Coverage Report

Created: 2025-07-23 06:37

/src/aac/libSBRdec/src/sbr_dec.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** SBR decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  Sbr decoder
106
  This module provides the actual decoder implementation. The SBR data (side
107
  information) is already decoded. Only three functions are provided:
108
109
  \li 1.) createSbrDec(): One time initialization
110
  \li 2.) resetSbrDec(): Called by sbr_Apply() when the information contained in
111
  an SBR_HEADER_ELEMENT requires a reset and recalculation of important SBR
112
  structures. \li 3.) sbr_dec(): The actual decoder. Calls the different tools
113
  such as filterbanks, lppTransposer(), and calculateSbrEnvelope() [the envelope
114
  adjuster].
115
116
  \sa sbr_dec(), \ref documentationOverview
117
*/
118
119
#include "sbr_dec.h"
120
121
#include "sbr_ram.h"
122
#include "env_extr.h"
123
#include "env_calc.h"
124
#include "scale.h"
125
#include "FDK_matrixCalloc.h"
126
#include "hbe.h"
127
128
#include "genericStds.h"
129
130
#include "sbrdec_drc.h"
131
132
static void copyHarmonicSpectrum(int *xOverQmf, FIXP_DBL **qmfReal,
133
                                 FIXP_DBL **qmfImag, int noCols, int overlap,
134
0
                                 KEEP_STATES_SYNCED_MODE keepStatesSynced) {
135
0
  int patchBands;
136
0
  int patch, band, col, target, sourceBands, i;
137
0
  int numPatches = 0;
138
0
  int slotOffset = 0;
139
140
0
  FIXP_DBL **ppqmfReal = qmfReal + overlap;
141
0
  FIXP_DBL **ppqmfImag = qmfImag + overlap;
142
143
0
  if (keepStatesSynced == KEEP_STATES_SYNCED_NORMAL) {
144
0
    slotOffset = noCols - overlap - LPC_ORDER;
145
0
  }
146
147
0
  if (keepStatesSynced == KEEP_STATES_SYNCED_OUTDIFF) {
148
0
    ppqmfReal = qmfReal;
149
0
    ppqmfImag = qmfImag;
150
0
  }
151
152
0
  for (i = 1; i < MAX_NUM_PATCHES; i++) {
153
0
    if (xOverQmf[i] != 0) {
154
0
      numPatches++;
155
0
    }
156
0
  }
157
158
0
  for (patch = (MAX_STRETCH_HBE - 1); patch < numPatches; patch++) {
159
0
    patchBands = xOverQmf[patch + 1] - xOverQmf[patch];
160
0
    target = xOverQmf[patch];
161
0
    sourceBands = xOverQmf[MAX_STRETCH_HBE - 1] - xOverQmf[MAX_STRETCH_HBE - 2];
162
163
0
    while (patchBands > 0) {
164
0
      int numBands = sourceBands;
165
0
      int startBand = xOverQmf[MAX_STRETCH_HBE - 1] - 1;
166
0
      if (target + numBands >= xOverQmf[patch + 1]) {
167
0
        numBands = xOverQmf[patch + 1] - target;
168
0
      }
169
0
      if ((((target + numBands - 1) % 2) +
170
0
           ((xOverQmf[MAX_STRETCH_HBE - 1] - 1) % 2)) %
171
0
          2) {
172
0
        if (numBands == sourceBands) {
173
0
          numBands--;
174
0
        } else {
175
0
          startBand--;
176
0
        }
177
0
      }
178
0
      if (keepStatesSynced == KEEP_STATES_SYNCED_OUTDIFF) {
179
0
        for (col = slotOffset; col < overlap + LPC_ORDER; col++) {
180
0
          i = 0;
181
0
          for (band = numBands; band > 0; band--) {
182
0
            if ((target + band - 1 < 64) &&
183
0
                (target + band - 1 < xOverQmf[patch + 1])) {
184
0
              ppqmfReal[col][target + band - 1] = ppqmfReal[col][startBand - i];
185
0
              ppqmfImag[col][target + band - 1] = ppqmfImag[col][startBand - i];
186
0
              i++;
187
0
            }
188
0
          }
189
0
        }
190
0
      } else {
191
0
        for (col = slotOffset; col < noCols; col++) {
192
0
          i = 0;
193
0
          for (band = numBands; band > 0; band--) {
194
0
            if ((target + band - 1 < 64) &&
195
0
                (target + band - 1 < xOverQmf[patch + 1])) {
196
0
              ppqmfReal[col][target + band - 1] = ppqmfReal[col][startBand - i];
197
0
              ppqmfImag[col][target + band - 1] = ppqmfImag[col][startBand - i];
198
0
              i++;
199
0
            }
200
0
          }
201
0
        }
202
0
      }
203
0
      target += numBands;
204
0
      patchBands -= numBands;
205
0
    }
206
0
  }
207
0
}
208
209
/*!
210
  \brief      SBR decoder core function for one channel
211
212
  \image html  BufferMgmtDetailed-1632.png
213
214
  Besides the filter states of the QMF filter bank and the LPC-states of
215
  the LPP-Transposer, processing is mainly based on four buffers:
216
  #timeIn, #timeOut, #WorkBuffer2 and #OverlapBuffer. The #WorkBuffer2
217
  is reused for all channels and might be used by the core decoder, a
218
  static overlap buffer is required for each channel. Due to in-place
219
  processing, #timeIn and #timeOut point to identical locations.
220
221
  The spectral data is organized in so-called slots. Each slot
222
  contains 64 bands of complex data. The number of slots per frame
223
  depends on the frame size. For mp3PRO, there are 18 slots per frame
224
  and 6 slots per #OverlapBuffer. It is not necessary to have the slots
225
  in located consecutive address ranges.
226
227
  To optimize memory usage and to minimize the number of memory
228
  accesses, the memory management is organized as follows (slot numbers
229
  based on mp3PRO):
230
231
  1.) Input time domain signal is located in #timeIn. The last slots
232
  (0..5) of the spectral data of the previous frame are located in the
233
  #OverlapBuffer. In addition, #frameData of the current frame resides
234
  in the upper part of #timeIn.
235
236
  2.) During the cplxAnalysisQmfFiltering(), 32 samples from #timeIn are
237
  transformed into a slot of up to 32 complex spectral low band values at a
238
  time. The first spectral slot -- nr. 6 -- is written at slot number
239
  zero of #WorkBuffer2. #WorkBuffer2 will be completely filled with
240
  spectral data.
241
242
  3.) LPP-Transposition in lppTransposer() is processed on 24 slots. During the
243
  transposition, the high band part of the spectral data is replicated
244
  based on the low band data.
245
246
  Envelope Adjustment is processed on the high band part of the spectral
247
  data only by calculateSbrEnvelope().
248
249
  4.) The cplxSynthesisQmfFiltering() creates 64 time domain samples out
250
  of a slot of 64 complex spectral values at a time. The first 6 slots
251
  in #timeOut are filled from the results of spectral slots 0..5 in the
252
  #OverlapBuffer. The consecutive slots in timeOut are now filled with
253
  the results of spectral slots 6..17.
254
255
  5.) The preprocessed slots 18..23 have to be stored in the
256
  #OverlapBuffer.
257
258
*/
259
260
void sbr_dec(
261
    HANDLE_SBR_DEC hSbrDec,             /*!< handle to Decoder channel */
262
    LONG *timeIn,                       /*!< pointer to input time signal */
263
    LONG *timeOut,                      /*!< pointer to output time signal */
264
    HANDLE_SBR_DEC hSbrDecRight,        /*!< handle to Decoder channel right */
265
    LONG *timeOutRight,                 /*!< pointer to output time signal */
266
    const int strideOut,                /*!< Time data traversal strideOut */
267
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
268
    HANDLE_SBR_FRAME_DATA hFrameData,   /*!< Control data of current frame */
269
    HANDLE_SBR_PREV_FRAME_DATA
270
        hPrevFrameData,        /*!< Some control data of last frame */
271
    const int applyProcessing, /*!< Flag for SBR operation */
272
    HANDLE_PS_DEC h_ps_d, const UINT flags, const int codecFrameSize,
273
0
    const INT sbrInDataHeadroom) {
274
0
  int i, slot, reserve;
275
0
  int saveLbScale;
276
0
  int lastSlotOffs;
277
0
  FIXP_DBL maxVal;
278
279
  /* temporary pointer / variable for QMF;
280
     required as we want to use temporary buffer
281
     creating one frame delay for HBE in LP mode */
282
0
  LONG *pTimeInQmf = timeIn;
283
284
  /* Number of QMF timeslots in the overlap buffer: */
285
0
  int ov_len = hSbrDec->LppTrans.pSettings->overlap;
286
287
  /* Number of QMF slots per frame */
288
0
  int noCols = hHeaderData->numberTimeSlots * hHeaderData->timeStep;
289
290
  /* create pointer array for data to use for HBE and legacy sbr */
291
0
  FIXP_DBL *pLowBandReal[(3 * 4) + 2 * ((1024) / (32) * (4) / 2)];
292
0
  FIXP_DBL *pLowBandImag[(3 * 4) + 2 * ((1024) / (32) * (4) / 2)];
293
294
  /* set pReal to where QMF analysis writes in case of legacy SBR */
295
0
  FIXP_DBL **pReal = pLowBandReal + ov_len;
296
0
  FIXP_DBL **pImag = pLowBandImag + ov_len;
297
298
  /* map QMF buffer to pointer array (Overlap + Frame)*/
299
0
  for (i = 0; i < noCols + ov_len; i++) {
300
0
    pLowBandReal[i] = hSbrDec->qmfDomainInCh->hQmfSlotsReal[i];
301
0
    pLowBandImag[i] = hSbrDec->qmfDomainInCh->hQmfSlotsImag[i];
302
0
  }
303
304
0
  if ((flags & SBRDEC_USAC_HARMONICSBR)) {
305
    /* in case of harmonic SBR and no HBE_LP map additional buffer for
306
       one more frame to pointer arry */
307
0
    for (i = 0; i < noCols; i++) {
308
0
      pLowBandReal[i + noCols + ov_len] = hSbrDec->hQmfHBESlotsReal[i];
309
0
      pLowBandImag[i + noCols + ov_len] = hSbrDec->hQmfHBESlotsImag[i];
310
0
    }
311
312
    /* shift scale values according to buffer */
313
0
    hSbrDec->scale_ov = hSbrDec->scale_lb;
314
0
    hSbrDec->scale_lb = hSbrDec->scale_hbe;
315
316
    /* set pReal to where QMF analysis writes in case of HBE */
317
0
    pReal += noCols;
318
0
    pImag += noCols;
319
0
    if (flags & SBRDEC_SKIP_QMF_ANA) {
320
      /* stereoCfgIndex3 with HBE */
321
0
      FDK_QmfDomain_QmfData2HBE(hSbrDec->qmfDomainInCh,
322
0
                                hSbrDec->hQmfHBESlotsReal,
323
0
                                hSbrDec->hQmfHBESlotsImag);
324
0
    } else {
325
      /* We have to move old hbe frame data to lb area of buffer */
326
0
      for (i = 0; i < noCols; i++) {
327
0
        FDKmemcpy(pLowBandReal[ov_len + i], hSbrDec->hQmfHBESlotsReal[i],
328
0
                  hHeaderData->numberOfAnalysisBands * sizeof(FIXP_DBL));
329
0
        FDKmemcpy(pLowBandImag[ov_len + i], hSbrDec->hQmfHBESlotsImag[i],
330
0
                  hHeaderData->numberOfAnalysisBands * sizeof(FIXP_DBL));
331
0
      }
332
0
    }
333
0
  }
334
335
  /*
336
    low band codec signal subband filtering
337
   */
338
339
0
  if (flags & SBRDEC_SKIP_QMF_ANA) {
340
0
    if (!(flags & SBRDEC_USAC_HARMONICSBR)) /* stereoCfgIndex3 w/o HBE */
341
0
      FDK_QmfDomain_WorkBuffer2ProcChannel(hSbrDec->qmfDomainInCh);
342
0
  } else {
343
0
    C_AALLOC_SCRATCH_START(qmfTemp, FIXP_DBL, 2 * (64));
344
0
    qmfAnalysisFiltering(&hSbrDec->qmfDomainInCh->fb, pReal, pImag,
345
0
                         &hSbrDec->qmfDomainInCh->scaling, pTimeInQmf,
346
0
                         0 + sbrInDataHeadroom, 1, qmfTemp);
347
348
0
    C_AALLOC_SCRATCH_END(qmfTemp, FIXP_DBL, 2 * (64));
349
0
  }
350
351
  /*
352
    Clear upper half of spectrum
353
  */
354
0
  if (!((flags & SBRDEC_USAC_HARMONICSBR) &&
355
0
        (hFrameData->sbrPatchingMode == 0))) {
356
0
    int nAnalysisBands = hHeaderData->numberOfAnalysisBands;
357
358
0
    if (!(flags & SBRDEC_LOW_POWER)) {
359
0
      for (slot = ov_len; slot < noCols + ov_len; slot++) {
360
0
        FDKmemclear(&pLowBandReal[slot][nAnalysisBands],
361
0
                    ((64) - nAnalysisBands) * sizeof(FIXP_DBL));
362
0
        FDKmemclear(&pLowBandImag[slot][nAnalysisBands],
363
0
                    ((64) - nAnalysisBands) * sizeof(FIXP_DBL));
364
0
      }
365
0
    } else {
366
0
      for (slot = ov_len; slot < noCols + ov_len; slot++) {
367
0
        FDKmemclear(&pLowBandReal[slot][nAnalysisBands],
368
0
                    ((64) - nAnalysisBands) * sizeof(FIXP_DBL));
369
0
      }
370
0
    }
371
0
  }
372
373
  /*
374
    Shift spectral data left to gain accuracy in transposer and adjustor
375
  */
376
  /* Range was increased from lsb to no_channels because in some cases (e.g.
377
     USAC conf eSbr_4_Pvc.mp4 and some HBE cases) it could be observed that the
378
     signal between lsb and no_channels is used for the patching process.
379
  */
380
0
  maxVal = maxSubbandSample(pReal, (flags & SBRDEC_LOW_POWER) ? NULL : pImag, 0,
381
0
                            hSbrDec->qmfDomainInCh->fb.no_channels, 0, noCols);
382
383
0
  reserve = fixMax(0, CntLeadingZeros(maxVal) - 1);
384
0
  reserve = fixMin(reserve,
385
0
                   DFRACT_BITS - 1 - hSbrDec->qmfDomainInCh->scaling.lb_scale);
386
387
  /* If all data is zero, lb_scale could become too large */
388
0
  rescaleSubbandSamples(pReal, (flags & SBRDEC_LOW_POWER) ? NULL : pImag, 0,
389
0
                        hSbrDec->qmfDomainInCh->fb.no_channels, 0, noCols,
390
0
                        reserve);
391
392
0
  hSbrDec->qmfDomainInCh->scaling.lb_scale += reserve;
393
394
0
  if ((flags & SBRDEC_USAC_HARMONICSBR)) {
395
    /* actually this is our hbe_scale */
396
0
    hSbrDec->scale_hbe = hSbrDec->qmfDomainInCh->scaling.lb_scale;
397
    /* the real lb_scale is stored in scale_lb from sbr */
398
0
    hSbrDec->qmfDomainInCh->scaling.lb_scale = hSbrDec->scale_lb;
399
0
  }
400
  /*
401
    save low band scale, wavecoding or parametric stereo may modify it
402
  */
403
0
  saveLbScale = hSbrDec->qmfDomainInCh->scaling.lb_scale;
404
405
0
  if (applyProcessing) {
406
0
    UCHAR *borders = hFrameData->frameInfo.borders;
407
0
    lastSlotOffs = borders[hFrameData->frameInfo.nEnvelopes] -
408
0
                   hHeaderData->numberTimeSlots;
409
410
0
    FIXP_DBL degreeAlias[(64)];
411
0
    PVC_DYNAMIC_DATA pvcDynamicData;
412
0
    pvcInitFrame(
413
0
        &hSbrDec->PvcStaticData, &pvcDynamicData,
414
0
        (hHeaderData->frameErrorFlag ? 0 : hHeaderData->bs_info.pvc_mode),
415
0
        hFrameData->ns, hHeaderData->timeStep,
416
0
        hHeaderData->freqBandData.lowSubband,
417
0
        hFrameData->frameInfo.pvcBorders[0], hFrameData->pvcID);
418
419
0
    if (!hHeaderData->frameErrorFlag && (hHeaderData->bs_info.pvc_mode > 0)) {
420
0
      pvcDecodeFrame(&hSbrDec->PvcStaticData, &pvcDynamicData, pLowBandReal,
421
0
                     pLowBandImag, ov_len,
422
0
                     SCALE2EXP(hSbrDec->qmfDomainInCh->scaling.ov_lb_scale),
423
0
                     SCALE2EXP(hSbrDec->qmfDomainInCh->scaling.lb_scale));
424
0
    }
425
0
    pvcEndFrame(&hSbrDec->PvcStaticData, &pvcDynamicData);
426
427
    /* The transposer will override most values in degreeAlias[].
428
       The array needs to be cleared at least from lowSubband to highSubband
429
       before. */
430
0
    if (flags & SBRDEC_LOW_POWER)
431
0
      FDKmemclear(&degreeAlias[hHeaderData->freqBandData.lowSubband],
432
0
                  (hHeaderData->freqBandData.highSubband -
433
0
                   hHeaderData->freqBandData.lowSubband) *
434
0
                      sizeof(FIXP_DBL));
435
436
    /*
437
      Inverse filtering of lowband and transposition into the SBR-frequency
438
      range
439
    */
440
441
0
    {
442
0
      KEEP_STATES_SYNCED_MODE keepStatesSyncedMode =
443
0
          ((flags & SBRDEC_USAC_HARMONICSBR) &&
444
0
           (hFrameData->sbrPatchingMode != 0))
445
0
              ? KEEP_STATES_SYNCED_NORMAL
446
0
              : KEEP_STATES_SYNCED_OFF;
447
448
0
      if (flags & SBRDEC_USAC_HARMONICSBR) {
449
0
        if (flags & SBRDEC_QUAD_RATE) {
450
0
          pReal -= 32;
451
0
          pImag -= 32;
452
0
        }
453
454
0
        if ((hSbrDec->savedStates == 0) && (hFrameData->sbrPatchingMode == 1)) {
455
          /* copy saved states from previous frame to legacy SBR lpc filterstate
456
           * buffer   */
457
0
          for (i = 0; i < LPC_ORDER + ov_len; i++) {
458
0
            FDKmemcpy(
459
0
                hSbrDec->LppTrans.lpcFilterStatesRealLegSBR[i],
460
0
                hSbrDec->codecQMFBufferReal[noCols - LPC_ORDER - ov_len + i],
461
0
                hSbrDec->hHBE->noChannels * sizeof(FIXP_DBL));
462
0
            FDKmemcpy(
463
0
                hSbrDec->LppTrans.lpcFilterStatesImagLegSBR[i],
464
0
                hSbrDec->codecQMFBufferImag[noCols - LPC_ORDER - ov_len + i],
465
0
                hSbrDec->hHBE->noChannels * sizeof(FIXP_DBL));
466
0
          }
467
0
        }
468
469
        /* saving unmodified QMF states in case we are switching from legacy SBR
470
         * to HBE */
471
0
        for (i = 0; i < hSbrDec->hHBE->noCols; i++) {
472
0
          FDKmemcpy(hSbrDec->codecQMFBufferReal[i], pLowBandReal[ov_len + i],
473
0
                    hSbrDec->hHBE->noChannels * sizeof(FIXP_DBL));
474
0
          FDKmemcpy(hSbrDec->codecQMFBufferImag[i], pLowBandImag[ov_len + i],
475
0
                    hSbrDec->hHBE->noChannels * sizeof(FIXP_DBL));
476
0
        }
477
478
0
        QmfTransposerApply(
479
0
            hSbrDec->hHBE, pReal, pImag, noCols, pLowBandReal, pLowBandImag,
480
0
            hSbrDec->LppTrans.lpcFilterStatesRealHBE,
481
0
            hSbrDec->LppTrans.lpcFilterStatesImagHBE,
482
0
            hFrameData->sbrPitchInBins, hSbrDec->scale_lb, hSbrDec->scale_hbe,
483
0
            &hSbrDec->qmfDomainInCh->scaling.hb_scale, hHeaderData->timeStep,
484
0
            borders[0], ov_len, keepStatesSyncedMode);
485
486
0
        if (flags & SBRDEC_QUAD_RATE) {
487
0
          int *xOverQmf = GetxOverBandQmfTransposer(hSbrDec->hHBE);
488
489
0
          copyHarmonicSpectrum(xOverQmf, pLowBandReal, pLowBandImag, noCols,
490
0
                               ov_len, keepStatesSyncedMode);
491
0
        }
492
0
      }
493
0
    }
494
495
0
    if ((flags & SBRDEC_USAC_HARMONICSBR) &&
496
0
        (hFrameData->sbrPatchingMode == 0)) {
497
0
      hSbrDec->prev_frame_lSbr = 0;
498
0
      hSbrDec->prev_frame_hbeSbr = 1;
499
500
0
      lppTransposerHBE(
501
0
          &hSbrDec->LppTrans, hSbrDec->hHBE, &hSbrDec->qmfDomainInCh->scaling,
502
0
          pLowBandReal, pLowBandImag, hHeaderData->timeStep, borders[0],
503
0
          lastSlotOffs, hHeaderData->freqBandData.nInvfBands,
504
0
          hFrameData->sbr_invf_mode, hPrevFrameData->sbr_invf_mode);
505
506
0
    } else {
507
0
      if (flags & SBRDEC_USAC_HARMONICSBR) {
508
0
        for (i = 0; i < LPC_ORDER + hSbrDec->LppTrans.pSettings->overlap; i++) {
509
          /*
510
          Store the unmodified qmf Slots values for upper part of spectrum
511
          (required for LPC filtering) required if next frame is a HBE frame
512
          */
513
0
          FDKmemcpy(hSbrDec->LppTrans.lpcFilterStatesRealHBE[i],
514
0
                    hSbrDec->qmfDomainInCh
515
0
                        ->hQmfSlotsReal[hSbrDec->hHBE->noCols - LPC_ORDER + i],
516
0
                    (64) * sizeof(FIXP_DBL));
517
0
          FDKmemcpy(hSbrDec->LppTrans.lpcFilterStatesImagHBE[i],
518
0
                    hSbrDec->qmfDomainInCh
519
0
                        ->hQmfSlotsImag[hSbrDec->hHBE->noCols - LPC_ORDER + i],
520
0
                    (64) * sizeof(FIXP_DBL));
521
0
        }
522
0
      }
523
0
      {
524
0
        hSbrDec->prev_frame_lSbr = 1;
525
0
        hSbrDec->prev_frame_hbeSbr = 0;
526
0
      }
527
528
0
      lppTransposer(
529
0
          &hSbrDec->LppTrans, &hSbrDec->qmfDomainInCh->scaling, pLowBandReal,
530
0
          degreeAlias,  // only used if useLP = 1
531
0
          pLowBandImag, flags & SBRDEC_LOW_POWER,
532
0
          hHeaderData->bs_info.sbr_preprocessing,
533
0
          hHeaderData->freqBandData.v_k_master[0], hHeaderData->timeStep,
534
0
          borders[0], lastSlotOffs, hHeaderData->freqBandData.nInvfBands,
535
0
          hFrameData->sbr_invf_mode, hPrevFrameData->sbr_invf_mode);
536
0
    }
537
538
    /*
539
      Adjust envelope of current frame.
540
    */
541
542
0
    if ((hFrameData->sbrPatchingMode !=
543
0
         hSbrDec->SbrCalculateEnvelope.sbrPatchingMode)) {
544
0
      ResetLimiterBands(hHeaderData->freqBandData.limiterBandTable,
545
0
                        &hHeaderData->freqBandData.noLimiterBands,
546
0
                        hHeaderData->freqBandData.freqBandTable[0],
547
0
                        hHeaderData->freqBandData.nSfb[0],
548
0
                        hSbrDec->LppTrans.pSettings->patchParam,
549
0
                        hSbrDec->LppTrans.pSettings->noOfPatches,
550
0
                        hHeaderData->bs_data.limiterBands,
551
0
                        hFrameData->sbrPatchingMode,
552
0
                        (flags & SBRDEC_USAC_HARMONICSBR) &&
553
0
                                (hFrameData->sbrPatchingMode == 0)
554
0
                            ? GetxOverBandQmfTransposer(hSbrDec->hHBE)
555
0
                            : NULL,
556
0
                        Get41SbrQmfTransposer(hSbrDec->hHBE));
557
558
0
      hSbrDec->SbrCalculateEnvelope.sbrPatchingMode =
559
0
          hFrameData->sbrPatchingMode;
560
0
    }
561
562
0
    calculateSbrEnvelope(
563
0
        &hSbrDec->qmfDomainInCh->scaling, &hSbrDec->SbrCalculateEnvelope,
564
0
        hHeaderData, hFrameData, &pvcDynamicData, pLowBandReal, pLowBandImag,
565
0
        flags & SBRDEC_LOW_POWER,
566
567
0
        degreeAlias, flags,
568
0
        (hHeaderData->frameErrorFlag || hPrevFrameData->frameErrorFlag));
569
570
#if (SBRDEC_MAX_HB_FADE_FRAMES > 0)
571
    /* Avoid hard onsets of high band */
572
    if (hHeaderData->frameErrorFlag) {
573
      if (hSbrDec->highBandFadeCnt < SBRDEC_MAX_HB_FADE_FRAMES) {
574
        hSbrDec->highBandFadeCnt += 1;
575
      }
576
    } else {
577
      if (hSbrDec->highBandFadeCnt >
578
          0) { /* Manipulate high band scale factor to get a smooth fade-in */
579
        hSbrDec->qmfDomainInCh->scaling.hb_scale += hSbrDec->highBandFadeCnt;
580
        hSbrDec->qmfDomainInCh->scaling.hb_scale =
581
            fMin(hSbrDec->qmfDomainInCh->scaling.hb_scale, DFRACT_BITS - 1);
582
        hSbrDec->highBandFadeCnt -= 1;
583
      }
584
    }
585
586
#endif
587
    /*
588
      Update hPrevFrameData (to be used in the next frame)
589
    */
590
0
    for (i = 0; i < hHeaderData->freqBandData.nInvfBands; i++) {
591
0
      hPrevFrameData->sbr_invf_mode[i] = hFrameData->sbr_invf_mode[i];
592
0
    }
593
0
    hPrevFrameData->coupling = hFrameData->coupling;
594
0
    hPrevFrameData->stopPos = borders[hFrameData->frameInfo.nEnvelopes];
595
0
    hPrevFrameData->ampRes = hFrameData->ampResolutionCurrentFrame;
596
0
    hPrevFrameData->prevSbrPitchInBins = hFrameData->sbrPitchInBins;
597
    /* could be done in extractFrameInfo_pvc() but hPrevFrameData is not
598
     * available there */
599
0
    FDKmemcpy(&hPrevFrameData->prevFrameInfo, &hFrameData->frameInfo,
600
0
              sizeof(FRAME_INFO));
601
0
  } else {
602
    /* rescale from lsb to nAnalysisBands in order to compensate scaling with
603
     * hb_scale in this area, done by synthesisFiltering*/
604
0
    int rescale;
605
0
    int lsb;
606
0
    int length;
607
608
    /* Reset hb_scale if no highband is present, because hb_scale is considered
609
     * in the QMF-synthesis */
610
0
    hSbrDec->qmfDomainInCh->scaling.hb_scale = saveLbScale;
611
612
0
    rescale = hSbrDec->qmfDomainInCh->scaling.hb_scale -
613
0
              hSbrDec->qmfDomainInCh->scaling.ov_lb_scale;
614
0
    lsb = hSbrDec->qmfDomainOutCh->fb.lsb;
615
0
    length = (hSbrDec->qmfDomainInCh->fb.no_channels - lsb);
616
617
0
    if ((rescale < 0) && (length > 0)) {
618
0
      if (!(flags & SBRDEC_LOW_POWER)) {
619
0
        for (i = 0; i < ov_len; i++) {
620
0
          scaleValues(&pLowBandReal[i][lsb], length, rescale);
621
0
          scaleValues(&pLowBandImag[i][lsb], length, rescale);
622
0
        }
623
0
      } else {
624
0
        for (i = 0; i < ov_len; i++) {
625
0
          scaleValues(&pLowBandReal[i][lsb], length, rescale);
626
0
        }
627
0
      }
628
0
    }
629
0
  }
630
631
0
  if (!(flags & SBRDEC_USAC_HARMONICSBR)) {
632
0
    int length = hSbrDec->qmfDomainInCh->fb.lsb;
633
0
    if (flags & SBRDEC_SYNTAX_USAC) {
634
0
      length = hSbrDec->qmfDomainInCh->fb.no_channels;
635
0
    }
636
637
    /* in case of legacy sbr saving of filter states here */
638
0
    for (i = 0; i < LPC_ORDER + ov_len; i++) {
639
      /*
640
        Store the unmodified qmf Slots values (required for LPC filtering)
641
      */
642
0
      if (!(flags & SBRDEC_LOW_POWER)) {
643
0
        FDKmemcpy(hSbrDec->LppTrans.lpcFilterStatesRealLegSBR[i],
644
0
                  pLowBandReal[noCols - LPC_ORDER + i],
645
0
                  length * sizeof(FIXP_DBL));
646
0
        FDKmemcpy(hSbrDec->LppTrans.lpcFilterStatesImagLegSBR[i],
647
0
                  pLowBandImag[noCols - LPC_ORDER + i],
648
0
                  length * sizeof(FIXP_DBL));
649
0
      } else
650
0
        FDKmemcpy(hSbrDec->LppTrans.lpcFilterStatesRealLegSBR[i],
651
0
                  pLowBandReal[noCols - LPC_ORDER + i],
652
0
                  length * sizeof(FIXP_DBL));
653
0
    }
654
0
  }
655
656
  /*
657
    Synthesis subband filtering.
658
  */
659
660
0
  if (!(flags & SBRDEC_PS_DECODED)) {
661
0
    if (!(flags & SBRDEC_SKIP_QMF_SYN)) {
662
0
      int outScalefactor = -(8);
663
664
0
      if (h_ps_d != NULL) {
665
0
        h_ps_d->procFrameBased = 1; /* we here do frame based processing */
666
0
      }
667
668
0
      sbrDecoder_drcApply(&hSbrDec->sbrDrcChannel, pLowBandReal,
669
0
                          (flags & SBRDEC_LOW_POWER) ? NULL : pLowBandImag,
670
0
                          hSbrDec->qmfDomainOutCh->fb.no_col, &outScalefactor);
671
672
0
      qmfChangeOutScalefactor(&hSbrDec->qmfDomainOutCh->fb, outScalefactor);
673
674
0
      {
675
0
        HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;
676
0
        int save_usb = hSbrDec->qmfDomainOutCh->fb.usb;
677
678
0
#if (QMF_MAX_SYNTHESIS_BANDS <= 64)
679
0
        C_AALLOC_SCRATCH_START(qmfTemp, FIXP_DBL, 2 * QMF_MAX_SYNTHESIS_BANDS);
680
#else
681
        C_AALLOC_STACK_START(qmfTemp, FIXP_DBL, 2 * QMF_MAX_SYNTHESIS_BANDS);
682
#endif
683
0
        if (hSbrDec->qmfDomainOutCh->fb.usb < hFreq->ov_highSubband) {
684
          /* we need to patch usb for this frame as overlap may contain higher
685
             frequency range if headerchange occured; fb. usb is always limited
686
             to maximum fb.no_channels; In case of wrongly decoded headers it
687
             might be that ov_highSubband is higher than the number of synthesis
688
             channels (fb.no_channels), which is forbidden, therefore we need to
689
             limit ov_highSubband with fMin function to avoid not allowed usb in
690
             synthesis filterbank. */
691
0
          hSbrDec->qmfDomainOutCh->fb.usb =
692
0
              fMin((UINT)hFreq->ov_highSubband,
693
0
                   (UINT)hSbrDec->qmfDomainOutCh->fb.no_channels);
694
0
        }
695
0
        {
696
0
          qmfSynthesisFiltering(
697
0
              &hSbrDec->qmfDomainOutCh->fb, pLowBandReal,
698
0
              (flags & SBRDEC_LOW_POWER) ? NULL : pLowBandImag,
699
0
              &hSbrDec->qmfDomainInCh->scaling,
700
0
              hSbrDec->LppTrans.pSettings->overlap, timeOut, strideOut,
701
0
              qmfTemp);
702
0
        }
703
        /* restore saved value */
704
0
        hSbrDec->qmfDomainOutCh->fb.usb = save_usb;
705
0
        hFreq->ov_highSubband = save_usb;
706
0
#if (QMF_MAX_SYNTHESIS_BANDS <= 64)
707
0
        C_AALLOC_SCRATCH_END(qmfTemp, FIXP_DBL, 2 * QMF_MAX_SYNTHESIS_BANDS);
708
#else
709
        C_AALLOC_STACK_END(qmfTemp, FIXP_DBL, 2 * QMF_MAX_SYNTHESIS_BANDS);
710
#endif
711
0
      }
712
0
    }
713
714
0
  } else { /* (flags & SBRDEC_PS_DECODED) */
715
0
    INT sdiff;
716
0
    INT scaleFactorHighBand, scaleFactorLowBand_ov, scaleFactorLowBand_no_ov,
717
0
        outScalefactor, outScalefactorR, outScalefactorL;
718
719
0
    HANDLE_QMF_FILTER_BANK synQmf = &hSbrDec->qmfDomainOutCh->fb;
720
0
    HANDLE_QMF_FILTER_BANK synQmfRight = &hSbrDecRight->qmfDomainOutCh->fb;
721
722
    /* adapt scaling */
723
0
    sdiff = hSbrDec->qmfDomainInCh->scaling.lb_scale -
724
0
            reserve; /* Scaling difference */
725
0
    scaleFactorHighBand = sdiff - hSbrDec->qmfDomainInCh->scaling.hb_scale;
726
0
    scaleFactorLowBand_ov = sdiff - hSbrDec->qmfDomainInCh->scaling.ov_lb_scale;
727
0
    scaleFactorLowBand_no_ov = sdiff - hSbrDec->qmfDomainInCh->scaling.lb_scale;
728
729
    /* Scale of low band overlapping QMF data */
730
0
    scaleFactorLowBand_ov =
731
0
        fMin(DFRACT_BITS - 1, fMax(-(DFRACT_BITS - 1), scaleFactorLowBand_ov));
732
    /* Scale of low band current QMF data     */
733
0
    scaleFactorLowBand_no_ov = fMin(
734
0
        DFRACT_BITS - 1, fMax(-(DFRACT_BITS - 1), scaleFactorLowBand_no_ov));
735
    /* Scale of current high band */
736
0
    scaleFactorHighBand =
737
0
        fMin(DFRACT_BITS - 1, fMax(-(DFRACT_BITS - 1), scaleFactorHighBand));
738
739
0
    if (h_ps_d->procFrameBased == 1) /* If we have switched from frame to slot
740
                                        based processing copy filter states */
741
0
    {                                /* procFrameBased will be unset later */
742
      /* copy filter states from left to right */
743
      /* was ((640)-(64))*sizeof(FIXP_QSS)
744
         flexible amount of synthesis bands needed for QMF based resampling
745
      */
746
0
      FDK_ASSERT(hSbrDec->qmfDomainInCh->pGlobalConf->nBandsSynthesis <=
747
0
                 QMF_MAX_SYNTHESIS_BANDS);
748
0
      synQmfRight->outScalefactor = synQmf->outScalefactor;
749
0
      FDKmemcpy(synQmfRight->FilterStates, synQmf->FilterStates,
750
0
                9 * hSbrDec->qmfDomainInCh->pGlobalConf->nBandsSynthesis *
751
0
                    sizeof(FIXP_QSS));
752
0
    }
753
754
    /* Feed delaylines when parametric stereo is switched on. */
755
0
    PreparePsProcessing(h_ps_d, pLowBandReal, pLowBandImag,
756
0
                        scaleFactorLowBand_ov);
757
758
    /* use the same synthese qmf values for left and right channel */
759
0
    synQmfRight->no_col = synQmf->no_col;
760
0
    synQmfRight->lsb = synQmf->lsb;
761
0
    synQmfRight->usb = synQmf->usb;
762
763
0
    int env = 0;
764
765
0
    {
766
0
#if (QMF_MAX_SYNTHESIS_BANDS <= 64)
767
0
      C_AALLOC_SCRATCH_START(pWorkBuffer, FIXP_DBL,
768
0
                             2 * QMF_MAX_SYNTHESIS_BANDS);
769
#else
770
      C_AALLOC_STACK_START(pWorkBuffer, FIXP_DBL, 2 * QMF_MAX_SYNTHESIS_BANDS);
771
#endif
772
773
0
      int maxShift = 0;
774
775
0
      if (hSbrDec->sbrDrcChannel.enable != 0) {
776
0
        if (hSbrDec->sbrDrcChannel.prevFact_exp > maxShift) {
777
0
          maxShift = hSbrDec->sbrDrcChannel.prevFact_exp;
778
0
        }
779
0
        if (hSbrDec->sbrDrcChannel.currFact_exp > maxShift) {
780
0
          maxShift = hSbrDec->sbrDrcChannel.currFact_exp;
781
0
        }
782
0
        if (hSbrDec->sbrDrcChannel.nextFact_exp > maxShift) {
783
0
          maxShift = hSbrDec->sbrDrcChannel.nextFact_exp;
784
0
        }
785
0
      }
786
787
      /* copy DRC data to right channel (with PS both channels use the same DRC
788
       * gains) */
789
0
      FDKmemcpy(&hSbrDecRight->sbrDrcChannel, &hSbrDec->sbrDrcChannel,
790
0
                sizeof(SBRDEC_DRC_CHANNEL));
791
792
0
      outScalefactor = maxShift - (8);
793
0
      outScalefactorL = outScalefactorR =
794
0
          sbrInDataHeadroom + 1; /* +1: psDiffScale! (MPEG-PS) */
795
796
0
      for (i = 0; i < synQmf->no_col; i++) { /* ----- no_col loop ----- */
797
798
        /* qmf timeslot of right channel */
799
0
        FIXP_DBL *rQmfReal = pWorkBuffer;
800
0
        FIXP_DBL *rQmfImag = pWorkBuffer + synQmf->no_channels;
801
802
0
        {
803
0
          if (i ==
804
0
              h_ps_d->bsData[h_ps_d->processSlot].mpeg.aEnvStartStop[env]) {
805
0
            initSlotBasedRotation(h_ps_d, env,
806
0
                                  hHeaderData->freqBandData.highSubband);
807
0
            env++;
808
0
          }
809
810
0
          ApplyPsSlot(
811
0
              h_ps_d,             /* parametric stereo decoder handle  */
812
0
              (pLowBandReal + i), /* one timeslot of left/mono channel */
813
0
              (pLowBandImag + i), /* one timeslot of left/mono channel */
814
0
              rQmfReal,           /* one timeslot or right channel     */
815
0
              rQmfImag,           /* one timeslot or right channel     */
816
0
              scaleFactorLowBand_no_ov,
817
0
              (i < hSbrDec->LppTrans.pSettings->overlap)
818
0
                  ? scaleFactorLowBand_ov
819
0
                  : scaleFactorLowBand_no_ov,
820
0
              scaleFactorHighBand, synQmf->lsb, synQmf->usb);
821
0
        }
822
823
0
        sbrDecoder_drcApplySlot(/* right channel */
824
0
                                &hSbrDecRight->sbrDrcChannel, rQmfReal,
825
0
                                rQmfImag, i, synQmfRight->no_col, maxShift);
826
827
0
        sbrDecoder_drcApplySlot(/* left channel */
828
0
                                &hSbrDec->sbrDrcChannel, *(pLowBandReal + i),
829
0
                                *(pLowBandImag + i), i, synQmf->no_col,
830
0
                                maxShift);
831
832
0
        if (!(flags & SBRDEC_SKIP_QMF_SYN)) {
833
0
          qmfChangeOutScalefactor(synQmf, outScalefactor);
834
0
          qmfChangeOutScalefactor(synQmfRight, outScalefactor);
835
836
0
          qmfSynthesisFilteringSlot(
837
0
              synQmfRight, rQmfReal, /* QMF real buffer */
838
0
              rQmfImag,              /* QMF imag buffer */
839
0
              outScalefactorL, outScalefactorL,
840
0
              timeOutRight + (i * synQmf->no_channels * strideOut), strideOut,
841
0
              pWorkBuffer);
842
843
0
          qmfSynthesisFilteringSlot(
844
0
              synQmf, *(pLowBandReal + i), /* QMF real buffer */
845
0
              *(pLowBandImag + i),         /* QMF imag buffer */
846
0
              outScalefactorR, outScalefactorR,
847
0
              timeOut + (i * synQmf->no_channels * strideOut), strideOut,
848
0
              pWorkBuffer);
849
0
        }
850
0
      } /* no_col loop  i  */
851
0
#if (QMF_MAX_SYNTHESIS_BANDS <= 64)
852
0
      C_AALLOC_SCRATCH_END(pWorkBuffer, FIXP_DBL, 2 * QMF_MAX_SYNTHESIS_BANDS);
853
#else
854
      C_AALLOC_STACK_END(pWorkBuffer, FIXP_DBL, 2 * QMF_MAX_SYNTHESIS_BANDS);
855
#endif
856
0
    }
857
0
  }
858
859
0
  sbrDecoder_drcUpdateChannel(&hSbrDec->sbrDrcChannel);
860
861
  /*
862
    Update overlap buffer
863
    Even bands above usb are copied to avoid outdated spectral data in case
864
    the stop frequency raises.
865
  */
866
867
0
  if (!(flags & SBRDEC_SKIP_QMF_SYN)) {
868
0
    {
869
0
      FDK_QmfDomain_SaveOverlap(hSbrDec->qmfDomainInCh, 0);
870
0
      FDK_ASSERT(hSbrDec->qmfDomainInCh->scaling.ov_lb_scale == saveLbScale);
871
0
    }
872
0
  }
873
874
0
  hSbrDec->savedStates = 0;
875
876
  /* Save current frame status */
877
0
  hPrevFrameData->frameErrorFlag = hHeaderData->frameErrorFlag;
878
0
  hSbrDec->applySbrProc_old = applyProcessing;
879
880
0
} /* sbr_dec() */
881
882
/*!
883
  \brief     Creates sbr decoder structure
884
  \return    errorCode, 0 if successful
885
*/
886
SBR_ERROR
887
createSbrDec(SBR_CHANNEL *hSbrChannel,
888
             HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
889
             TRANSPOSER_SETTINGS *pSettings,
890
             const int downsampleFac, /*!< Downsampling factor */
891
             const UINT qmfFlags, /*!< flags -> 1: HQ/LP selector, 2: CLDFB */
892
             const UINT flags, const int overlap,
893
             int chan, /*!< Channel for which to assign buffers etc. */
894
             int codecFrameSize)
895
896
1.55k
{
897
1.55k
  SBR_ERROR err = SBRDEC_OK;
898
1.55k
  int timeSlots =
899
1.55k
      hHeaderData->numberTimeSlots; /* Number of SBR slots per frame */
900
1.55k
  int noCols =
901
1.55k
      timeSlots * hHeaderData->timeStep; /* Number of QMF slots per frame */
902
1.55k
  HANDLE_SBR_DEC hs = &(hSbrChannel->SbrDec);
903
904
#if (SBRDEC_MAX_HB_FADE_FRAMES > 0)
905
  hs->highBandFadeCnt = SBRDEC_MAX_HB_FADE_FRAMES;
906
907
#endif
908
1.55k
  hs->scale_hbe = 15;
909
1.55k
  hs->scale_lb = 15;
910
1.55k
  hs->scale_ov = 15;
911
912
1.55k
  hs->prev_frame_lSbr = 0;
913
1.55k
  hs->prev_frame_hbeSbr = 0;
914
915
1.55k
  hs->codecFrameSize = codecFrameSize;
916
917
  /*
918
    create envelope calculator
919
  */
920
1.55k
  err = createSbrEnvelopeCalc(&hs->SbrCalculateEnvelope, hHeaderData, chan,
921
1.55k
                              flags);
922
1.55k
  if (err != SBRDEC_OK) {
923
17
    return err;
924
17
  }
925
926
1.54k
  initSbrPrevFrameData(&hSbrChannel->prevFrameData, timeSlots);
927
928
  /*
929
    create transposer
930
  */
931
1.54k
  err = createLppTransposer(
932
1.54k
      &hs->LppTrans, pSettings, hHeaderData->freqBandData.lowSubband,
933
1.54k
      hHeaderData->freqBandData.v_k_master, hHeaderData->freqBandData.numMaster,
934
1.54k
      hHeaderData->freqBandData.highSubband, timeSlots, noCols,
935
1.54k
      hHeaderData->freqBandData.freqBandTableNoise,
936
1.54k
      hHeaderData->freqBandData.nNfb, hHeaderData->sbrProcSmplRate, chan,
937
1.54k
      overlap);
938
1.54k
  if (err != SBRDEC_OK) {
939
10
    return err;
940
10
  }
941
942
1.53k
  if (flags & SBRDEC_USAC_HARMONICSBR) {
943
49
    int noChannels, bSbr41 = flags & SBRDEC_QUAD_RATE ? 1 : 0;
944
945
49
    noChannels =
946
49
        QMF_SYNTH_CHANNELS /
947
49
        ((bSbr41 + 1) * 2); /* 32 for (32:64 and 24:64) and 16 for 16:64 */
948
949
    /* shared memory between hbeLightTimeDelayBuffer and hQmfHBESlotsReal if
950
     * SBRDEC_HBE_ENABLE */
951
49
    hSbrChannel->SbrDec.tmp_memory = (FIXP_DBL **)fdkCallocMatrix2D_aligned(
952
49
        noCols, noChannels, sizeof(FIXP_DBL));
953
49
    if (hSbrChannel->SbrDec.tmp_memory == NULL) {
954
0
      return SBRDEC_MEM_ALLOC_FAILED;
955
0
    }
956
957
49
    hSbrChannel->SbrDec.hQmfHBESlotsReal = hSbrChannel->SbrDec.tmp_memory;
958
49
    hSbrChannel->SbrDec.hQmfHBESlotsImag =
959
49
        (FIXP_DBL **)fdkCallocMatrix2D_aligned(noCols, noChannels,
960
49
                                               sizeof(FIXP_DBL));
961
49
    if (hSbrChannel->SbrDec.hQmfHBESlotsImag == NULL) {
962
0
      return SBRDEC_MEM_ALLOC_FAILED;
963
0
    }
964
965
    /* buffers containing unmodified qmf data; required when switching from
966
     * legacy SBR to HBE                       */
967
    /* buffer can be used as LPCFilterstates buffer because legacy SBR needs
968
     * exactly these values for LPC filtering */
969
49
    hSbrChannel->SbrDec.codecQMFBufferReal =
970
49
        (FIXP_DBL **)fdkCallocMatrix2D_aligned(noCols, noChannels,
971
49
                                               sizeof(FIXP_DBL));
972
49
    if (hSbrChannel->SbrDec.codecQMFBufferReal == NULL) {
973
0
      return SBRDEC_MEM_ALLOC_FAILED;
974
0
    }
975
976
49
    hSbrChannel->SbrDec.codecQMFBufferImag =
977
49
        (FIXP_DBL **)fdkCallocMatrix2D_aligned(noCols, noChannels,
978
49
                                               sizeof(FIXP_DBL));
979
49
    if (hSbrChannel->SbrDec.codecQMFBufferImag == NULL) {
980
0
      return SBRDEC_MEM_ALLOC_FAILED;
981
0
    }
982
983
49
    err = QmfTransposerCreate(&hs->hHBE, codecFrameSize, 0, bSbr41);
984
49
    if (err != SBRDEC_OK) {
985
0
      return err;
986
0
    }
987
49
  }
988
989
1.53k
  return err;
990
1.53k
}
991
992
/*!
993
  \brief     Delete sbr decoder structure
994
  \return    errorCode, 0 if successful
995
*/
996
1.60k
int deleteSbrDec(SBR_CHANNEL *hSbrChannel) {
997
1.60k
  HANDLE_SBR_DEC hs = &hSbrChannel->SbrDec;
998
999
1.60k
  deleteSbrEnvelopeCalc(&hs->SbrCalculateEnvelope);
1000
1001
1.60k
  if (hs->tmp_memory != NULL) {
1002
49
    FDK_FREE_MEMORY_2D_ALIGNED(hs->tmp_memory);
1003
49
  }
1004
1005
  /* modify here */
1006
1.60k
  FDK_FREE_MEMORY_2D_ALIGNED(hs->hQmfHBESlotsImag);
1007
1008
1.60k
  if (hs->hHBE != NULL) QmfTransposerClose(hs->hHBE);
1009
1010
1.60k
  if (hs->codecQMFBufferReal != NULL) {
1011
49
    FDK_FREE_MEMORY_2D_ALIGNED(hs->codecQMFBufferReal);
1012
49
  }
1013
1014
1.60k
  if (hs->codecQMFBufferImag != NULL) {
1015
49
    FDK_FREE_MEMORY_2D_ALIGNED(hs->codecQMFBufferImag);
1016
49
  }
1017
1018
1.60k
  return 0;
1019
1.60k
}
1020
1021
/*!
1022
  \brief     resets sbr decoder structure
1023
  \return    errorCode, 0 if successful
1024
*/
1025
SBR_ERROR
1026
resetSbrDec(HANDLE_SBR_DEC hSbrDec, HANDLE_SBR_HEADER_DATA hHeaderData,
1027
            HANDLE_SBR_PREV_FRAME_DATA hPrevFrameData, const int downsampleFac,
1028
0
            const UINT flags, HANDLE_SBR_FRAME_DATA hFrameData) {
1029
0
  SBR_ERROR sbrError = SBRDEC_OK;
1030
0
  int i;
1031
0
  FIXP_DBL *pLowBandReal[128];
1032
0
  FIXP_DBL *pLowBandImag[128];
1033
0
  int useLP = flags & SBRDEC_LOW_POWER;
1034
1035
0
  int old_lsb = hSbrDec->qmfDomainInCh->fb.lsb;
1036
0
  int old_usb = hSbrDec->qmfDomainInCh->fb.usb;
1037
0
  int new_lsb = hHeaderData->freqBandData.lowSubband;
1038
  /* int new_usb = hHeaderData->freqBandData.highSubband; */
1039
0
  int l, startBand, stopBand, startSlot, size;
1040
1041
0
  FIXP_DBL **OverlapBufferReal = hSbrDec->qmfDomainInCh->hQmfSlotsReal;
1042
0
  FIXP_DBL **OverlapBufferImag = hSbrDec->qmfDomainInCh->hQmfSlotsImag;
1043
1044
  /* in case the previous frame was not active in terms of SBR processing, the
1045
     full band from 0 to no_channels was rescaled and not overwritten. Thats why
1046
     the scaling factor lb_scale can be seen as assigned to all bands from 0 to
1047
     no_channels in the previous frame. The same states for the current frame if
1048
     the current frame is not active in terms of SBR processing
1049
  */
1050
0
  int applySbrProc = (hHeaderData->syncState == SBR_ACTIVE ||
1051
0
                      (hHeaderData->frameErrorFlag == 0 &&
1052
0
                       hHeaderData->syncState == SBR_HEADER));
1053
0
  int applySbrProc_old = hSbrDec->applySbrProc_old;
1054
1055
0
  if (!applySbrProc) {
1056
0
    new_lsb = (hSbrDec->qmfDomainInCh->fb).no_channels;
1057
0
  }
1058
0
  if (!applySbrProc_old) {
1059
0
    old_lsb = (hSbrDec->qmfDomainInCh->fb).no_channels;
1060
0
    old_usb = old_lsb;
1061
0
  }
1062
1063
0
  resetSbrEnvelopeCalc(&hSbrDec->SbrCalculateEnvelope);
1064
1065
  /* Change lsb and usb */
1066
  /* Synthesis */
1067
0
  FDK_ASSERT(hSbrDec->qmfDomainOutCh != NULL);
1068
0
  hSbrDec->qmfDomainOutCh->fb.lsb =
1069
0
      fixMin((INT)hSbrDec->qmfDomainOutCh->fb.no_channels,
1070
0
             (INT)hHeaderData->freqBandData.lowSubband);
1071
0
  hSbrDec->qmfDomainOutCh->fb.usb =
1072
0
      fixMin((INT)hSbrDec->qmfDomainOutCh->fb.no_channels,
1073
0
             (INT)hHeaderData->freqBandData.highSubband);
1074
  /* Analysis */
1075
0
  FDK_ASSERT(hSbrDec->qmfDomainInCh != NULL);
1076
0
  hSbrDec->qmfDomainInCh->fb.lsb = hSbrDec->qmfDomainOutCh->fb.lsb;
1077
0
  hSbrDec->qmfDomainInCh->fb.usb = hSbrDec->qmfDomainOutCh->fb.usb;
1078
1079
  /*
1080
    The following initialization of spectral data in the overlap buffer
1081
    is required for dynamic x-over or a change of the start-freq for 2 reasons:
1082
1083
    1. If the lowband gets _wider_, unadjusted data would remain
1084
1085
    2. If the lowband becomes _smaller_, the highest bands of the old lowband
1086
       must be cleared because the whitening would be affected
1087
  */
1088
0
  startBand = old_lsb;
1089
0
  stopBand = new_lsb;
1090
0
  startSlot = fMax(0, hHeaderData->timeStep * (hPrevFrameData->stopPos -
1091
0
                                               hHeaderData->numberTimeSlots));
1092
0
  size = fMax(0, stopBand - startBand);
1093
1094
  /* in case of USAC we don't want to zero out the memory, as this can lead to
1095
     holes in the spectrum; fix shall only be applied for USAC not for MPEG-4
1096
     SBR, in this case setting zero remains         */
1097
0
  if (!(flags & SBRDEC_SYNTAX_USAC)) {
1098
    /* keep already adjusted data in the x-over-area */
1099
0
    if (!useLP) {
1100
0
      for (l = startSlot; l < hSbrDec->LppTrans.pSettings->overlap; l++) {
1101
0
        FDKmemclear(&OverlapBufferReal[l][startBand], size * sizeof(FIXP_DBL));
1102
0
        FDKmemclear(&OverlapBufferImag[l][startBand], size * sizeof(FIXP_DBL));
1103
0
      }
1104
0
    } else {
1105
0
      for (l = startSlot; l < hSbrDec->LppTrans.pSettings->overlap; l++) {
1106
0
        FDKmemclear(&OverlapBufferReal[l][startBand], size * sizeof(FIXP_DBL));
1107
0
      }
1108
0
    }
1109
1110
    /*
1111
    reset LPC filter states
1112
    */
1113
0
    startBand = fixMin(old_lsb, new_lsb);
1114
0
    stopBand = fixMax(old_lsb, new_lsb);
1115
0
    size = fixMax(0, stopBand - startBand);
1116
1117
0
    FDKmemclear(&hSbrDec->LppTrans.lpcFilterStatesRealLegSBR[0][startBand],
1118
0
                size * sizeof(FIXP_DBL));
1119
0
    FDKmemclear(&hSbrDec->LppTrans.lpcFilterStatesRealLegSBR[1][startBand],
1120
0
                size * sizeof(FIXP_DBL));
1121
0
    if (!useLP) {
1122
0
      FDKmemclear(&hSbrDec->LppTrans.lpcFilterStatesImagLegSBR[0][startBand],
1123
0
                  size * sizeof(FIXP_DBL));
1124
0
      FDKmemclear(&hSbrDec->LppTrans.lpcFilterStatesImagLegSBR[1][startBand],
1125
0
                  size * sizeof(FIXP_DBL));
1126
0
    }
1127
0
  }
1128
1129
0
  if (startSlot != 0) {
1130
0
    int source_exp, target_exp, delta_exp, target_lsb, target_usb, reserve;
1131
0
    FIXP_DBL maxVal;
1132
1133
    /*
1134
    Rescale already processed spectral data between old and new x-over
1135
    frequency. This must be done because of the separate scalefactors for
1136
    lowband and highband.
1137
    */
1138
1139
    /* We have four relevant transitions to cover:
1140
    1. old_usb is lower than new_lsb; old SBR area is completely below new SBR
1141
    area.
1142
       -> entire old area was highband and belongs to lowband now
1143
          and has to be rescaled.
1144
    2. old_lsb is higher than new_usb; new SBR area is completely below old SBR
1145
    area.
1146
       -> old area between new_lsb and old_lsb was lowband and belongs to
1147
    highband now and has to be rescaled to match new highband scale.
1148
    3. old_lsb is lower and old_usb is higher than new_lsb; old and new SBR
1149
    areas overlap.
1150
       -> old area between old_lsb and new_lsb was highband and belongs to
1151
    lowband now and has to be rescaled to match new lowband scale.
1152
    4. new_lsb is lower and new_usb_is higher than old_lsb; old and new SBR
1153
    areas overlap.
1154
       -> old area between new_lsb and old_usb was lowband and belongs to
1155
    highband now and has to be rescaled to match new highband scale.
1156
    */
1157
1158
0
    if (new_lsb > old_lsb) {
1159
      /* case 1 and 3 */
1160
0
      source_exp = SCALE2EXP(hSbrDec->qmfDomainInCh->scaling.ov_hb_scale);
1161
0
      target_exp = SCALE2EXP(hSbrDec->qmfDomainInCh->scaling.ov_lb_scale);
1162
1163
0
      startBand = old_lsb;
1164
1165
0
      if (new_lsb >= old_usb) {
1166
        /* case 1 */
1167
0
        stopBand = old_usb;
1168
0
      } else {
1169
        /* case 3 */
1170
0
        stopBand = new_lsb;
1171
0
      }
1172
1173
0
      target_lsb = 0;
1174
0
      target_usb = old_lsb;
1175
0
    } else {
1176
      /* case 2 and 4 */
1177
0
      source_exp = SCALE2EXP(hSbrDec->qmfDomainInCh->scaling.ov_lb_scale);
1178
0
      target_exp = SCALE2EXP(hSbrDec->qmfDomainInCh->scaling.ov_hb_scale);
1179
1180
0
      startBand = new_lsb;
1181
0
      stopBand = old_lsb;
1182
1183
0
      target_lsb = old_lsb;
1184
0
      target_usb = old_usb;
1185
0
    }
1186
1187
0
    maxVal =
1188
0
        maxSubbandSample(OverlapBufferReal, (useLP) ? NULL : OverlapBufferImag,
1189
0
                         startBand, stopBand, 0, startSlot);
1190
1191
0
    reserve = ((LONG)maxVal != 0 ? CntLeadingZeros(maxVal) - 1 : 0);
1192
0
    reserve = fixMin(
1193
0
        reserve,
1194
0
        DFRACT_BITS - 1 -
1195
0
            EXP2SCALE(
1196
0
                source_exp)); /* what is this line for, why do we need it? */
1197
1198
    /* process only if x-over-area is not dominant after rescale;
1199
       otherwise I'm not sure if all buffers are scaled correctly;
1200
    */
1201
0
    if (target_exp - (source_exp - reserve) >= 0) {
1202
0
      rescaleSubbandSamples(OverlapBufferReal,
1203
0
                            (useLP) ? NULL : OverlapBufferImag, startBand,
1204
0
                            stopBand, 0, startSlot, reserve);
1205
0
      source_exp -= reserve;
1206
0
    }
1207
1208
0
    delta_exp = target_exp - source_exp;
1209
1210
0
    if (delta_exp < 0) { /* x-over-area is dominant */
1211
0
      startBand = target_lsb;
1212
0
      stopBand = target_usb;
1213
0
      delta_exp = -delta_exp;
1214
1215
0
      if (new_lsb > old_lsb) {
1216
        /* The lowband has to be rescaled */
1217
0
        hSbrDec->qmfDomainInCh->scaling.ov_lb_scale = EXP2SCALE(source_exp);
1218
0
      } else {
1219
        /* The highband has to be rescaled */
1220
0
        hSbrDec->qmfDomainInCh->scaling.ov_hb_scale = EXP2SCALE(source_exp);
1221
0
      }
1222
0
    }
1223
1224
0
    FDK_ASSERT(startBand <= stopBand);
1225
1226
0
    if (!useLP) {
1227
0
      for (l = 0; l < startSlot; l++) {
1228
0
        scaleValues(OverlapBufferReal[l] + startBand, stopBand - startBand,
1229
0
                    -delta_exp);
1230
0
        scaleValues(OverlapBufferImag[l] + startBand, stopBand - startBand,
1231
0
                    -delta_exp);
1232
0
      }
1233
0
    } else
1234
0
      for (l = 0; l < startSlot; l++) {
1235
0
        scaleValues(OverlapBufferReal[l] + startBand, stopBand - startBand,
1236
0
                    -delta_exp);
1237
0
      }
1238
0
  } /* startSlot != 0 */
1239
1240
  /*
1241
    Initialize transposer and limiter
1242
  */
1243
0
  sbrError = resetLppTransposer(
1244
0
      &hSbrDec->LppTrans, hHeaderData->freqBandData.lowSubband,
1245
0
      hHeaderData->freqBandData.v_k_master, hHeaderData->freqBandData.numMaster,
1246
0
      hHeaderData->freqBandData.freqBandTableNoise,
1247
0
      hHeaderData->freqBandData.nNfb, hHeaderData->freqBandData.highSubband,
1248
0
      hHeaderData->sbrProcSmplRate);
1249
0
  if (sbrError != SBRDEC_OK) return sbrError;
1250
1251
0
  hSbrDec->savedStates = 0;
1252
1253
0
  if ((flags & SBRDEC_USAC_HARMONICSBR) && applySbrProc) {
1254
0
    sbrError = QmfTransposerReInit(hSbrDec->hHBE,
1255
0
                                   hHeaderData->freqBandData.freqBandTable,
1256
0
                                   hHeaderData->freqBandData.nSfb);
1257
0
    if (sbrError != SBRDEC_OK) return sbrError;
1258
1259
    /* copy saved states from previous frame to legacy SBR lpc filterstate
1260
     * buffer   */
1261
0
    for (i = 0; i < LPC_ORDER + hSbrDec->LppTrans.pSettings->overlap; i++) {
1262
0
      FDKmemcpy(
1263
0
          hSbrDec->LppTrans.lpcFilterStatesRealLegSBR[i],
1264
0
          hSbrDec->codecQMFBufferReal[hSbrDec->hHBE->noCols - LPC_ORDER -
1265
0
                                      hSbrDec->LppTrans.pSettings->overlap + i],
1266
0
          hSbrDec->hHBE->noChannels * sizeof(FIXP_DBL));
1267
0
      FDKmemcpy(
1268
0
          hSbrDec->LppTrans.lpcFilterStatesImagLegSBR[i],
1269
0
          hSbrDec->codecQMFBufferImag[hSbrDec->hHBE->noCols - LPC_ORDER -
1270
0
                                      hSbrDec->LppTrans.pSettings->overlap + i],
1271
0
          hSbrDec->hHBE->noChannels * sizeof(FIXP_DBL));
1272
0
    }
1273
0
    hSbrDec->savedStates = 1;
1274
1275
0
    {
1276
      /* map QMF buffer to pointer array (Overlap + Frame)*/
1277
0
      for (i = 0; i < hSbrDec->LppTrans.pSettings->overlap + LPC_ORDER; i++) {
1278
0
        pLowBandReal[i] = hSbrDec->LppTrans.lpcFilterStatesRealHBE[i];
1279
0
        pLowBandImag[i] = hSbrDec->LppTrans.lpcFilterStatesImagHBE[i];
1280
0
      }
1281
1282
      /* map QMF buffer to pointer array (Overlap + Frame)*/
1283
0
      for (i = 0; i < hSbrDec->hHBE->noCols; i++) {
1284
0
        pLowBandReal[i + hSbrDec->LppTrans.pSettings->overlap + LPC_ORDER] =
1285
0
            hSbrDec->codecQMFBufferReal[i];
1286
0
        pLowBandImag[i + hSbrDec->LppTrans.pSettings->overlap + LPC_ORDER] =
1287
0
            hSbrDec->codecQMFBufferImag[i];
1288
0
      }
1289
1290
0
      if (flags & SBRDEC_QUAD_RATE) {
1291
0
        if (hFrameData->sbrPatchingMode == 0) {
1292
0
          int *xOverQmf = GetxOverBandQmfTransposer(hSbrDec->hHBE);
1293
1294
          /* in case of harmonic SBR and no HBE_LP map additional buffer for
1295
          one more frame to pointer arry */
1296
0
          for (i = 0; i < hSbrDec->hHBE->noCols / 2; i++) {
1297
0
            pLowBandReal[i + hSbrDec->hHBE->noCols +
1298
0
                         hSbrDec->LppTrans.pSettings->overlap + LPC_ORDER] =
1299
0
                hSbrDec->hQmfHBESlotsReal[i];
1300
0
            pLowBandImag[i + hSbrDec->hHBE->noCols +
1301
0
                         hSbrDec->LppTrans.pSettings->overlap + LPC_ORDER] =
1302
0
                hSbrDec->hQmfHBESlotsImag[i];
1303
0
          }
1304
1305
0
          QmfTransposerApply(
1306
0
              hSbrDec->hHBE,
1307
0
              pLowBandReal + hSbrDec->LppTrans.pSettings->overlap +
1308
0
                  hSbrDec->hHBE->noCols / 2 + LPC_ORDER,
1309
0
              pLowBandImag + hSbrDec->LppTrans.pSettings->overlap +
1310
0
                  hSbrDec->hHBE->noCols / 2 + LPC_ORDER,
1311
0
              hSbrDec->hHBE->noCols, pLowBandReal, pLowBandImag,
1312
0
              hSbrDec->LppTrans.lpcFilterStatesRealHBE,
1313
0
              hSbrDec->LppTrans.lpcFilterStatesImagHBE,
1314
0
              hPrevFrameData->prevSbrPitchInBins, hSbrDec->scale_lb,
1315
0
              hSbrDec->scale_hbe, &hSbrDec->qmfDomainInCh->scaling.hb_scale,
1316
0
              hHeaderData->timeStep, hFrameData->frameInfo.borders[0],
1317
0
              hSbrDec->LppTrans.pSettings->overlap, KEEP_STATES_SYNCED_OUTDIFF);
1318
1319
0
          copyHarmonicSpectrum(
1320
0
              xOverQmf, pLowBandReal, pLowBandImag, hSbrDec->hHBE->noCols,
1321
0
              hSbrDec->LppTrans.pSettings->overlap, KEEP_STATES_SYNCED_OUTDIFF);
1322
0
        }
1323
0
      } else {
1324
        /* in case of harmonic SBR and no HBE_LP map additional buffer for
1325
        one more frame to pointer arry */
1326
0
        for (i = 0; i < hSbrDec->hHBE->noCols; i++) {
1327
0
          pLowBandReal[i + hSbrDec->hHBE->noCols +
1328
0
                       hSbrDec->LppTrans.pSettings->overlap + LPC_ORDER] =
1329
0
              hSbrDec->hQmfHBESlotsReal[i];
1330
0
          pLowBandImag[i + hSbrDec->hHBE->noCols +
1331
0
                       hSbrDec->LppTrans.pSettings->overlap + LPC_ORDER] =
1332
0
              hSbrDec->hQmfHBESlotsImag[i];
1333
0
        }
1334
1335
0
        if (hFrameData->sbrPatchingMode == 0) {
1336
0
          QmfTransposerApply(
1337
0
              hSbrDec->hHBE,
1338
0
              pLowBandReal + hSbrDec->LppTrans.pSettings->overlap + LPC_ORDER,
1339
0
              pLowBandImag + hSbrDec->LppTrans.pSettings->overlap + LPC_ORDER,
1340
0
              hSbrDec->hHBE->noCols, pLowBandReal, pLowBandImag,
1341
0
              hSbrDec->LppTrans.lpcFilterStatesRealHBE,
1342
0
              hSbrDec->LppTrans.lpcFilterStatesImagHBE,
1343
0
              0 /* not required for keeping states updated in this frame*/,
1344
0
              hSbrDec->scale_lb, hSbrDec->scale_lb,
1345
0
              &hSbrDec->qmfDomainInCh->scaling.hb_scale, hHeaderData->timeStep,
1346
0
              hFrameData->frameInfo.borders[0],
1347
0
              hSbrDec->LppTrans.pSettings->overlap, KEEP_STATES_SYNCED_NOOUT);
1348
0
        }
1349
1350
0
        QmfTransposerApply(
1351
0
            hSbrDec->hHBE,
1352
0
            pLowBandReal + hSbrDec->LppTrans.pSettings->overlap +
1353
0
                hSbrDec->hHBE->noCols + LPC_ORDER,
1354
0
            pLowBandImag + hSbrDec->LppTrans.pSettings->overlap +
1355
0
                hSbrDec->hHBE->noCols + LPC_ORDER,
1356
0
            hSbrDec->hHBE->noCols, pLowBandReal, pLowBandImag,
1357
0
            hSbrDec->LppTrans.lpcFilterStatesRealHBE,
1358
0
            hSbrDec->LppTrans.lpcFilterStatesImagHBE,
1359
0
            hPrevFrameData->prevSbrPitchInBins, hSbrDec->scale_lb,
1360
0
            hSbrDec->scale_hbe, &hSbrDec->qmfDomainInCh->scaling.hb_scale,
1361
0
            hHeaderData->timeStep, hFrameData->frameInfo.borders[0],
1362
0
            hSbrDec->LppTrans.pSettings->overlap, KEEP_STATES_SYNCED_OUTDIFF);
1363
0
      }
1364
1365
0
      if (hFrameData->sbrPatchingMode == 0) {
1366
0
        for (i = startSlot; i < hSbrDec->LppTrans.pSettings->overlap; i++) {
1367
          /*
1368
          Store the unmodified qmf Slots values for upper part of spectrum
1369
          (required for LPC filtering) required if next frame is a HBE frame
1370
          */
1371
0
          FDKmemcpy(hSbrDec->qmfDomainInCh->hQmfSlotsReal[i],
1372
0
                    hSbrDec->LppTrans.lpcFilterStatesRealHBE[i + LPC_ORDER],
1373
0
                    (64) * sizeof(FIXP_DBL));
1374
0
          FDKmemcpy(hSbrDec->qmfDomainInCh->hQmfSlotsImag[i],
1375
0
                    hSbrDec->LppTrans.lpcFilterStatesImagHBE[i + LPC_ORDER],
1376
0
                    (64) * sizeof(FIXP_DBL));
1377
0
        }
1378
1379
0
        for (i = startSlot; i < hSbrDec->LppTrans.pSettings->overlap; i++) {
1380
          /*
1381
          Store the unmodified qmf Slots values for upper part of spectrum
1382
          (required for LPC filtering) required if next frame is a HBE frame
1383
          */
1384
0
          FDKmemcpy(
1385
0
              hSbrDec->qmfDomainInCh->hQmfSlotsReal[i],
1386
0
              hSbrDec->codecQMFBufferReal[hSbrDec->hHBE->noCols -
1387
0
                                          hSbrDec->LppTrans.pSettings->overlap +
1388
0
                                          i],
1389
0
              new_lsb * sizeof(FIXP_DBL));
1390
0
          FDKmemcpy(
1391
0
              hSbrDec->qmfDomainInCh->hQmfSlotsImag[i],
1392
0
              hSbrDec->codecQMFBufferImag[hSbrDec->hHBE->noCols -
1393
0
                                          hSbrDec->LppTrans.pSettings->overlap +
1394
0
                                          i],
1395
0
              new_lsb * sizeof(FIXP_DBL));
1396
0
        }
1397
0
      }
1398
0
    }
1399
0
  }
1400
1401
0
  {
1402
0
    int adapt_lb = 0, diff = 0,
1403
0
        new_scale = hSbrDec->qmfDomainInCh->scaling.ov_lb_scale;
1404
1405
0
    if ((hSbrDec->qmfDomainInCh->scaling.ov_lb_scale !=
1406
0
         hSbrDec->qmfDomainInCh->scaling.lb_scale) &&
1407
0
        startSlot != 0) {
1408
      /* we need to adapt spectrum to have equal scale factor, always larger
1409
       * than zero */
1410
0
      diff = SCALE2EXP(hSbrDec->qmfDomainInCh->scaling.ov_lb_scale) -
1411
0
             SCALE2EXP(hSbrDec->qmfDomainInCh->scaling.lb_scale);
1412
1413
0
      if (diff > 0) {
1414
0
        adapt_lb = 1;
1415
0
        diff = -diff;
1416
0
        new_scale = hSbrDec->qmfDomainInCh->scaling.ov_lb_scale;
1417
0
      }
1418
1419
0
      stopBand = new_lsb;
1420
0
    }
1421
1422
0
    if (hFrameData->sbrPatchingMode == 1) {
1423
      /* scale states from LegSBR filterstates buffer */
1424
0
      for (i = 0; i < hSbrDec->LppTrans.pSettings->overlap + LPC_ORDER; i++) {
1425
0
        scaleValues(hSbrDec->LppTrans.lpcFilterStatesRealLegSBR[i], new_lsb,
1426
0
                    diff);
1427
0
        if (!useLP) {
1428
0
          scaleValues(hSbrDec->LppTrans.lpcFilterStatesImagLegSBR[i], new_lsb,
1429
0
                      diff);
1430
0
        }
1431
0
      }
1432
1433
0
      if (flags & SBRDEC_SYNTAX_USAC) {
1434
        /* get missing states between old and new x_over from LegSBR
1435
         * filterstates buffer */
1436
        /* in case of legacy SBR we leave these values zeroed out */
1437
0
        for (i = startSlot; i < hSbrDec->LppTrans.pSettings->overlap; i++) {
1438
0
          FDKmemcpy(&OverlapBufferReal[i][old_lsb],
1439
0
                    &hSbrDec->LppTrans
1440
0
                         .lpcFilterStatesRealLegSBR[LPC_ORDER + i][old_lsb],
1441
0
                    fMax(new_lsb - old_lsb, 0) * sizeof(FIXP_DBL));
1442
0
          if (!useLP) {
1443
0
            FDKmemcpy(&OverlapBufferImag[i][old_lsb],
1444
0
                      &hSbrDec->LppTrans
1445
0
                           .lpcFilterStatesImagLegSBR[LPC_ORDER + i][old_lsb],
1446
0
                      fMax(new_lsb - old_lsb, 0) * sizeof(FIXP_DBL));
1447
0
          }
1448
0
        }
1449
0
      }
1450
1451
0
      if (new_lsb > old_lsb) {
1452
0
        stopBand = old_lsb;
1453
0
      }
1454
0
    }
1455
0
    if ((adapt_lb == 1) && (stopBand > startBand)) {
1456
0
      for (l = startSlot; l < hSbrDec->LppTrans.pSettings->overlap; l++) {
1457
0
        scaleValues(OverlapBufferReal[l] + startBand, stopBand - startBand,
1458
0
                    diff);
1459
0
        if (!useLP) {
1460
0
          scaleValues(OverlapBufferImag[l] + startBand, stopBand - startBand,
1461
0
                      diff);
1462
0
        }
1463
0
      }
1464
0
    }
1465
0
    hSbrDec->qmfDomainInCh->scaling.ov_lb_scale = new_scale;
1466
0
  }
1467
1468
0
  sbrError = ResetLimiterBands(hHeaderData->freqBandData.limiterBandTable,
1469
0
                               &hHeaderData->freqBandData.noLimiterBands,
1470
0
                               hHeaderData->freqBandData.freqBandTable[0],
1471
0
                               hHeaderData->freqBandData.nSfb[0],
1472
0
                               hSbrDec->LppTrans.pSettings->patchParam,
1473
0
                               hSbrDec->LppTrans.pSettings->noOfPatches,
1474
0
                               hHeaderData->bs_data.limiterBands,
1475
0
                               hFrameData->sbrPatchingMode,
1476
0
                               GetxOverBandQmfTransposer(hSbrDec->hHBE),
1477
0
                               Get41SbrQmfTransposer(hSbrDec->hHBE));
1478
1479
0
  hSbrDec->SbrCalculateEnvelope.sbrPatchingMode = hFrameData->sbrPatchingMode;
1480
1481
0
  return sbrError;
1482
0
}