF_SCALE) + fMult(*hybOutputRealWet, scaleX),
255
468k
        SF_SCALE, DFRACT_BITS);
256
468k
    *hybOutputImagDry = SATURATE_LEFT_SHIFT(
257
468k
        (*hybOutputImagDry >> SF_SCALE) + fMult(*hybOutputImagWet, scaleX),
258
468k
        SF_SCALE, DFRACT_BITS);
259
468k
    hybOutputRealDry++, hybOutputRealWet++;
260
468k
    hybOutputImagDry++, hybOutputImagWet++;
261
468k
  }
262
12.6k
}
263
264
/*******************************************************************************
265
 Functionname: subbandTPCreate
266
 ******************************************************************************/
267
22.6k
SACDEC_ERROR subbandTPCreate(HANDLE_STP_DEC *hStpDec) {
268
22.6k
  HANDLE_STP_DEC self = NULL;
269
22.6k
  FDK_ALLOCATE_MEMORY_1D(self, 1, struct STP_DEC)
270
22.6k
  if (hStpDec != NULL) {
271
22.6k
    *hStpDec = self;
272
22.6k
  }
273
274
22.6k
  return MPS_OK;
275
0
bail:
276
0
  return MPS_OUTOFMEMORY;
277
22.6k
}
278
279
67.0k
SACDEC_ERROR subbandTPInit(HANDLE_STP_DEC self) {
280
67.0k
  SACDEC_ERROR err = MPS_OK;
281
67.0k
  int ch;
282
283
201k
  for (ch = 0; ch < MAX_OUTPUT_CHANNELS; ch++) {
284
134k
    self->prev_tp_scale[ch] = FL2FXCONST_DBL(1.0f / (1 << SF_SCALE));
285
134k
    self->oldWetEnerLD64[ch] = FL2FXCONST_DBL(0.0);
286
134k
  }
287
134k
  for (ch = 0; ch < MAX_INPUT_CHANNELS; ch++) {
288
67.0k
    self->oldDryEnerLD64[ch] = FL2FXCONST_DBL(0.0);
289
67.0k
  }
290
291
67.0k
  self->BP = BP__FDK;
292
67.0k
  self->BP_GF = BP_GF__FDK;
293
294
67.0k
  self->update_old_ener = 0;
295
296
67.0k
  return err;
297
67.0k
}
298
299
/*******************************************************************************
300
 Functionname: subbandTPDestroy
301
 ******************************************************************************/
302
22.6k
void subbandTPDestroy(HANDLE_STP_DEC *hStpDec) {
303
22.6k
  if (hStpDec != NULL) {
304
22.6k
    FDK_FREE_MEMORY_1D(*hStpDec);
305
22.6k
  }
306
22.6k
}
307
308
/*******************************************************************************
309
 Functionname: subbandTPApply
310
 ******************************************************************************/
311
883k
SACDEC_ERROR subbandTPApply(spatialDec *self, const SPATIAL_BS_FRAME *frame) {
312
883k
  FIXP_DBL *qmfOutputRealDry[MAX_OUTPUT_CHANNELS];
313
883k
  FIXP_DBL *qmfOutputImagDry[MAX_OUTPUT_CHANNELS];
314
883k
  FIXP_DBL *qmfOutputRealWet[MAX_OUTPUT_CHANNELS];
315
883k
  FIXP_DBL *qmfOutputImagWet[MAX_OUTPUT_CHANNELS];
316
317
883k
  FIXP_DBL DryEner[MAX_INPUT_CHANNELS];
318
883k
  FIXP_DBL scale[MAX_OUTPUT_CHANNELS];
319
320
883k
  FIXP_DBL DryEnerLD64[MAX_INPUT_CHANNELS];
321
883k
  FIXP_DBL WetEnerLD64[MAX_OUTPUT_CHANNELS];
322
323
883k
  FIXP_DBL DryEner0 = FL2FXCONST_DBL(0.0f);
324
883k
  FIXP_DBL WetEnerX, damp, tmp;
325
883k
  FIXP_DBL dmxReal0, dmxImag0;
326
883k
  int skipChannels[MAX_OUTPUT_CHANNELS];
327
883k
  int n, ch, cplxBands, cplxHybBands;
328
883k
  int dry_scale_dmx, wet_scale_dmx;
329
883k
  int i_LF, i_RF;
330
883k
  HANDLE_STP_DEC hStpDec;
331
883k
  const FIXP_CFG *pBP;
332
333
883k
  int nrgScale = (2 * self->clipProtectGainSF__FDK);
334
335
883k
  hStpDec = self->hStpDec;
336
337
  /* set scalefactor and loop counter */
338
883k
  FDK_ASSERT(SF_DRY >= 1);
339
883k
  {
340
883k
    cplxBands = BP_GF_SIZE;
341
883k
    cplxHybBands = self->hybridBands;
342
883k
    if (self->treeConfig == TREE_212) {
343
883k
      dry_scale_dmx = 2; /* 2 bits to compensate fMultDiv2() and fPow2Div2()
344
                            used in energy calculation */
345
883k
    } else {
346
0
      dry_scale_dmx = (2 * SF_DRY) - 2;
347
0
    }
348
883k
    wet_scale_dmx = 2;
349
883k
  }
350
351
  /* setup pointer for forming the direct downmix signal */
352
2.64M
  for (ch = 0; ch < self->numOutputChannels; ch++) {
353
1.76M
    qmfOutputRealDry[ch] = &self->hybOutputRealDry__FDK[ch][7];
354
1.76M
    qmfOutputRealWet[ch] = &self->hybOutputRealWet__FDK[ch][7];
355
1.76M
    qmfOutputImagDry[ch] = &self->hybOutputImagDry__FDK[ch][7];
356
1.76M
    qmfOutputImagWet[ch] = &self->hybOutputImagWet__FDK[ch][7];
357
1.76M
  }
358
359
  /* clear skipping flag for all output channels */
360
883k
  FDKmemset(skipChannels, 0, self->numOutputChannels * sizeof(int));
361
362
  /* set scale values to zero */
363
883k
  FDKmemset(scale, 0, self->numOutputChannels * sizeof(FIXP_DBL));
364
365
  /* update normalisation energy with latest smoothed energy */
366
883k
  if (hStpDec->update_old_ener == STP_UPDATE_ENERGY_RATE) {
367
11.6k
    hStpDec->update_old_ener = 1;
368
23.3k
    for (ch = 0; ch < self->numInputChannels; ch++) {
369
11.6k
      hStpDec->oldDryEnerLD64[ch] =
370
11.6k
          CalcLdData(fAddSaturate(hStpDec->runDryEner[ch], ABS_THR__FDK));
371
11.6k
    }
372
35.0k
    for (ch = 0; ch < self->numOutputChannels; ch++) {
373
23.3k
      if (self->treeConfig == TREE_212)
374
23.3k
        hStpDec->oldWetEnerLD64[ch] =
375
23.3k
            CalcLdData(fAddSaturate(hStpDec->runWetEner[ch], ABS_THR__FDK));
376
0
      else
377
0
        hStpDec->oldWetEnerLD64[ch] =
378
0
            CalcLdData(fAddSaturate(hStpDec->runWetEner[ch], ABS_THR2__FDK));
379
23.3k
    }
380
871k
  } else {
381
871k
    hStpDec->update_old_ener++;
382
871k
  }
383
384
  /* get channel configuration */
385
883k
  switch (self->treeConfig) {
386
883k
    case TREE_212:
387
883k
      i_LF = 0;
388
883k
      i_RF = 1;
389
883k
      break;
390
0
    default:
391
0
      return MPS_WRONG_TREECONFIG;
392
883k
  }
393
394
  /* form the 'direct' downmix signal */
395
883k
  pBP = hStpDec->BP_GF - BP_GF_START;
396
883k
  switch (self->treeConfig) {
397
883k
    case TREE_212:
398
883k
      INT sMin, sNorm, sReal, sImag;
399
400
883k
      sReal = fMin(getScalefactor(&qmfOutputRealDry[i_LF][BP_GF_START],
401
883k
                                  cplxBands - BP_GF_START),
402
883k
                   getScalefactor(&qmfOutputRealDry[i_RF][BP_GF_START],
403
883k
                                  cplxBands - BP_GF_START));
404
883k
      sImag = fMin(getScalefactor(&qmfOutputImagDry[i_LF][BP_GF_START],
405
883k
                                  cplxBands - BP_GF_START),
406
883k
                   getScalefactor(&qmfOutputImagDry[i_RF][BP_GF_START],
407
883k
                                  cplxBands - BP_GF_START));
408
883k
      sMin = fMin(sReal, sImag) - 1;
409
410
17.6M
      for (n = BP_GF_START; n < cplxBands; n++) {
411
16.7M
        dmxReal0 = scaleValue(qmfOutputRealDry[i_LF][n], sMin) +
412
16.7M
                   scaleValue(qmfOutputRealDry[i_RF][n], sMin);
413
16.7M
        dmxImag0 = scaleValue(qmfOutputImagDry[i_LF][n], sMin) +
414
16.7M
                   scaleValue(qmfOutputImagDry[i_RF][n], sMin);
415
416
16.7M
        DryEner0 += (fMultDiv2(fPow2Div2(dmxReal0), pBP[n]) +
417
16.7M
                     fMultDiv2(fPow2Div2(dmxImag0), pBP[n])) >>
418
16.7M
                    SF_DRY_NRG;
419
16.7M
      }
420
421
883k
      sNorm = SF_FREQ_DOMAIN_HEADROOM + SF_DRY_NRG + dry_scale_dmx -
422
883k
              (2 * sMin) + nrgScale;
423
883k
      DryEner0 = scaleValueSaturate(
424
883k
          DryEner0, fMax(fMin(sNorm, DFRACT_BITS - 1), -(DFRACT_BITS - 1)));
425
883k
      break;
426
0
    default:;
427
883k
  }
428
883k
  DryEner[0] = DryEner0;
429
430
  /* normalise the 'direct' signals */
431
1.76M
  for (ch = 0; ch < self->numInputChannels; ch++) {
432
883k
    if (self->treeConfig != TREE_212) DryEner[ch] = DryEner[ch] << nrgScale;
433
883k
    hStpDec->runDryEner[ch] =
434
883k
        fMult(STP_LPF_COEFF1__FDK, hStpDec->runDryEner[ch]) +
435
883k
        fMult(ONE_MINUS_STP_LPF_COEFF1__FDK, DryEner[ch]);
436
883k
    if (DryEner[ch] != FL2FXCONST_DBL(0.0f)) {
437
223k
      DryEnerLD64[ch] =
438
223k
          fixMax((CalcLdData(DryEner[ch]) - hStpDec->oldDryEnerLD64[ch]),
439
223k
                 FL2FXCONST_DBL(-0.484375f));
440
660k
    } else {
441
660k
      DryEnerLD64[ch] = FL2FXCONST_DBL(-0.484375f);
442
660k
    }
443
883k
  }
444
883k
  for (; ch < MAX_INPUT_CHANNELS; ch++) {
445
0
    DryEnerLD64[ch] = FL2FXCONST_DBL(-0.484375f);
446
0
  }
447
448
  /* normalise the 'diffuse' signals */
449
883k
  pBP = hStpDec->BP_GF - BP_GF_START;
450
2.64M
  for (ch = 0; ch < self->numOutputChannels; ch++) {
451
1.76M
    if (skipChannels[ch]) {
452
0
      continue;
453
0
    }
454
455
1.76M
    WetEnerX = FL2FXCONST_DBL(0.0f);
456
457
1.76M
    if (self->treeConfig == TREE_212) {
458
1.76M
      INT sMin, sNorm;
459
460
1.76M
      sMin = fMin(getScalefactor(&qmfOutputRealWet[ch][BP_GF_START],
461
1.76M
                                 cplxBands - BP_GF_START),
462
1.76M
                  getScalefactor(&qmfOutputImagWet[ch][BP_GF_START],
463
1.76M
                                 cplxBands - BP_GF_START));
464
465
35.3M
      for (n = BP_GF_START; n < cplxBands; n++) {
466
33.5M
        WetEnerX +=
467
33.5M
            (fMultDiv2(fPow2Div2(scaleValue(qmfOutputRealWet[ch][n], sMin)),
468
33.5M
                       pBP[n]) +
469
33.5M
             fMultDiv2(fPow2Div2(scaleValue(qmfOutputImagWet[ch][n], sMin)),
470
33.5M
                       pBP[n])) >>
471
33.5M
            SF_WET_NRG;
472
33.5M
      }
473
1.76M
      sNorm = SF_FREQ_DOMAIN_HEADROOM + SF_WET_NRG + wet_scale_dmx -
474
1.76M
              (2 * sMin) + nrgScale;
475
1.76M
      WetEnerX = scaleValueSaturate(
476
1.76M
          WetEnerX, fMax(fMin(sNorm, DFRACT_BITS - 1), -(DFRACT_BITS - 1)));
477
1.76M
    } else
478
1.76M
      FDK_ASSERT(self->treeConfig == TREE_212);
479
480
1.76M
    hStpDec->runWetEner[ch] =
481
1.76M
        fMult(STP_LPF_COEFF1__FDK, hStpDec->runWetEner[ch]) +
482
1.76M
        fMult(ONE_MINUS_STP_LPF_COEFF1__FDK, WetEnerX);
483
484
1.76M
    if (WetEnerX == FL2FXCONST_DBL(0.0f)) {
485
1.72M
      WetEnerLD64[ch] = FL2FXCONST_DBL(-0.484375f);
486
1.72M
    } else {
487
41.8k
      WetEnerLD64[ch] =
488
41.8k
          fixMax((CalcLdData(WetEnerX) - hStpDec->oldWetEnerLD64[ch]),
489
41.8k
                 FL2FXCONST_DBL(-0.484375f));
490
41.8k
    }
491
1.76M
  }
492
493
  /* compute scale factor for the 'diffuse' signals */
494
883k
  switch (self->treeConfig) {
495
883k
    case TREE_212:
496
883k
      if (DryEner[0] != FL2FXCONST_DBL(0.0f)) {
497
223k
        CALC_WET_SCALE(0, i_LF);
498
223k
        CALC_WET_SCALE(0, i_RF);
499
223k
      }
500
883k
      break;
501
0
    default:;
502
883k
  }
503
504
883k
  damp = FL2FXCONST_DBL(0.1f / (1 << SF_SCALE));
505
2.64M
  for (ch = 0; ch < self->numOutputChannels; ch++) {
506
    /* damp the scaling factor */
507
1.76M
    scale[ch] = damp + fMult(FL2FXCONST_DBL(0.9f), scale[ch]);
508
509
    /* limiting the scale factor */
510
1.76M
    if (scale[ch] > STP_SCALE_LIMIT__FDK) {
511
0
      scale[ch] = STP_SCALE_LIMIT__FDK;
512
0
    }
513
1.76M
    if (scale[ch] < ONE_DIV_STP_SCALE_LIMIT__FDK) {
514
1.32M
      scale[ch] = ONE_DIV_STP_SCALE_LIMIT__FDK;
515
1.32M
    }
516
517
    /* low pass filter the scaling factor */
518
1.76M
    scale[ch] =
519
1.76M
        fMult(STP_LPF_COEFF2__FDK, scale[ch]) +
520
1.76M
        fMult(ONE_MINUS_STP_LPF_COEFF2__FDK, hStpDec->prev_tp_scale[ch]);
521
1.76M
    hStpDec->prev_tp_scale[ch] = scale[ch];
522
1.76M
  }
523
524
  /* combine 'direct' and scaled 'diffuse' signal */
525
883k
  FDK_ASSERT((HP_SIZE - 3 + 10 - 1) == PC_NUM_HYB_BANDS);
526
883k
  const SCHAR *channlIndex = row2channelSTP[self->treeConfig];
527
528
2.64M
  for (ch = 0; ch < self->numOutputChannels; ch++) {
529
1.76M
    int no_scaling;
530
531
1.76M
    no_scaling = !frame->tempShapeEnableChannelSTP[channlIndex[ch]];
532
1.76M
    if (no_scaling) {
533
1.75M
      combineSignalCplx(
534
1.75M
          &self->hybOutputRealDry__FDK[ch][self->tp_hybBandBorder],
535
1.75M
          &self->hybOutputImagDry__FDK[ch][self->tp_hybBandBorder],
536
1.75M
          &self->hybOutputRealWet__FDK[ch][self->tp_hybBandBorder],
537
1.75M
          &self->hybOutputImagWet__FDK[ch][self->tp_hybBandBorder],
538
1.75M
          cplxHybBands - self->tp_hybBandBorder);
539
540
1.75M
    } else {
541
12.6k
      FIXP_DBL scaleX;
542
12.6k
      scaleX = scale[ch];
543
12.6k
      pBP = hStpDec->BP - self->tp_hybBandBorder;
544
      /* Band[HP_SIZE-3+10-1] needs not to be processed in
545
         combineSignalCplxScale1(), because pB[HP_SIZE-3+10-1] would be 1.0 */
546
12.6k
      combineSignalCplxScale1(
547
12.6k
          &self->hybOutputRealDry__FDK[ch][self->tp_hybBandBorder],
548
12.6k
          &self->hybOutputImagDry__FDK[ch][self->tp_hybBandBorder],
549
12.6k
          &self->hybOutputRealWet__FDK[ch][self->tp_hybBandBorder],
550
12.6k
          &self->hybOutputImagWet__FDK[ch][self->tp_hybBandBorder],
551
12.6k
          &pBP[self->tp_hybBandBorder], scaleX,
552
12.6k
          (HP_SIZE - 3 + 10 - 1) - self->tp_hybBandBorder);
553
554
12.6k
      {
555
12.6k
        combineSignalCplxScale2(
556
12.6k
            &self->hybOutputRealDry__FDK[ch][HP_SIZE - 3 + 10 - 1],
557
12.6k
            &self->hybOutputImagDry__FDK[ch][HP_SIZE - 3 + 10 - 1],
558
12.6k
            &self->hybOutputRealWet__FDK[ch][HP_SIZE - 3 + 10 - 1],
559
12.6k
            &self->hybOutputImagWet__FDK[ch][HP_SIZE - 3 + 10 - 1], scaleX,
560
12.6k
            cplxHybBands - (HP_SIZE - 3 + 10 - 1));
561
12.6k
      }
562
12.6k
    }
563
1.76M
  }
564
565
883k
  return (SACDEC_ERROR)MPS_OK;
566
0
  ;
567
0
}