/src/aac/libFDK/src/nlc_dec.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* ----------------------------------------------------------------------------- |
2 | | Software License for The Fraunhofer FDK AAC Codec Library for Android |
3 | | |
4 | | © Copyright 1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten |
5 | | Forschung e.V. All rights reserved. |
6 | | |
7 | | 1. INTRODUCTION |
8 | | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
9 | | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
10 | | scheme for digital audio. This FDK AAC Codec software is intended to be used on |
11 | | a wide variety of Android devices. |
12 | | |
13 | | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
14 | | general perceptual audio codecs. AAC-ELD is considered the best-performing |
15 | | full-bandwidth communications codec by independent studies and is widely |
16 | | deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
17 | | specifications. |
18 | | |
19 | | Patent licenses for necessary patent claims for the FDK AAC Codec (including |
20 | | those of Fraunhofer) may be obtained through Via Licensing |
21 | | (www.vialicensing.com) or through the respective patent owners individually for |
22 | | the purpose of encoding or decoding bit streams in products that are compliant |
23 | | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
24 | | Android devices already license these patent claims through Via Licensing or |
25 | | directly from the patent owners, and therefore FDK AAC Codec software may |
26 | | already be covered under those patent licenses when it is used for those |
27 | | licensed purposes only. |
28 | | |
29 | | Commercially-licensed AAC software libraries, including floating-point versions |
30 | | with enhanced sound quality, are also available from Fraunhofer. Users are |
31 | | encouraged to check the Fraunhofer website for additional applications |
32 | | information and documentation. |
33 | | |
34 | | 2. COPYRIGHT LICENSE |
35 | | |
36 | | Redistribution and use in source and binary forms, with or without modification, |
37 | | are permitted without payment of copyright license fees provided that you |
38 | | satisfy the following conditions: |
39 | | |
40 | | You must retain the complete text of this software license in redistributions of |
41 | | the FDK AAC Codec or your modifications thereto in source code form. |
42 | | |
43 | | You must retain the complete text of this software license in the documentation |
44 | | and/or other materials provided with redistributions of the FDK AAC Codec or |
45 | | your modifications thereto in binary form. You must make available free of |
46 | | charge copies of the complete source code of the FDK AAC Codec and your |
47 | | modifications thereto to recipients of copies in binary form. |
48 | | |
49 | | The name of Fraunhofer may not be used to endorse or promote products derived |
50 | | from this library without prior written permission. |
51 | | |
52 | | You may not charge copyright license fees for anyone to use, copy or distribute |
53 | | the FDK AAC Codec software or your modifications thereto. |
54 | | |
55 | | Your modified versions of the FDK AAC Codec must carry prominent notices stating |
56 | | that you changed the software and the date of any change. For modified versions |
57 | | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
58 | | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
59 | | AAC Codec Library for Android." |
60 | | |
61 | | 3. NO PATENT LICENSE |
62 | | |
63 | | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
64 | | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
65 | | Fraunhofer provides no warranty of patent non-infringement with respect to this |
66 | | software. |
67 | | |
68 | | You may use this FDK AAC Codec software or modifications thereto only for |
69 | | purposes that are authorized by appropriate patent licenses. |
70 | | |
71 | | 4. DISCLAIMER |
72 | | |
73 | | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
74 | | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
75 | | including but not limited to the implied warranties of merchantability and |
76 | | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
77 | | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
78 | | or consequential damages, including but not limited to procurement of substitute |
79 | | goods or services; loss of use, data, or profits, or business interruption, |
80 | | however caused and on any theory of liability, whether in contract, strict |
81 | | liability, or tort (including negligence), arising in any way out of the use of |
82 | | this software, even if advised of the possibility of such damage. |
83 | | |
84 | | 5. CONTACT INFORMATION |
85 | | |
86 | | Fraunhofer Institute for Integrated Circuits IIS |
87 | | Attention: Audio and Multimedia Departments - FDK AAC LL |
88 | | Am Wolfsmantel 33 |
89 | | 91058 Erlangen, Germany |
90 | | |
91 | | www.iis.fraunhofer.de/amm |
92 | | amm-info@iis.fraunhofer.de |
93 | | ----------------------------------------------------------------------------- */ |
94 | | |
95 | | /******************* Library for basic calculation routines ******************** |
96 | | |
97 | | Author(s): Omer Osman |
98 | | |
99 | | Description: SAC/SAOC Dec Noiseless Coding |
100 | | |
101 | | *******************************************************************************/ |
102 | | |
103 | | #include "nlc_dec.h" |
104 | | #include "FDK_tools_rom.h" |
105 | | |
106 | | /* MAX_PARAMETER_BANDS defines array length in huffdec */ |
107 | | |
108 | | #ifndef min |
109 | 0 | #define min(a, b) (((a) < (b)) ? (a) : (b)) |
110 | | #endif |
111 | | |
112 | 0 | ERROR_t sym_restoreIPD(HANDLE_FDK_BITSTREAM strm, int lav, SCHAR data[2]) { |
113 | 0 | int sum_val = data[0] + data[1]; |
114 | 0 | int diff_val = data[0] - data[1]; |
115 | |
|
116 | 0 | if (sum_val > lav) { |
117 | 0 | data[0] = -sum_val + (2 * lav + 1); |
118 | 0 | data[1] = -diff_val; |
119 | 0 | } else { |
120 | 0 | data[0] = sum_val; |
121 | 0 | data[1] = diff_val; |
122 | 0 | } |
123 | |
|
124 | 0 | if (data[0] - data[1] != 0) { |
125 | 0 | ULONG sym_bit; |
126 | 0 | sym_bit = FDKreadBits(strm, 1); |
127 | 0 | if (sym_bit) { |
128 | 0 | int tmp; |
129 | 0 | tmp = data[0]; |
130 | 0 | data[0] = data[1]; |
131 | 0 | data[1] = tmp; |
132 | 0 | } |
133 | 0 | } |
134 | |
|
135 | 0 | return HUFFDEC_OK; |
136 | 0 | } |
137 | | |
138 | 0 | static int ilog2(unsigned int i) { |
139 | 0 | int l = 0; |
140 | |
|
141 | 0 | if (i) i--; |
142 | 0 | while (i > 0) { |
143 | 0 | i >>= 1; |
144 | 0 | l++; |
145 | 0 | } |
146 | |
|
147 | 0 | return l; |
148 | 0 | } |
149 | | |
150 | | static ERROR_t pcm_decode(HANDLE_FDK_BITSTREAM strm, SCHAR* out_data_1, |
151 | | SCHAR* out_data_2, int offset, int num_val, |
152 | 0 | int num_levels) { |
153 | 0 | int i = 0, j = 0, idx = 0; |
154 | 0 | int max_grp_len = 0, next_val = 0; |
155 | 0 | ULONG tmp; |
156 | |
|
157 | 0 | int pcm_chunk_size[7] = {0}; |
158 | |
|
159 | 0 | switch (num_levels) { |
160 | 0 | case 3: |
161 | 0 | max_grp_len = 5; |
162 | 0 | break; |
163 | 0 | case 7: |
164 | 0 | max_grp_len = 6; |
165 | 0 | break; |
166 | 0 | case 11: |
167 | 0 | max_grp_len = 2; |
168 | 0 | break; |
169 | 0 | case 13: |
170 | 0 | max_grp_len = 4; |
171 | 0 | break; |
172 | 0 | case 19: |
173 | 0 | max_grp_len = 4; |
174 | 0 | break; |
175 | 0 | case 25: |
176 | 0 | max_grp_len = 3; |
177 | 0 | break; |
178 | 0 | case 51: |
179 | 0 | max_grp_len = 4; |
180 | 0 | break; |
181 | 0 | case 4: |
182 | 0 | case 8: |
183 | 0 | case 15: |
184 | 0 | case 16: |
185 | 0 | case 26: |
186 | 0 | case 31: |
187 | 0 | max_grp_len = 1; |
188 | 0 | break; |
189 | 0 | default: |
190 | 0 | return HUFFDEC_NOTOK; |
191 | 0 | } |
192 | | |
193 | 0 | tmp = 1; |
194 | 0 | for (i = 1; i <= max_grp_len; i++) { |
195 | 0 | tmp *= num_levels; |
196 | 0 | pcm_chunk_size[i] = ilog2(tmp); |
197 | 0 | } |
198 | |
|
199 | 0 | for (i = 0; i < num_val; i += max_grp_len) { |
200 | 0 | int grp_len, grp_val, data; |
201 | 0 | grp_len = min(max_grp_len, num_val - i); |
202 | 0 | data = FDKreadBits(strm, pcm_chunk_size[grp_len]); |
203 | |
|
204 | 0 | grp_val = data; |
205 | |
|
206 | 0 | for (j = 0; j < grp_len; j++) { |
207 | 0 | idx = i + (grp_len - j - 1); |
208 | 0 | next_val = grp_val % num_levels; |
209 | |
|
210 | 0 | if (out_data_2 == NULL) { |
211 | 0 | out_data_1[idx] = next_val - offset; |
212 | 0 | } else if (out_data_1 == NULL) { |
213 | 0 | out_data_2[idx] = next_val - offset; |
214 | 0 | } else { |
215 | 0 | if (idx % 2) { |
216 | 0 | out_data_2[idx / 2] = next_val - offset; |
217 | 0 | } else { |
218 | 0 | out_data_1[idx / 2] = next_val - offset; |
219 | 0 | } |
220 | 0 | } |
221 | |
|
222 | 0 | grp_val = (grp_val - next_val) / num_levels; |
223 | 0 | } |
224 | 0 | } |
225 | |
|
226 | 0 | return HUFFDEC_OK; |
227 | 0 | } |
228 | | |
229 | | static ERROR_t huff_read(HANDLE_FDK_BITSTREAM strm, |
230 | | const SHORT (*nodeTab)[MAX_ENTRIES][2], |
231 | 0 | int* out_data) { |
232 | 0 | int node = 0; |
233 | 0 | int len = 0; |
234 | |
|
235 | 0 | do { |
236 | 0 | ULONG next_bit; |
237 | 0 | next_bit = FDKreadBits(strm, 1); |
238 | 0 | len++; |
239 | 0 | node = (*nodeTab)[node][next_bit]; |
240 | 0 | } while (node > 0); |
241 | |
|
242 | 0 | *out_data = node; |
243 | |
|
244 | 0 | return HUFFDEC_OK; |
245 | 0 | } |
246 | | |
247 | | static ERROR_t huff_read_2D(HANDLE_FDK_BITSTREAM strm, |
248 | | const SHORT (*nodeTab)[MAX_ENTRIES][2], |
249 | 0 | SCHAR out_data[2], int* escape) { |
250 | 0 | ERROR_t err = HUFFDEC_OK; |
251 | |
|
252 | 0 | int huff_2D_8bit = 0; |
253 | 0 | int node = 0; |
254 | |
|
255 | 0 | if ((err = huff_read(strm, nodeTab, &node)) != HUFFDEC_OK) { |
256 | 0 | goto bail; |
257 | 0 | } |
258 | 0 | *escape = (node == 0); |
259 | |
|
260 | 0 | if (*escape) { |
261 | 0 | out_data[0] = 0; |
262 | 0 | out_data[1] = 1; |
263 | 0 | } else { |
264 | 0 | huff_2D_8bit = -(node + 1); |
265 | 0 | out_data[0] = huff_2D_8bit >> 4; |
266 | 0 | out_data[1] = huff_2D_8bit & 0xf; |
267 | 0 | } |
268 | |
|
269 | 0 | bail: |
270 | 0 | return err; |
271 | 0 | } |
272 | | |
273 | 0 | static ERROR_t sym_restore(HANDLE_FDK_BITSTREAM strm, int lav, SCHAR data[2]) { |
274 | 0 | ULONG sym_bit = 0; |
275 | |
|
276 | 0 | int sum_val = data[0] + data[1]; |
277 | 0 | int diff_val = data[0] - data[1]; |
278 | |
|
279 | 0 | if (sum_val > lav) { |
280 | 0 | data[0] = -sum_val + (2 * lav + 1); |
281 | 0 | data[1] = -diff_val; |
282 | 0 | } else { |
283 | 0 | data[0] = sum_val; |
284 | 0 | data[1] = diff_val; |
285 | 0 | } |
286 | |
|
287 | 0 | if (data[0] + data[1] != 0) { |
288 | 0 | sym_bit = FDKreadBits(strm, 1); |
289 | 0 | if (sym_bit) { |
290 | 0 | data[0] = -data[0]; |
291 | 0 | data[1] = -data[1]; |
292 | 0 | } |
293 | 0 | } |
294 | |
|
295 | 0 | if (data[0] - data[1] != 0) { |
296 | 0 | sym_bit = FDKreadBits(strm, 1); |
297 | 0 | if (sym_bit) { |
298 | 0 | int tmp; |
299 | 0 | tmp = data[0]; |
300 | 0 | data[0] = data[1]; |
301 | 0 | data[1] = tmp; |
302 | 0 | } |
303 | 0 | } |
304 | |
|
305 | 0 | return HUFFDEC_OK; |
306 | 0 | } |
307 | | |
308 | | static ERROR_t huff_dec_1D(HANDLE_FDK_BITSTREAM strm, const DATA_TYPE data_type, |
309 | | const INT dim1, SCHAR* out_data, const INT num_val, |
310 | | const INT p0_flag) |
311 | | |
312 | 0 | { |
313 | 0 | ERROR_t err = HUFFDEC_OK; |
314 | 0 | int i = 0, node = 0, offset = 0; |
315 | 0 | int od = 0, od_sign = 0; |
316 | 0 | ULONG data = 0; |
317 | 0 | int bitsAvail = 0; |
318 | |
|
319 | 0 | const SHORT(*partTab)[MAX_ENTRIES][2] = NULL; |
320 | 0 | const SHORT(*nodeTab)[MAX_ENTRIES][2] = NULL; |
321 | |
|
322 | 0 | switch (data_type) { |
323 | 0 | case t_CLD: |
324 | 0 | partTab = (HANDLE_HUFF_NODE)&FDK_huffPart0Nodes.cld[0][0]; |
325 | 0 | nodeTab = (HANDLE_HUFF_NODE)&FDK_huffCLDNodes.h1D[dim1]->nodeTab[0][0]; |
326 | 0 | break; |
327 | 0 | case t_ICC: |
328 | 0 | partTab = (HANDLE_HUFF_NODE)&FDK_huffPart0Nodes.icc[0][0]; |
329 | 0 | nodeTab = (HANDLE_HUFF_NODE)&FDK_huffICCNodes.h1D[dim1]->nodeTab[0][0]; |
330 | 0 | break; |
331 | 0 | case t_OLD: |
332 | 0 | partTab = (HANDLE_HUFF_NODE)&FDK_huffPart0Nodes.old[0][0]; |
333 | 0 | nodeTab = (HANDLE_HUFF_NODE)&huffOLDNodes.h1D[dim1]->nodeTab[0][0]; |
334 | 0 | break; |
335 | 0 | case t_IPD: |
336 | 0 | partTab = (HANDLE_HUFF_NODE)&FDK_huffPart0Nodes.ipd[0][0]; |
337 | 0 | nodeTab = (HANDLE_HUFF_NODE)&FDK_huffIPDNodes.h1D[dim1].nodeTab[0][0]; |
338 | 0 | break; |
339 | 0 | default: |
340 | 0 | FDK_ASSERT(0); |
341 | 0 | err = HUFFDEC_NOTOK; |
342 | 0 | goto bail; |
343 | 0 | } |
344 | | |
345 | 0 | if (p0_flag) { |
346 | 0 | if ((err = huff_read(strm, partTab, &node)) != HUFFDEC_OK) { |
347 | 0 | goto bail; |
348 | 0 | } |
349 | | |
350 | 0 | out_data[0] = -(node + 1); |
351 | 0 | offset = 1; |
352 | 0 | } |
353 | | |
354 | 0 | for (i = offset; i < num_val; i++) { |
355 | 0 | bitsAvail = FDKgetValidBits(strm); |
356 | 0 | if (bitsAvail < 1) { |
357 | 0 | err = HUFFDEC_NOTOK; |
358 | 0 | goto bail; |
359 | 0 | } |
360 | | |
361 | 0 | if ((err = huff_read(strm, nodeTab, &node)) != HUFFDEC_OK) { |
362 | 0 | goto bail; |
363 | 0 | } |
364 | 0 | od = -(node + 1); |
365 | |
|
366 | 0 | if (data_type != t_IPD) { |
367 | 0 | if (od != 0) { |
368 | 0 | bitsAvail = FDKgetValidBits(strm); |
369 | 0 | if (bitsAvail < 1) { |
370 | 0 | err = HUFFDEC_NOTOK; |
371 | 0 | goto bail; |
372 | 0 | } |
373 | | |
374 | 0 | data = FDKreadBits(strm, 1); |
375 | 0 | od_sign = data; |
376 | |
|
377 | 0 | if (od_sign) od = -od; |
378 | 0 | } |
379 | 0 | } |
380 | | |
381 | 0 | out_data[i] = od; |
382 | 0 | } |
383 | | |
384 | 0 | bail: |
385 | 0 | return err; |
386 | 0 | } |
387 | | |
388 | | static ERROR_t huff_dec_2D(HANDLE_FDK_BITSTREAM strm, const DATA_TYPE data_type, |
389 | | const INT dim1, const INT dim2, SCHAR out_data[][2], |
390 | | const INT num_val, const INT stride, |
391 | 0 | SCHAR* p0_data[2]) { |
392 | 0 | ERROR_t err = HUFFDEC_OK; |
393 | 0 | int i = 0, lav = 0, escape = 0, escCntr = 0; |
394 | 0 | int node = 0; |
395 | 0 | unsigned long data = 0; |
396 | |
|
397 | 0 | SCHAR esc_data[2][28] = {{0}}; |
398 | 0 | int escIdx[28] = {0}; |
399 | 0 | const SHORT(*nodeTab)[MAX_ENTRIES][2] = NULL; |
400 | | |
401 | | /* LAV */ |
402 | 0 | if ((err = |
403 | 0 | huff_read(strm, (HANDLE_HUFF_NODE)&FDK_huffLavIdxNodes.nodeTab[0][0], |
404 | 0 | &node)) != HUFFDEC_OK) { |
405 | 0 | goto bail; |
406 | 0 | } |
407 | 0 | data = -(node + 1); |
408 | |
|
409 | 0 | switch (data_type) { |
410 | 0 | case t_CLD: |
411 | 0 | lav = 2 * data + 3; /* 3, 5, 7, 9 */ |
412 | 0 | nodeTab = (HANDLE_HUFF_NODE)&FDK_huffPart0Nodes.cld[0][0]; |
413 | 0 | break; |
414 | 0 | case t_ICC: |
415 | 0 | lav = 2 * data + 1; /* 1, 3, 5, 7 */ |
416 | 0 | nodeTab = (HANDLE_HUFF_NODE)&FDK_huffPart0Nodes.icc[0][0]; |
417 | 0 | break; |
418 | 0 | case t_OLD: |
419 | 0 | lav = 3 * data + 3; |
420 | 0 | nodeTab = (HANDLE_HUFF_NODE)&FDK_huffPart0Nodes.old[0][0]; |
421 | 0 | break; |
422 | 0 | case t_IPD: |
423 | 0 | if (data == 0) |
424 | 0 | data = 3; |
425 | 0 | else |
426 | 0 | data--; |
427 | 0 | lav = 2 * data + 1; /* 1, 3, 5, 7 */ |
428 | 0 | nodeTab = (HANDLE_HUFF_NODE)&FDK_huffPart0Nodes.ipd[0][0]; |
429 | 0 | break; |
430 | 0 | default: |
431 | 0 | FDK_ASSERT(0); |
432 | 0 | err = HUFFDEC_NOTOK; |
433 | 0 | goto bail; |
434 | 0 | } |
435 | | |
436 | | /* Partition 0 */ |
437 | 0 | if (p0_data[0] != NULL) { |
438 | 0 | if ((err = huff_read(strm, nodeTab, &node)) != HUFFDEC_OK) { |
439 | 0 | goto bail; |
440 | 0 | } |
441 | 0 | *p0_data[0] = -(node + 1); |
442 | 0 | } |
443 | 0 | if (p0_data[1] != NULL) { |
444 | 0 | if ((err = huff_read(strm, nodeTab, &node)) != HUFFDEC_OK) { |
445 | 0 | goto bail; |
446 | 0 | } |
447 | 0 | *p0_data[1] = -(node + 1); |
448 | 0 | } |
449 | | |
450 | 0 | switch (data_type) { |
451 | 0 | case t_CLD: |
452 | 0 | switch (lav) { |
453 | 0 | case 3: |
454 | 0 | nodeTab = |
455 | 0 | (HANDLE_HUFF_NODE)&FDK_huffCLDNodes.h2D[dim1][dim2]->lav3[0][0]; |
456 | 0 | break; |
457 | 0 | case 5: |
458 | 0 | nodeTab = |
459 | 0 | (HANDLE_HUFF_NODE)&FDK_huffCLDNodes.h2D[dim1][dim2]->lav5[0][0]; |
460 | 0 | break; |
461 | 0 | case 7: |
462 | 0 | nodeTab = |
463 | 0 | (HANDLE_HUFF_NODE)&FDK_huffCLDNodes.h2D[dim1][dim2]->lav7[0][0]; |
464 | 0 | break; |
465 | 0 | case 9: |
466 | 0 | nodeTab = |
467 | 0 | (HANDLE_HUFF_NODE)&FDK_huffCLDNodes.h2D[dim1][dim2]->lav9[0][0]; |
468 | 0 | break; |
469 | 0 | } |
470 | 0 | break; |
471 | 0 | case t_ICC: |
472 | 0 | switch (lav) { |
473 | 0 | case 1: |
474 | 0 | nodeTab = |
475 | 0 | (HANDLE_HUFF_NODE)&FDK_huffICCNodes.h2D[dim1][dim2]->lav1[0][0]; |
476 | 0 | break; |
477 | 0 | case 3: |
478 | 0 | nodeTab = |
479 | 0 | (HANDLE_HUFF_NODE)&FDK_huffICCNodes.h2D[dim1][dim2]->lav3[0][0]; |
480 | 0 | break; |
481 | 0 | case 5: |
482 | 0 | nodeTab = |
483 | 0 | (HANDLE_HUFF_NODE)&FDK_huffICCNodes.h2D[dim1][dim2]->lav5[0][0]; |
484 | 0 | break; |
485 | 0 | case 7: |
486 | 0 | nodeTab = |
487 | 0 | (HANDLE_HUFF_NODE)&FDK_huffICCNodes.h2D[dim1][dim2]->lav7[0][0]; |
488 | 0 | break; |
489 | 0 | } |
490 | 0 | break; |
491 | 0 | case t_OLD: |
492 | 0 | switch (lav) { |
493 | 0 | case 3: |
494 | 0 | nodeTab = (HANDLE_HUFF_NODE)&huffOLDNodes.h2D[dim1][dim2]->lav3[0][0]; |
495 | 0 | break; |
496 | 0 | case 6: |
497 | 0 | nodeTab = (HANDLE_HUFF_NODE)&huffOLDNodes.h2D[dim1][dim2]->lav6[0][0]; |
498 | 0 | break; |
499 | 0 | case 9: |
500 | 0 | nodeTab = (HANDLE_HUFF_NODE)&huffOLDNodes.h2D[dim1][dim2]->lav9[0][0]; |
501 | 0 | break; |
502 | 0 | case 12: |
503 | 0 | nodeTab = |
504 | 0 | (HANDLE_HUFF_NODE)&huffOLDNodes.h2D[dim1][dim2]->lav12[0][0]; |
505 | 0 | break; |
506 | 0 | } |
507 | 0 | break; |
508 | 0 | case t_IPD: |
509 | 0 | switch (lav) { |
510 | 0 | case 1: |
511 | 0 | nodeTab = |
512 | 0 | (HANDLE_HUFF_NODE)&FDK_huffIPDNodes.h2D[dim1][dim2].lav1[0][0]; |
513 | 0 | break; |
514 | 0 | case 3: |
515 | 0 | nodeTab = |
516 | 0 | (HANDLE_HUFF_NODE)&FDK_huffIPDNodes.h2D[dim1][dim2].lav3[0][0]; |
517 | 0 | break; |
518 | 0 | case 5: |
519 | 0 | nodeTab = |
520 | 0 | (HANDLE_HUFF_NODE)&FDK_huffIPDNodes.h2D[dim1][dim2].lav5[0][0]; |
521 | 0 | break; |
522 | 0 | case 7: |
523 | 0 | nodeTab = |
524 | 0 | (HANDLE_HUFF_NODE)&FDK_huffIPDNodes.h2D[dim1][dim2].lav7[0][0]; |
525 | 0 | break; |
526 | 0 | } |
527 | 0 | break; |
528 | 0 | default: |
529 | 0 | break; |
530 | 0 | } |
531 | | |
532 | 0 | for (i = 0; i < num_val; i += stride) { |
533 | 0 | if ((err = huff_read_2D(strm, nodeTab, out_data[i], &escape)) != |
534 | 0 | HUFFDEC_OK) { |
535 | 0 | goto bail; |
536 | 0 | } |
537 | | |
538 | 0 | if (escape) { |
539 | 0 | escIdx[escCntr++] = i; |
540 | 0 | } else { |
541 | 0 | if (data_type == t_IPD) { |
542 | 0 | if ((err = sym_restoreIPD(strm, lav, out_data[i])) != HUFFDEC_OK) { |
543 | 0 | goto bail; |
544 | 0 | } |
545 | 0 | } else { |
546 | 0 | if ((err = sym_restore(strm, lav, out_data[i])) != HUFFDEC_OK) { |
547 | 0 | goto bail; |
548 | 0 | } |
549 | 0 | } |
550 | 0 | } |
551 | 0 | } /* i */ |
552 | | |
553 | 0 | if (escCntr > 0) { |
554 | 0 | if ((err = pcm_decode(strm, esc_data[0], esc_data[1], 0, 2 * escCntr, |
555 | 0 | (2 * lav + 1))) != HUFFDEC_OK) { |
556 | 0 | goto bail; |
557 | 0 | } |
558 | | |
559 | 0 | for (i = 0; i < escCntr; i++) { |
560 | 0 | out_data[escIdx[i]][0] = esc_data[0][i] - lav; |
561 | 0 | out_data[escIdx[i]][1] = esc_data[1][i] - lav; |
562 | 0 | } |
563 | 0 | } |
564 | 0 | bail: |
565 | 0 | return err; |
566 | 0 | } |
567 | | |
568 | | static ERROR_t huff_decode(HANDLE_FDK_BITSTREAM strm, SCHAR* out_data_1, |
569 | | SCHAR* out_data_2, DATA_TYPE data_type, |
570 | | DIFF_TYPE diff_type_1, DIFF_TYPE diff_type_2, |
571 | 0 | int num_val, PAIRING* pairing_scheme, int ldMode) { |
572 | 0 | ERROR_t err = HUFFDEC_OK; |
573 | 0 | CODING_SCHEME coding_scheme = HUFF_1D; |
574 | 0 | DIFF_TYPE diff_type; |
575 | |
|
576 | 0 | int i = 0; |
577 | |
|
578 | 0 | SCHAR pair_vec[28][2]; |
579 | |
|
580 | 0 | SCHAR* p0_data_1[2] = {NULL, NULL}; |
581 | 0 | SCHAR* p0_data_2[2] = {NULL, NULL}; |
582 | |
|
583 | 0 | int p0_flag[2]; |
584 | |
|
585 | 0 | int num_val_1_int = num_val; |
586 | 0 | int num_val_2_int = num_val; |
587 | |
|
588 | 0 | SCHAR* out_data_1_int = out_data_1; |
589 | 0 | SCHAR* out_data_2_int = out_data_2; |
590 | |
|
591 | 0 | int df_rest_flag_1 = 0; |
592 | 0 | int df_rest_flag_2 = 0; |
593 | |
|
594 | 0 | int hufYY1; |
595 | 0 | int hufYY2; |
596 | 0 | int hufYY; |
597 | | |
598 | | /* Coding scheme */ |
599 | 0 | coding_scheme = (CODING_SCHEME)FDKreadBits(strm, 1); |
600 | |
|
601 | 0 | if (coding_scheme == HUFF_2D) { |
602 | 0 | if ((out_data_1 != NULL) && (out_data_2 != NULL) && (ldMode == 0)) { |
603 | 0 | *pairing_scheme = (PAIRING)FDKreadBits(strm, 1); |
604 | 0 | } else { |
605 | 0 | *pairing_scheme = FREQ_PAIR; |
606 | 0 | } |
607 | 0 | } |
608 | |
|
609 | 0 | { |
610 | 0 | hufYY1 = diff_type_1; |
611 | 0 | hufYY2 = diff_type_2; |
612 | 0 | } |
613 | |
|
614 | 0 | switch (coding_scheme) { |
615 | 0 | case HUFF_1D: |
616 | 0 | p0_flag[0] = (diff_type_1 == DIFF_FREQ); |
617 | 0 | p0_flag[1] = (diff_type_2 == DIFF_FREQ); |
618 | 0 | if (out_data_1 != NULL) { |
619 | 0 | if ((err = huff_dec_1D(strm, data_type, hufYY1, out_data_1, |
620 | 0 | num_val_1_int, p0_flag[0])) != HUFFDEC_OK) { |
621 | 0 | goto bail; |
622 | 0 | } |
623 | 0 | } |
624 | 0 | if (out_data_2 != NULL) { |
625 | 0 | if ((err = huff_dec_1D(strm, data_type, hufYY2, out_data_2, |
626 | 0 | num_val_2_int, p0_flag[1])) != HUFFDEC_OK) { |
627 | 0 | goto bail; |
628 | 0 | } |
629 | 0 | } |
630 | | |
631 | 0 | break; /* HUFF_1D */ |
632 | | |
633 | 0 | case HUFF_2D: |
634 | |
|
635 | 0 | switch (*pairing_scheme) { |
636 | 0 | case FREQ_PAIR: |
637 | |
|
638 | 0 | if (out_data_1 != NULL) { |
639 | 0 | if (diff_type_1 == DIFF_FREQ) { |
640 | 0 | p0_data_1[0] = &out_data_1[0]; |
641 | 0 | p0_data_1[1] = NULL; |
642 | |
|
643 | 0 | num_val_1_int -= 1; |
644 | 0 | out_data_1_int += 1; |
645 | 0 | } |
646 | 0 | df_rest_flag_1 = num_val_1_int % 2; |
647 | 0 | if (df_rest_flag_1) num_val_1_int -= 1; |
648 | 0 | if (num_val_1_int < 0) { |
649 | 0 | err = HUFFDEC_NOTOK; |
650 | 0 | goto bail; |
651 | 0 | } |
652 | 0 | } |
653 | 0 | if (out_data_2 != NULL) { |
654 | 0 | if (diff_type_2 == DIFF_FREQ) { |
655 | 0 | p0_data_2[0] = NULL; |
656 | 0 | p0_data_2[1] = &out_data_2[0]; |
657 | |
|
658 | 0 | num_val_2_int -= 1; |
659 | 0 | out_data_2_int += 1; |
660 | 0 | } |
661 | 0 | df_rest_flag_2 = num_val_2_int % 2; |
662 | 0 | if (df_rest_flag_2) num_val_2_int -= 1; |
663 | 0 | if (num_val_2_int < 0) { |
664 | 0 | err = HUFFDEC_NOTOK; |
665 | 0 | goto bail; |
666 | 0 | } |
667 | 0 | } |
668 | | |
669 | 0 | if (out_data_1 != NULL) { |
670 | 0 | if ((err = huff_dec_2D(strm, data_type, hufYY1, FREQ_PAIR, pair_vec, |
671 | 0 | num_val_1_int, 2, p0_data_1)) != |
672 | 0 | HUFFDEC_OK) { |
673 | 0 | goto bail; |
674 | 0 | } |
675 | 0 | if (df_rest_flag_1) { |
676 | 0 | if ((err = huff_dec_1D(strm, data_type, hufYY1, |
677 | 0 | out_data_1_int + num_val_1_int, 1, 0)) != |
678 | 0 | HUFFDEC_OK) { |
679 | 0 | goto bail; |
680 | 0 | } |
681 | 0 | } |
682 | 0 | } |
683 | 0 | if (out_data_2 != NULL) { |
684 | 0 | if ((err = huff_dec_2D(strm, data_type, hufYY2, FREQ_PAIR, |
685 | 0 | pair_vec + 1, num_val_2_int, 2, |
686 | 0 | p0_data_2)) != HUFFDEC_OK) { |
687 | 0 | goto bail; |
688 | 0 | } |
689 | 0 | if (df_rest_flag_2) { |
690 | 0 | if ((err = huff_dec_1D(strm, data_type, hufYY2, |
691 | 0 | out_data_2_int + num_val_2_int, 1, 0)) != |
692 | 0 | HUFFDEC_OK) { |
693 | 0 | goto bail; |
694 | 0 | } |
695 | 0 | } |
696 | 0 | } |
697 | | |
698 | 0 | if (out_data_1 != NULL) { |
699 | 0 | for (i = 0; i < num_val_1_int - 1; i += 2) { |
700 | 0 | out_data_1_int[i] = pair_vec[i][0]; |
701 | 0 | out_data_1_int[i + 1] = pair_vec[i][1]; |
702 | 0 | } |
703 | 0 | } |
704 | 0 | if (out_data_2 != NULL) { |
705 | 0 | for (i = 0; i < num_val_2_int - 1; i += 2) { |
706 | 0 | out_data_2_int[i] = pair_vec[i + 1][0]; |
707 | 0 | out_data_2_int[i + 1] = pair_vec[i + 1][1]; |
708 | 0 | } |
709 | 0 | } |
710 | 0 | break; /* FREQ_PAIR */ |
711 | | |
712 | 0 | case TIME_PAIR: |
713 | 0 | if (((diff_type_1 == DIFF_FREQ) || (diff_type_2 == DIFF_FREQ))) { |
714 | 0 | p0_data_1[0] = &out_data_1[0]; |
715 | 0 | p0_data_1[1] = &out_data_2[0]; |
716 | |
|
717 | 0 | out_data_1_int += 1; |
718 | 0 | out_data_2_int += 1; |
719 | |
|
720 | 0 | num_val_1_int -= 1; |
721 | 0 | } |
722 | |
|
723 | 0 | if ((diff_type_1 == DIFF_TIME) || (diff_type_2 == DIFF_TIME)) { |
724 | 0 | diff_type = DIFF_TIME; |
725 | 0 | } else { |
726 | 0 | diff_type = DIFF_FREQ; |
727 | 0 | } |
728 | 0 | { hufYY = diff_type; } |
729 | |
|
730 | 0 | if ((err = huff_dec_2D(strm, data_type, hufYY, TIME_PAIR, pair_vec, |
731 | 0 | num_val_1_int, 1, p0_data_1)) != HUFFDEC_OK) { |
732 | 0 | goto bail; |
733 | 0 | } |
734 | | |
735 | 0 | for (i = 0; i < num_val_1_int; i++) { |
736 | 0 | out_data_1_int[i] = pair_vec[i][0]; |
737 | 0 | out_data_2_int[i] = pair_vec[i][1]; |
738 | 0 | } |
739 | |
|
740 | 0 | break; /* TIME_PAIR */ |
741 | | |
742 | 0 | default: |
743 | 0 | break; |
744 | 0 | } |
745 | | |
746 | 0 | break; /* HUFF_2D */ |
747 | | |
748 | 0 | default: |
749 | 0 | break; |
750 | 0 | } |
751 | 0 | bail: |
752 | 0 | return err; |
753 | 0 | } |
754 | | |
755 | | static void diff_freq_decode(const SCHAR* const diff_data, |
756 | 0 | SCHAR* const out_data, const int num_val) { |
757 | 0 | int i = 0; |
758 | 0 | out_data[0] = diff_data[0]; |
759 | |
|
760 | 0 | for (i = 1; i < num_val; i++) { |
761 | 0 | out_data[i] = out_data[i - 1] + diff_data[i]; |
762 | 0 | } |
763 | 0 | } |
764 | | |
765 | | static void diff_time_decode_backwards(const SCHAR* const prev_data, |
766 | | const SCHAR* const diff_data, |
767 | | SCHAR* const out_data, |
768 | | const int mixed_diff_type, |
769 | 0 | const int num_val) { |
770 | 0 | int i = 0; /* default start value*/ |
771 | |
|
772 | 0 | if (mixed_diff_type) { |
773 | 0 | out_data[0] = diff_data[0]; |
774 | 0 | i = 1; /* new start value */ |
775 | 0 | } |
776 | 0 | for (; i < num_val; i++) { |
777 | 0 | out_data[i] = prev_data[i] + diff_data[i]; |
778 | 0 | } |
779 | 0 | } |
780 | | |
781 | | static void diff_time_decode_forwards(const SCHAR* const prev_data, |
782 | | const SCHAR* const diff_data, |
783 | | SCHAR* const out_data, |
784 | | const int mixed_diff_type, |
785 | 0 | const int num_val) { |
786 | 0 | int i = 0; /* default start value*/ |
787 | |
|
788 | 0 | if (mixed_diff_type) { |
789 | 0 | out_data[0] = diff_data[0]; |
790 | 0 | i = 1; /* new start value */ |
791 | 0 | } |
792 | 0 | for (; i < num_val; i++) { |
793 | 0 | out_data[i] = prev_data[i] - diff_data[i]; |
794 | 0 | } |
795 | 0 | } |
796 | | |
797 | | static ERROR_t attach_lsb(HANDLE_FDK_BITSTREAM strm, SCHAR* in_data_msb, |
798 | | int offset, int num_lsb, int num_val, |
799 | 0 | SCHAR* out_data) { |
800 | 0 | int i = 0, lsb = 0; |
801 | 0 | ULONG data = 0; |
802 | |
|
803 | 0 | for (i = 0; i < num_val; i++) { |
804 | 0 | int msb; |
805 | 0 | msb = in_data_msb[i]; |
806 | |
|
807 | 0 | if (num_lsb > 0) { |
808 | 0 | data = FDKreadBits(strm, num_lsb); |
809 | 0 | lsb = data; |
810 | |
|
811 | 0 | out_data[i] = ((msb << num_lsb) | lsb) - offset; |
812 | 0 | } else |
813 | 0 | out_data[i] = msb - offset; |
814 | 0 | } |
815 | |
|
816 | 0 | return HUFFDEC_OK; /* dummy */ |
817 | 0 | } |
818 | | |
819 | | ERROR_t EcDataPairDec(DECODER_TYPE DECODER, HANDLE_FDK_BITSTREAM strm, |
820 | | SCHAR* aaOutData1, SCHAR* aaOutData2, SCHAR* aHistory, |
821 | | DATA_TYPE data_type, int startBand, int dataBands, |
822 | | int pair_flag, int coarse_flag, |
823 | | int allowDiffTimeBack_flag) |
824 | | |
825 | 0 | { |
826 | 0 | ERROR_t err = HUFFDEC_OK; |
827 | | |
828 | | // int allowDiffTimeBack_flag = !independency_flag || (setIdx > 0); |
829 | 0 | int attachLsb_flag = 0; |
830 | 0 | int pcmCoding_flag = 0; |
831 | |
|
832 | 0 | int mixed_time_pair = 0, numValPcm = 0; |
833 | 0 | int quant_levels = 0, quant_offset = 0; |
834 | 0 | ULONG data = 0; |
835 | |
|
836 | 0 | SCHAR aaDataPair[2][28] = {{0}}; |
837 | 0 | SCHAR aaDataDiff[2][28] = {{0}}; |
838 | |
|
839 | 0 | SCHAR aHistoryMsb[28] = {0}; |
840 | |
|
841 | 0 | SCHAR* pDataVec[2] = {NULL, NULL}; |
842 | |
|
843 | 0 | DIFF_TYPE diff_type[2] = {DIFF_FREQ, DIFF_FREQ}; |
844 | 0 | PAIRING pairing = FREQ_PAIR; |
845 | 0 | DIRECTION direction = BACKWARDS; |
846 | |
|
847 | 0 | switch (data_type) { |
848 | 0 | case t_CLD: |
849 | 0 | if (coarse_flag) { |
850 | 0 | attachLsb_flag = 0; |
851 | 0 | quant_levels = 15; |
852 | 0 | quant_offset = 7; |
853 | 0 | } else { |
854 | 0 | attachLsb_flag = 0; |
855 | 0 | quant_levels = 31; |
856 | 0 | quant_offset = 15; |
857 | 0 | } |
858 | |
|
859 | 0 | break; |
860 | | |
861 | 0 | case t_ICC: |
862 | 0 | if (coarse_flag) { |
863 | 0 | attachLsb_flag = 0; |
864 | 0 | quant_levels = 4; |
865 | 0 | quant_offset = 0; |
866 | 0 | } else { |
867 | 0 | attachLsb_flag = 0; |
868 | 0 | quant_levels = 8; |
869 | 0 | quant_offset = 0; |
870 | 0 | } |
871 | |
|
872 | 0 | break; |
873 | | |
874 | 0 | case t_OLD: |
875 | 0 | if (coarse_flag) { |
876 | 0 | attachLsb_flag = 0; |
877 | 0 | quant_levels = 8; |
878 | 0 | quant_offset = 0; |
879 | 0 | } else { |
880 | 0 | attachLsb_flag = 0; |
881 | 0 | quant_levels = 16; |
882 | 0 | quant_offset = 0; |
883 | 0 | } |
884 | 0 | break; |
885 | | |
886 | 0 | case t_NRG: |
887 | 0 | if (coarse_flag) { |
888 | 0 | attachLsb_flag = 0; |
889 | 0 | quant_levels = 32; |
890 | 0 | quant_offset = 0; |
891 | 0 | } else { |
892 | 0 | attachLsb_flag = 0; |
893 | 0 | quant_levels = 64; |
894 | 0 | quant_offset = 0; |
895 | 0 | } |
896 | 0 | break; |
897 | | |
898 | 0 | case t_IPD: |
899 | 0 | if (!coarse_flag) { |
900 | 0 | attachLsb_flag = 1; |
901 | 0 | quant_levels = 16; |
902 | 0 | quant_offset = 0; |
903 | 0 | } else { |
904 | 0 | attachLsb_flag = 0; |
905 | 0 | quant_levels = 8; |
906 | 0 | quant_offset = 0; |
907 | 0 | } |
908 | 0 | break; |
909 | | |
910 | 0 | default: |
911 | 0 | return HUFFDEC_NOTOK; |
912 | 0 | } |
913 | | |
914 | 0 | data = FDKreadBits(strm, 1); |
915 | 0 | pcmCoding_flag = data; |
916 | |
|
917 | 0 | if (pcmCoding_flag) { |
918 | 0 | if (pair_flag) { |
919 | 0 | pDataVec[0] = aaDataPair[0]; |
920 | 0 | pDataVec[1] = aaDataPair[1]; |
921 | 0 | numValPcm = 2 * dataBands; |
922 | 0 | } else { |
923 | 0 | pDataVec[0] = aaDataPair[0]; |
924 | 0 | pDataVec[1] = NULL; |
925 | 0 | numValPcm = dataBands; |
926 | 0 | } |
927 | |
|
928 | 0 | err = pcm_decode(strm, pDataVec[0], pDataVec[1], quant_offset, numValPcm, |
929 | 0 | quant_levels); |
930 | 0 | if (err != HUFFDEC_OK) return HUFFDEC_NOTOK; |
931 | |
|
932 | 0 | } else { /* Differential/Huffman/LSB Coding */ |
933 | |
|
934 | 0 | if (pair_flag) { |
935 | 0 | pDataVec[0] = aaDataDiff[0]; |
936 | 0 | pDataVec[1] = aaDataDiff[1]; |
937 | 0 | } else { |
938 | 0 | pDataVec[0] = aaDataDiff[0]; |
939 | 0 | pDataVec[1] = NULL; |
940 | 0 | } |
941 | |
|
942 | 0 | diff_type[0] = DIFF_FREQ; |
943 | 0 | diff_type[1] = DIFF_FREQ; |
944 | |
|
945 | 0 | direction = BACKWARDS; |
946 | 0 | { |
947 | 0 | if (pair_flag || allowDiffTimeBack_flag) { |
948 | 0 | data = FDKreadBits(strm, 1); |
949 | 0 | diff_type[0] = (DIFF_TYPE)data; |
950 | 0 | } |
951 | |
|
952 | 0 | if (pair_flag && |
953 | 0 | ((diff_type[0] == DIFF_FREQ) || allowDiffTimeBack_flag)) { |
954 | 0 | data = FDKreadBits(strm, 1); |
955 | 0 | diff_type[1] = (DIFF_TYPE)data; |
956 | 0 | } |
957 | 0 | } |
958 | | /* Huffman decoding */ |
959 | 0 | err = huff_decode(strm, pDataVec[0], pDataVec[1], data_type, diff_type[0], |
960 | 0 | diff_type[1], dataBands, &pairing, |
961 | 0 | (DECODER == SAOC_DECODER)); |
962 | 0 | if (err != HUFFDEC_OK) { |
963 | 0 | return HUFFDEC_NOTOK; |
964 | 0 | } |
965 | | |
966 | 0 | { |
967 | | /* Differential decoding */ |
968 | 0 | if ((diff_type[0] == DIFF_TIME) || (diff_type[1] == DIFF_TIME)) { |
969 | 0 | if (DECODER == SAOC_DECODER) { |
970 | 0 | direction = BACKWARDS; |
971 | 0 | } else { |
972 | 0 | if (pair_flag) { |
973 | 0 | if ((diff_type[0] == DIFF_TIME) && !allowDiffTimeBack_flag) { |
974 | 0 | direction = FORWARDS; |
975 | 0 | } else if (diff_type[1] == DIFF_TIME) { |
976 | 0 | direction = BACKWARDS; |
977 | 0 | } else { |
978 | 0 | data = FDKreadBits(strm, 1); |
979 | 0 | direction = (DIRECTION)data; |
980 | 0 | } |
981 | 0 | } else { |
982 | 0 | direction = BACKWARDS; |
983 | 0 | } |
984 | 0 | } |
985 | 0 | } |
986 | |
|
987 | 0 | mixed_time_pair = |
988 | 0 | (diff_type[0] != diff_type[1]) && (pairing == TIME_PAIR); |
989 | |
|
990 | 0 | if (direction == BACKWARDS) { |
991 | 0 | if (diff_type[0] == DIFF_FREQ) { |
992 | 0 | diff_freq_decode(aaDataDiff[0], aaDataPair[0], dataBands); |
993 | 0 | } else { |
994 | 0 | int i; |
995 | 0 | for (i = 0; i < dataBands; i++) { |
996 | 0 | aHistoryMsb[i] = aHistory[i + startBand] + quant_offset; |
997 | 0 | if (attachLsb_flag) { |
998 | 0 | aHistoryMsb[i] >>= 1; |
999 | 0 | } |
1000 | 0 | } |
1001 | 0 | diff_time_decode_backwards(aHistoryMsb, aaDataDiff[0], aaDataPair[0], |
1002 | 0 | mixed_time_pair, dataBands); |
1003 | 0 | } |
1004 | 0 | if (diff_type[1] == DIFF_FREQ) { |
1005 | 0 | diff_freq_decode(aaDataDiff[1], aaDataPair[1], dataBands); |
1006 | 0 | } else { |
1007 | 0 | diff_time_decode_backwards(aaDataPair[0], aaDataDiff[1], |
1008 | 0 | aaDataPair[1], mixed_time_pair, dataBands); |
1009 | 0 | } |
1010 | 0 | } else { |
1011 | | /* diff_type[1] MUST BE DIFF_FREQ */ |
1012 | 0 | diff_freq_decode(aaDataDiff[1], aaDataPair[1], dataBands); |
1013 | |
|
1014 | 0 | if (diff_type[0] == DIFF_FREQ) { |
1015 | 0 | diff_freq_decode(aaDataDiff[0], aaDataPair[0], dataBands); |
1016 | 0 | } else { |
1017 | 0 | diff_time_decode_forwards(aaDataPair[1], aaDataDiff[0], aaDataPair[0], |
1018 | 0 | mixed_time_pair, dataBands); |
1019 | 0 | } |
1020 | 0 | } |
1021 | 0 | } |
1022 | | |
1023 | | /* LSB decoding */ |
1024 | 0 | err = attach_lsb(strm, aaDataPair[0], quant_offset, attachLsb_flag ? 1 : 0, |
1025 | 0 | dataBands, aaDataPair[0]); |
1026 | 0 | if (err != HUFFDEC_OK) goto bail; |
1027 | | |
1028 | 0 | if (pair_flag) { |
1029 | 0 | err = attach_lsb(strm, aaDataPair[1], quant_offset, |
1030 | 0 | attachLsb_flag ? 1 : 0, dataBands, aaDataPair[1]); |
1031 | 0 | if (err != HUFFDEC_OK) goto bail; |
1032 | 0 | } |
1033 | 0 | } /* End: Differential/Huffman/LSB Coding */ |
1034 | | |
1035 | | /* Copy data to output arrays */ |
1036 | 0 | FDKmemcpy(aaOutData1 + startBand, aaDataPair[0], sizeof(SCHAR) * dataBands); |
1037 | 0 | if (pair_flag) { |
1038 | 0 | FDKmemcpy(aaOutData2 + startBand, aaDataPair[1], sizeof(SCHAR) * dataBands); |
1039 | 0 | } |
1040 | |
|
1041 | 0 | bail: |
1042 | 0 | return err; |
1043 | 0 | } |
1044 | | |
1045 | | ERROR_t huff_dec_reshape(HANDLE_FDK_BITSTREAM strm, int* out_data, |
1046 | 0 | int num_val) { |
1047 | 0 | ERROR_t err = HUFFDEC_OK; |
1048 | 0 | int val_rcvd = 0, dummy = 0, i = 0, val = 0, len = 0; |
1049 | 0 | SCHAR rl_data[2] = {0}; |
1050 | |
|
1051 | 0 | while (val_rcvd < num_val) { |
1052 | 0 | err = huff_read_2D(strm, |
1053 | 0 | (HANDLE_HUFF_NODE)&FDK_huffReshapeNodes.nodeTab[0][0], |
1054 | 0 | rl_data, &dummy); |
1055 | 0 | if (err != HUFFDEC_OK) goto bail; |
1056 | 0 | val = rl_data[0]; |
1057 | 0 | len = rl_data[1] + 1; |
1058 | 0 | if (val_rcvd + len > num_val) { |
1059 | 0 | err = HUFFDEC_NOTOK; |
1060 | 0 | goto bail; |
1061 | 0 | } |
1062 | 0 | for (i = val_rcvd; i < val_rcvd + len; i++) { |
1063 | 0 | out_data[i] = val; |
1064 | 0 | } |
1065 | 0 | val_rcvd += len; |
1066 | 0 | } |
1067 | 0 | bail: |
1068 | 0 | return err; |
1069 | 0 | } |