/src/aac/libSACdec/src/sac_tsd.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* ----------------------------------------------------------------------------- |
2 | | Software License for The Fraunhofer FDK AAC Codec Library for Android |
3 | | |
4 | | © Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten |
5 | | Forschung e.V. All rights reserved. |
6 | | |
7 | | 1. INTRODUCTION |
8 | | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
9 | | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
10 | | scheme for digital audio. This FDK AAC Codec software is intended to be used on |
11 | | a wide variety of Android devices. |
12 | | |
13 | | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
14 | | general perceptual audio codecs. AAC-ELD is considered the best-performing |
15 | | full-bandwidth communications codec by independent studies and is widely |
16 | | deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
17 | | specifications. |
18 | | |
19 | | Patent licenses for necessary patent claims for the FDK AAC Codec (including |
20 | | those of Fraunhofer) may be obtained through Via Licensing |
21 | | (www.vialicensing.com) or through the respective patent owners individually for |
22 | | the purpose of encoding or decoding bit streams in products that are compliant |
23 | | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
24 | | Android devices already license these patent claims through Via Licensing or |
25 | | directly from the patent owners, and therefore FDK AAC Codec software may |
26 | | already be covered under those patent licenses when it is used for those |
27 | | licensed purposes only. |
28 | | |
29 | | Commercially-licensed AAC software libraries, including floating-point versions |
30 | | with enhanced sound quality, are also available from Fraunhofer. Users are |
31 | | encouraged to check the Fraunhofer website for additional applications |
32 | | information and documentation. |
33 | | |
34 | | 2. COPYRIGHT LICENSE |
35 | | |
36 | | Redistribution and use in source and binary forms, with or without modification, |
37 | | are permitted without payment of copyright license fees provided that you |
38 | | satisfy the following conditions: |
39 | | |
40 | | You must retain the complete text of this software license in redistributions of |
41 | | the FDK AAC Codec or your modifications thereto in source code form. |
42 | | |
43 | | You must retain the complete text of this software license in the documentation |
44 | | and/or other materials provided with redistributions of the FDK AAC Codec or |
45 | | your modifications thereto in binary form. You must make available free of |
46 | | charge copies of the complete source code of the FDK AAC Codec and your |
47 | | modifications thereto to recipients of copies in binary form. |
48 | | |
49 | | The name of Fraunhofer may not be used to endorse or promote products derived |
50 | | from this library without prior written permission. |
51 | | |
52 | | You may not charge copyright license fees for anyone to use, copy or distribute |
53 | | the FDK AAC Codec software or your modifications thereto. |
54 | | |
55 | | Your modified versions of the FDK AAC Codec must carry prominent notices stating |
56 | | that you changed the software and the date of any change. For modified versions |
57 | | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
58 | | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
59 | | AAC Codec Library for Android." |
60 | | |
61 | | 3. NO PATENT LICENSE |
62 | | |
63 | | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
64 | | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
65 | | Fraunhofer provides no warranty of patent non-infringement with respect to this |
66 | | software. |
67 | | |
68 | | You may use this FDK AAC Codec software or modifications thereto only for |
69 | | purposes that are authorized by appropriate patent licenses. |
70 | | |
71 | | 4. DISCLAIMER |
72 | | |
73 | | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
74 | | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
75 | | including but not limited to the implied warranties of merchantability and |
76 | | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
77 | | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
78 | | or consequential damages, including but not limited to procurement of substitute |
79 | | goods or services; loss of use, data, or profits, or business interruption, |
80 | | however caused and on any theory of liability, whether in contract, strict |
81 | | liability, or tort (including negligence), arising in any way out of the use of |
82 | | this software, even if advised of the possibility of such damage. |
83 | | |
84 | | 5. CONTACT INFORMATION |
85 | | |
86 | | Fraunhofer Institute for Integrated Circuits IIS |
87 | | Attention: Audio and Multimedia Departments - FDK AAC LL |
88 | | Am Wolfsmantel 33 |
89 | | 91058 Erlangen, Germany |
90 | | |
91 | | www.iis.fraunhofer.de/amm |
92 | | amm-info@iis.fraunhofer.de |
93 | | ----------------------------------------------------------------------------- */ |
94 | | |
95 | | /*********************** MPEG surround decoder library ************************* |
96 | | |
97 | | Author(s): Matthias Hildenbrand |
98 | | |
99 | | Description: USAC MPS212 Transient Steering Decorrelator (TSD) |
100 | | |
101 | | *******************************************************************************/ |
102 | | |
103 | | #include "sac_tsd.h" |
104 | | |
105 | 66.4k | #define TSD_START_BAND (7) |
106 | 683 | #define SIZE_S (4) |
107 | | #define SIZE_C (5) |
108 | | |
109 | | /*** Tables ***/ |
110 | | RAM_ALIGN |
111 | | LNK_SECTION_CONSTDATA |
112 | | static const UCHAR nBitsTsdCW_32slots[32] = { |
113 | | 5, 9, 13, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 29, 30, 30, |
114 | | 30, 29, 29, 28, 27, 26, 25, 24, 22, 20, 18, 16, 13, 9, 5, 0}; |
115 | | |
116 | | RAM_ALIGN |
117 | | LNK_SECTION_CONSTDATA |
118 | | static const UCHAR nBitsTsdCW_64slots[64] = { |
119 | | 6, 11, 16, 20, 23, 27, 30, 33, 35, 38, 40, 42, 44, 46, 48, 49, |
120 | | 51, 52, 53, 55, 56, 57, 58, 58, 59, 60, 60, 60, 61, 61, 61, 61, |
121 | | 61, 61, 61, 60, 60, 60, 59, 58, 58, 57, 56, 55, 53, 52, 51, 49, |
122 | | 48, 46, 44, 42, 40, 38, 35, 33, 30, 27, 23, 20, 16, 11, 6, 0}; |
123 | | |
124 | | RAM_ALIGN |
125 | | LNK_SECTION_CONSTDATA |
126 | | static const FIXP_DPK phiTsd[8] = { |
127 | | {{(FIXP_DBL)0x7fffffff, (FIXP_DBL)0x00000000}}, |
128 | | {{(FIXP_DBL)0x5a82799a, (FIXP_DBL)0x5a82799a}}, |
129 | | {{(FIXP_DBL)0x00000000, (FIXP_DBL)0x7fffffff}}, |
130 | | {{(FIXP_DBL)0xa57d8666, (FIXP_DBL)0x5a82799a}}, |
131 | | {{(FIXP_DBL)0x80000000, (FIXP_DBL)0x00000000}}, |
132 | | {{(FIXP_DBL)0xa57d8666, (FIXP_DBL)0xa57d8666}}, |
133 | | {{(FIXP_DBL)0x00000000, (FIXP_DBL)0x80000000}}, |
134 | | {{(FIXP_DBL)0x5a82799a, (FIXP_DBL)0xa57d8666}}}; |
135 | | |
136 | | /*** Static Functions ***/ |
137 | 37.2k | static void longmult1(USHORT a[], USHORT b, USHORT d[], int len) { |
138 | 37.2k | int k; |
139 | 37.2k | ULONG tmp; |
140 | 37.2k | ULONG b0 = (ULONG)b; |
141 | | |
142 | 37.2k | tmp = ((ULONG)a[0]) * b0; |
143 | 37.2k | d[0] = (USHORT)tmp; |
144 | | |
145 | 186k | for (k = 1; k < len; k++) { |
146 | 148k | tmp = (tmp >> 16) + ((ULONG)a[k]) * b0; |
147 | 148k | d[k] = (USHORT)tmp; |
148 | 148k | } |
149 | 37.2k | } |
150 | | |
151 | 37.2k | static void longdiv(USHORT b[], USHORT a, USHORT d[], USHORT *pr, int len) { |
152 | 37.2k | ULONG r; |
153 | 37.2k | ULONG tmp; |
154 | 37.2k | int k; |
155 | | |
156 | 37.2k | FDK_ASSERT(a != 0); |
157 | | |
158 | 37.2k | r = 0; |
159 | | |
160 | 223k | for (k = len - 1; k >= 0; k--) { |
161 | 186k | tmp = ((ULONG)b[k]) + (r << 16); |
162 | | |
163 | 186k | if (tmp) { |
164 | 75.2k | d[k] = (USHORT)(tmp / a); |
165 | 75.2k | r = tmp - d[k] * a; |
166 | 110k | } else { |
167 | 110k | d[k] = 0; |
168 | 110k | } |
169 | 186k | } |
170 | 37.2k | *pr = (USHORT)r; |
171 | 37.2k | } |
172 | | |
173 | 7.72k | static void longsub(USHORT a[], USHORT b[], int lena, int lenb) { |
174 | 7.72k | int h; |
175 | 7.72k | LONG carry = 0; |
176 | | |
177 | 7.72k | FDK_ASSERT(lena >= lenb); |
178 | 38.6k | for (h = 0; h < lenb; h++) { |
179 | 30.9k | carry += ((LONG)a[h]) - ((LONG)b[h]); |
180 | 30.9k | a[h] = (USHORT)carry; |
181 | 30.9k | carry = carry >> 16; |
182 | 30.9k | } |
183 | | |
184 | 7.72k | for (; h < lena; h++) { |
185 | 0 | carry = ((LONG)a[h]) + carry; |
186 | 0 | a[h] = (USHORT)carry; |
187 | 0 | carry = carry >> 16; |
188 | 0 | } |
189 | | |
190 | 7.72k | FDK_ASSERT(carry == |
191 | 7.72k | 0); /* carry != 0 indicates subtraction underflow, e.g. b > a */ |
192 | 7.72k | return; |
193 | 7.72k | } |
194 | | |
195 | 30.0k | static int longcompare(USHORT a[], USHORT b[], int len) { |
196 | 30.0k | int i; |
197 | | |
198 | 99.5k | for (i = len - 1; i > 0; i--) { |
199 | 81.1k | if (a[i] != b[i]) break; |
200 | 81.1k | } |
201 | 30.0k | return (a[i] >= b[i]) ? 1 : 0; |
202 | 30.0k | } |
203 | | |
204 | 59.7k | FDK_INLINE int isTrSlot(const TSD_DATA *pTsdData, const int ts) { |
205 | 59.7k | return (pTsdData->bsTsdTrPhaseData[ts] >= 0); |
206 | 59.7k | } |
207 | | |
208 | | /*** Public Functions ***/ |
209 | 12.1k | int TsdRead(HANDLE_FDK_BITSTREAM hBs, const int numSlots, TSD_DATA *pTsdData) { |
210 | 12.1k | int nBitsTrSlots = 0; |
211 | 12.1k | int bsTsdNumTrSlots; |
212 | 12.1k | const UCHAR *nBitsTsdCW_tab = NULL; |
213 | | |
214 | 12.1k | switch (numSlots) { |
215 | 1.88k | case 32: |
216 | 1.88k | nBitsTrSlots = 4; |
217 | 1.88k | nBitsTsdCW_tab = nBitsTsdCW_32slots; |
218 | 1.88k | break; |
219 | 10.2k | case 64: |
220 | 10.2k | nBitsTrSlots = 5; |
221 | 10.2k | nBitsTsdCW_tab = nBitsTsdCW_64slots; |
222 | 10.2k | break; |
223 | 0 | default: |
224 | 0 | return 1; |
225 | 12.1k | } |
226 | | |
227 | | /*** Read TempShapeData for bsTempShapeConfig == 3 ***/ |
228 | 12.1k | pTsdData->bsTsdEnable = FDKreadBit(hBs); |
229 | 12.1k | if (!pTsdData->bsTsdEnable) { |
230 | 11.4k | return 0; |
231 | 11.4k | } |
232 | | |
233 | | /*** Parse/Decode TsdData() ***/ |
234 | 683 | pTsdData->numSlots = numSlots; |
235 | | |
236 | 683 | bsTsdNumTrSlots = FDKreadBits(hBs, nBitsTrSlots); |
237 | | |
238 | | /* Decode transient slot positions */ |
239 | 683 | { |
240 | 683 | int nBitsTsdCW = (int)nBitsTsdCW_tab[bsTsdNumTrSlots]; |
241 | 683 | SCHAR *phaseData = pTsdData->bsTsdTrPhaseData; |
242 | 683 | int p = bsTsdNumTrSlots + 1; |
243 | 683 | int k, h; |
244 | 683 | USHORT s[SIZE_S] = {0}; |
245 | 683 | USHORT c[SIZE_C] = {0}; |
246 | 683 | USHORT r[1]; |
247 | | |
248 | | /* Init with TsdSepData[k] = 0 */ |
249 | 33.5k | for (k = 0; k < numSlots; k++) { |
250 | 32.8k | phaseData[k] = -1; /* means TsdSepData[] = 0 */ |
251 | 32.8k | } |
252 | | |
253 | 3.41k | for (h = (SIZE_S - 1); h >= 0; h--) { |
254 | 2.73k | if (nBitsTsdCW > h * 16) { |
255 | 1.54k | s[h] = (USHORT)FDKreadBits(hBs, nBitsTsdCW - h * 16); |
256 | 1.54k | nBitsTsdCW = h * 16; |
257 | 1.54k | } |
258 | 2.73k | } |
259 | | |
260 | | /* c = prod_{h=1}^{p} (k-p+h)/h */ |
261 | 683 | k = numSlots - 1; |
262 | 683 | c[0] = k - p + 1; |
263 | 8.24k | for (h = 2; h <= p; h++) { |
264 | 7.56k | longmult1(c, (k - p + h), c, 5); /* c *= k - p + h; */ |
265 | 7.56k | longdiv(c, h, c, r, 5); /* c /= h; */ |
266 | 7.56k | FDK_ASSERT(*r == 0); |
267 | 7.56k | } |
268 | | |
269 | | /* go through all slots */ |
270 | 30.3k | for (; k >= 0; k--) { |
271 | 30.3k | if (p > k) { |
272 | 808 | for (; k >= 0; k--) { |
273 | 515 | phaseData[k] = 1; /* means TsdSepData[] = 1 */ |
274 | 515 | } |
275 | 293 | break; |
276 | 293 | } |
277 | 30.0k | if (longcompare(s, c, 4)) { /* (s >= c) */ |
278 | 7.72k | longsub(s, c, 4, 4); /* s -= c; */ |
279 | 7.72k | phaseData[k] = 1; /* means TsdSepData[] = 1 */ |
280 | 7.72k | if (p == 1) { |
281 | 390 | break; |
282 | 390 | } |
283 | | /* Update c for next iteration: c_new = c_old * p / k */ |
284 | 7.33k | longmult1(c, p, c, 5); |
285 | 7.33k | p--; |
286 | 22.3k | } else { |
287 | | /* Update c for next iteration: c_new = c_old * (k-p) / k */ |
288 | 22.3k | longmult1(c, (k - p), c, 5); |
289 | 22.3k | } |
290 | 29.6k | longdiv(c, k, c, r, 5); |
291 | 29.6k | FDK_ASSERT(*r == 0); |
292 | 29.6k | } |
293 | | |
294 | | /* Read phase data */ |
295 | 33.5k | for (k = 0; k < numSlots; k++) { |
296 | 32.8k | if (phaseData[k] == 1) { |
297 | 8.24k | phaseData[k] = FDKreadBits(hBs, 3); |
298 | 8.24k | } |
299 | 32.8k | } |
300 | 683 | } |
301 | | |
302 | 0 | return 0; |
303 | 683 | } |
304 | | |
305 | | void TsdGenerateNonTr(const int numHybridBands, const TSD_DATA *pTsdData, |
306 | | const int ts, FIXP_DBL *pVdirectReal, |
307 | | FIXP_DBL *pVdirectImag, FIXP_DBL *pVnonTrReal, |
308 | | FIXP_DBL *pVnonTrImag, FIXP_DBL **ppDecorrInReal, |
309 | 29.8k | FIXP_DBL **ppDecorrInImag) { |
310 | 29.8k | int k = 0; |
311 | | |
312 | 29.8k | if (!isTrSlot(pTsdData, ts)) { |
313 | | /* Let allpass based decorrelator read from direct input. */ |
314 | 22.5k | *ppDecorrInReal = pVdirectReal; |
315 | 22.5k | *ppDecorrInImag = pVdirectImag; |
316 | 22.5k | return; |
317 | 22.5k | } |
318 | | |
319 | | /* Generate nonTr input signal for allpass based decorrelator */ |
320 | 59.0k | for (; k < TSD_START_BAND; k++) { |
321 | 51.7k | pVnonTrReal[k] = pVdirectReal[k]; |
322 | 51.7k | pVnonTrImag[k] = pVdirectImag[k]; |
323 | 51.7k | } |
324 | 326k | for (; k < numHybridBands; k++) { |
325 | 319k | pVnonTrReal[k] = (FIXP_DBL)0; |
326 | 319k | pVnonTrImag[k] = (FIXP_DBL)0; |
327 | 319k | } |
328 | 7.38k | *ppDecorrInReal = pVnonTrReal; |
329 | 7.38k | *ppDecorrInImag = pVnonTrImag; |
330 | 7.38k | } |
331 | | |
332 | | void TsdApply(const int numHybridBands, const TSD_DATA *pTsdData, int *pTsdTs, |
333 | | const FIXP_DBL *pVdirectReal, const FIXP_DBL *pVdirectImag, |
334 | 29.8k | FIXP_DBL *pDnonTrReal, FIXP_DBL *pDnonTrImag) { |
335 | 29.8k | const int ts = *pTsdTs; |
336 | | |
337 | 29.8k | if (isTrSlot(pTsdData, ts)) { |
338 | 7.38k | int k; |
339 | 7.38k | const FIXP_DPK *phi = &phiTsd[pTsdData->bsTsdTrPhaseData[ts]]; |
340 | 7.38k | FDK_ASSERT((pTsdData->bsTsdTrPhaseData[ts] >= 0) && |
341 | 7.38k | (pTsdData->bsTsdTrPhaseData[ts] < 8)); |
342 | | |
343 | | /* d = d_nonTr + v_direct * exp(j * bsTsdTrPhaseData[ts]/4 * pi ) */ |
344 | 326k | for (k = TSD_START_BAND; k < numHybridBands; k++) { |
345 | 319k | FIXP_DBL tempReal, tempImag; |
346 | 319k | cplxMultDiv2(&tempReal, &tempImag, pVdirectReal[k], pVdirectImag[k], |
347 | 319k | *phi); |
348 | 319k | pDnonTrReal[k] = SATURATE_LEFT_SHIFT( |
349 | 319k | (pDnonTrReal[k] >> 2) + (tempReal >> 1), 2, DFRACT_BITS); |
350 | 319k | pDnonTrImag[k] = SATURATE_LEFT_SHIFT( |
351 | 319k | (pDnonTrImag[k] >> 2) + (tempImag >> 1), 2, DFRACT_BITS); |
352 | 319k | } |
353 | 7.38k | } |
354 | | |
355 | | /* The modulo MAX_TSD_TIME_SLOTS operation is to avoid illegal memory accesses |
356 | | * in case of errors. */ |
357 | 29.8k | *pTsdTs = (ts + 1) & (MAX_TSD_TIME_SLOTS - 1); |
358 | 29.8k | return; |
359 | 29.8k | } |