Coverage Report

Created: 2025-08-26 06:50

/src/aac/libAACdec/src/rvlcconceal.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  rvlc concealment
106
  \author Josef Hoepfl
107
*/
108
109
#include "rvlcconceal.h"
110
111
#include "block.h"
112
#include "rvlc.h"
113
114
/*---------------------------------------------------------------------------------------------
115
  function:      calcRefValFwd
116
117
  description:   The function determines the scalefactor which is closed to the
118
scalefactorband conceal_min. The same is done for intensity data and noise
119
energies.
120
-----------------------------------------------------------------------------------------------
121
  output:        - reference value scf
122
                 - reference value internsity data
123
                 - reference value noise energy
124
-----------------------------------------------------------------------------------------------
125
  return:        -
126
--------------------------------------------------------------------------------------------
127
*/
128
129
static void calcRefValFwd(CErRvlcInfo *pRvlc,
130
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
131
47.0k
                          int *refIsFwd, int *refNrgFwd, int *refScfFwd) {
132
47.0k
  int band, bnds, group, startBand;
133
47.0k
  int idIs, idNrg, idScf;
134
47.0k
  int conceal_min, conceal_group_min;
135
47.0k
  int MaximumScaleFactorBands;
136
137
47.0k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
138
1.37k
    MaximumScaleFactorBands = 16;
139
45.6k
  else
140
45.6k
    MaximumScaleFactorBands = 64;
141
142
47.0k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
143
47.0k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
144
145
  /* calculate first reference value for approach in forward direction */
146
47.0k
  idIs = idNrg = idScf = 1;
147
148
  /* set reference values */
149
47.0k
  *refIsFwd = -SF_OFFSET;
150
47.0k
  *refNrgFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain -
151
47.0k
               SF_OFFSET - 90 - 256;
152
47.0k
  *refScfFwd =
153
47.0k
      pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET;
154
155
47.0k
  startBand = conceal_min - 1;
156
95.3k
  for (group = conceal_group_min; group >= 0; group--) {
157
62.7k
    for (band = startBand; band >= 0; band--) {
158
14.4k
      bnds = 16 * group + band;
159
14.4k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
160
3.22k
        case ZERO_HCB:
161
3.22k
          break;
162
807
        case INTENSITY_HCB:
163
1.42k
        case INTENSITY_HCB2:
164
1.42k
          if (idIs) {
165
567
            *refIsFwd =
166
567
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
167
567
            idIs = 0; /* reference value has been set */
168
567
          }
169
1.42k
          break;
170
2.02k
        case NOISE_HCB:
171
2.02k
          if (idNrg) {
172
906
            *refNrgFwd =
173
906
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
174
906
            idNrg = 0; /* reference value has been set */
175
906
          }
176
2.02k
          break;
177
7.75k
        default:
178
7.75k
          if (idScf) {
179
5.38k
            *refScfFwd =
180
5.38k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
181
5.38k
            idScf = 0; /* reference value has been set */
182
5.38k
          }
183
7.75k
          break;
184
14.4k
      }
185
14.4k
    }
186
48.2k
    startBand = pRvlc->maxSfbTransmitted - 1;
187
48.2k
  }
188
47.0k
}
189
190
/*---------------------------------------------------------------------------------------------
191
  function:      calcRefValBwd
192
193
  description:   The function determines the scalefactor which is closed to the
194
scalefactorband conceal_max. The same is done for intensity data and noise
195
energies.
196
-----------------------------------------------------------------------------------------------
197
  output:        - reference value scf
198
                 - reference value internsity data
199
                 - reference value noise energy
200
-----------------------------------------------------------------------------------------------
201
  return:        -
202
--------------------------------------------------------------------------------------------
203
*/
204
205
static void calcRefValBwd(CErRvlcInfo *pRvlc,
206
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
207
47.0k
                          int *refIsBwd, int *refNrgBwd, int *refScfBwd) {
208
47.0k
  int band, bnds, group, startBand;
209
47.0k
  int idIs, idNrg, idScf;
210
47.0k
  int conceal_max, conceal_group_max;
211
47.0k
  int MaximumScaleFactorBands;
212
213
47.0k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
214
1.37k
    MaximumScaleFactorBands = 16;
215
45.6k
  else
216
45.6k
    MaximumScaleFactorBands = 64;
217
218
47.0k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
219
47.0k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
220
221
  /* calculate first reference value for approach in backward direction */
222
47.0k
  idIs = idNrg = idScf = 1;
223
224
  /* set reference values */
225
47.0k
  *refIsBwd = pRvlc->dpcm_is_last_position - SF_OFFSET;
226
47.0k
  *refNrgBwd = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position -
227
47.0k
               SF_OFFSET - 90 - 256 + pRvlc->dpcm_noise_nrg;
228
47.0k
  *refScfBwd = pRvlc->rev_global_gain - SF_OFFSET;
229
230
47.0k
  startBand = conceal_max + 1;
231
232
  /* if needed, re-set reference values */
233
98.4k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
234
84.7k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
235
33.3k
      bnds = 16 * group + band;
236
33.3k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
237
8.96k
        case ZERO_HCB:
238
8.96k
          break;
239
867
        case INTENSITY_HCB:
240
3.64k
        case INTENSITY_HCB2:
241
3.64k
          if (idIs) {
242
1.06k
            *refIsBwd =
243
1.06k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
244
1.06k
            idIs = 0; /* reference value has been set */
245
1.06k
          }
246
3.64k
          break;
247
902
        case NOISE_HCB:
248
902
          if (idNrg) {
249
234
            *refNrgBwd =
250
234
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
251
234
            idNrg = 0; /* reference value has been set */
252
234
          }
253
902
          break;
254
19.8k
        default:
255
19.8k
          if (idScf) {
256
7.02k
            *refScfBwd =
257
7.02k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
258
7.02k
            idScf = 0; /* reference value has been set */
259
7.02k
          }
260
19.8k
          break;
261
33.3k
      }
262
33.3k
    }
263
51.3k
    startBand = 0;
264
51.3k
  }
265
47.0k
}
266
267
/*---------------------------------------------------------------------------------------------
268
  function:      BidirectionalEstimation_UseLowerScfOfCurrentFrame
269
270
  description:   This approach by means of bidirectional estimation is generally
271
performed when a single bit error has been detected, the bit error can be
272
isolated between 'conceal_min' and 'conceal_max' and the 'sf_concealment' flag
273
is not set. The sets of scalefactors decoded in forward and backward direction
274
are compared with each other. The smaller scalefactor will be considered as the
275
correct one respectively. The reconstruction of the scalefactors with this
276
approach archieve good results in audio quality. The strategy must be applied to
277
scalefactors, intensity data and noise energy seperately.
278
-----------------------------------------------------------------------------------------------
279
  output:        Concealed scalefactor, noise energy and intensity data between
280
conceal_min and conceal_max
281
-----------------------------------------------------------------------------------------------
282
  return:        -
283
--------------------------------------------------------------------------------------------
284
*/
285
286
void BidirectionalEstimation_UseLowerScfOfCurrentFrame(
287
55.2k
    CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
288
55.2k
  CErRvlcInfo *pRvlc =
289
55.2k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
290
55.2k
  int band, bnds, startBand, endBand, group;
291
55.2k
  int conceal_min, conceal_max;
292
55.2k
  int conceal_group_min, conceal_group_max;
293
55.2k
  int MaximumScaleFactorBands;
294
295
55.2k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
296
6.96k
    MaximumScaleFactorBands = 16;
297
48.3k
  } else {
298
48.3k
    MaximumScaleFactorBands = 64;
299
48.3k
  }
300
301
  /* If an error was detected just in forward or backward direction, set the
302
     corresponding border for concealment to a appropriate scalefactor band. The
303
     border is set to first or last sfb respectively, because the error will
304
     possibly not follow directly after the corrupt bit but just after decoding
305
     some more (wrong) scalefactors. */
306
55.2k
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
307
308
55.2k
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
309
3.61k
    pRvlc->conceal_max =
310
3.61k
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
311
312
55.2k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
313
55.2k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
314
55.2k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
315
55.2k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
316
317
55.2k
  if (pRvlc->conceal_min == pRvlc->conceal_max) {
318
47.0k
    int refIsFwd, refNrgFwd, refScfFwd;
319
47.0k
    int refIsBwd, refNrgBwd, refScfBwd;
320
321
47.0k
    bnds = pRvlc->conceal_min;
322
47.0k
    calcRefValFwd(pRvlc, pAacDecoderChannelInfo, &refIsFwd, &refNrgFwd,
323
47.0k
                  &refScfFwd);
324
47.0k
    calcRefValBwd(pRvlc, pAacDecoderChannelInfo, &refIsBwd, &refNrgBwd,
325
47.0k
                  &refScfBwd);
326
327
47.0k
    switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
328
35.1k
      case ZERO_HCB:
329
35.1k
        break;
330
464
      case INTENSITY_HCB:
331
670
      case INTENSITY_HCB2:
332
670
        if (refIsFwd < refIsBwd)
333
164
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsFwd;
334
506
        else
335
506
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsBwd;
336
670
        break;
337
1.08k
      case NOISE_HCB:
338
1.08k
        if (refNrgFwd < refNrgBwd)
339
302
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgFwd;
340
778
        else
341
778
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgBwd;
342
1.08k
        break;
343
10.1k
      default:
344
10.1k
        if (refScfFwd < refScfBwd)
345
8.02k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfFwd;
346
2.08k
        else
347
2.08k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfBwd;
348
10.1k
        break;
349
47.0k
    }
350
47.0k
  } else {
351
8.24k
    pAacDecoderChannelInfo->pComData->overlay.aac
352
8.24k
        .aRvlcScfFwd[pRvlc->conceal_max] =
353
8.24k
        pAacDecoderChannelInfo->pComData->overlay.aac
354
8.24k
            .aRvlcScfBwd[pRvlc->conceal_max];
355
8.24k
    pAacDecoderChannelInfo->pComData->overlay.aac
356
8.24k
        .aRvlcScfBwd[pRvlc->conceal_min] =
357
8.24k
        pAacDecoderChannelInfo->pComData->overlay.aac
358
8.24k
            .aRvlcScfFwd[pRvlc->conceal_min];
359
360
    /* consider the smaller of the forward and backward decoded value as the
361
     * correct one */
362
8.24k
    startBand = conceal_min;
363
8.24k
    if (conceal_group_min == conceal_group_max)
364
4.52k
      endBand = conceal_max;
365
3.71k
    else
366
3.71k
      endBand = pRvlc->maxSfbTransmitted - 1;
367
368
23.1k
    for (group = conceal_group_min; group <= conceal_group_max; group++) {
369
60.6k
      for (band = startBand; band <= endBand; band++) {
370
45.7k
        bnds = 16 * group + band;
371
45.7k
        if (pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds] <
372
45.7k
            pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds])
373
17.7k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
374
17.7k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
375
27.9k
        else
376
27.9k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
377
27.9k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
378
45.7k
      }
379
14.9k
      startBand = 0;
380
14.9k
      if ((group + 1) == conceal_group_max) endBand = conceal_max;
381
14.9k
    }
382
8.24k
  }
383
384
  /* now copy all data to the output buffer which needs not to be concealed */
385
55.2k
  if (conceal_group_min == 0)
386
51.3k
    endBand = conceal_min;
387
3.96k
  else
388
3.96k
    endBand = pRvlc->maxSfbTransmitted;
389
123k
  for (group = 0; group <= conceal_group_min; group++) {
390
133k
    for (band = 0; band < endBand; band++) {
391
65.2k
      bnds = 16 * group + band;
392
65.2k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
393
65.2k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
394
65.2k
    }
395
68.5k
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
396
68.5k
  }
397
398
55.2k
  startBand = conceal_max + 1;
399
123k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
400
139k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
401
70.6k
      bnds = 16 * group + band;
402
70.6k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
403
70.6k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
404
70.6k
    }
405
68.6k
    startBand = 0;
406
68.6k
  }
407
55.2k
}
408
409
/*---------------------------------------------------------------------------------------------
410
  function:      BidirectionalEstimation_UseScfOfPrevFrameAsReference
411
412
  description:   This approach by means of bidirectional estimation is generally
413
performed when a single bit error has been detected, the bit error can be
414
isolated between 'conceal_min' and 'conceal_max', the 'sf_concealment' flag is
415
set and the previous frame has the same block type as the current frame. The
416
scalefactor decoded in forward and backward direction and the scalefactor of the
417
previous frame are compared with each other. The smaller scalefactor will be
418
considered as the correct one. At this the codebook of the previous and current
419
frame must be of the same set (scf, nrg, is) in each scalefactorband. Otherwise
420
the scalefactor of the previous frame is not considered in the minimum
421
calculation. The reconstruction of the scalefactors with this approach archieve
422
good results in audio quality. The strategy must be applied to scalefactors,
423
intensity data and noise energy seperately.
424
-----------------------------------------------------------------------------------------------
425
  output:        Concealed scalefactor, noise energy and intensity data between
426
conceal_min and conceal_max
427
-----------------------------------------------------------------------------------------------
428
  return:        -
429
--------------------------------------------------------------------------------------------
430
*/
431
432
void BidirectionalEstimation_UseScfOfPrevFrameAsReference(
433
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
434
36.6k
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
435
36.6k
  CErRvlcInfo *pRvlc =
436
36.6k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
437
36.6k
  int band, bnds, startBand, endBand, group;
438
36.6k
  int conceal_min, conceal_max;
439
36.6k
  int conceal_group_min, conceal_group_max;
440
36.6k
  int MaximumScaleFactorBands;
441
36.6k
  SHORT commonMin;
442
443
36.6k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
444
5.19k
    MaximumScaleFactorBands = 16;
445
31.4k
  } else {
446
31.4k
    MaximumScaleFactorBands = 64;
447
31.4k
  }
448
449
  /* If an error was detected just in forward or backward direction, set the
450
     corresponding border for concealment to a appropriate scalefactor band. The
451
     border is set to first or last sfb respectively, because the error will
452
     possibly not follow directly after the corrupt bit but just after decoding
453
     some more (wrong) scalefactors. */
454
36.6k
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
455
456
36.6k
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
457
4.20k
    pRvlc->conceal_max =
458
4.20k
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
459
460
36.6k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
461
36.6k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
462
36.6k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
463
36.6k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
464
465
36.6k
  pAacDecoderChannelInfo->pComData->overlay.aac
466
36.6k
      .aRvlcScfFwd[pRvlc->conceal_max] =
467
36.6k
      pAacDecoderChannelInfo->pComData->overlay.aac
468
36.6k
          .aRvlcScfBwd[pRvlc->conceal_max];
469
36.6k
  pAacDecoderChannelInfo->pComData->overlay.aac
470
36.6k
      .aRvlcScfBwd[pRvlc->conceal_min] =
471
36.6k
      pAacDecoderChannelInfo->pComData->overlay.aac
472
36.6k
          .aRvlcScfFwd[pRvlc->conceal_min];
473
474
  /* consider the smaller of the forward and backward decoded value as the
475
   * correct one */
476
36.6k
  startBand = conceal_min;
477
36.6k
  if (conceal_group_min == conceal_group_max)
478
32.5k
    endBand = conceal_max;
479
4.13k
  else
480
4.13k
    endBand = pRvlc->maxSfbTransmitted - 1;
481
482
81.0k
  for (group = conceal_group_min; group <= conceal_group_max; group++) {
483
132k
    for (band = startBand; band <= endBand; band++) {
484
88.2k
      bnds = 16 * group + band;
485
88.2k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
486
26.0k
        case ZERO_HCB:
487
26.0k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
488
26.0k
          break;
489
490
4.61k
        case INTENSITY_HCB:
491
21.0k
        case INTENSITY_HCB2:
492
21.0k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
493
21.0k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
494
21.0k
              (pAacDecoderStaticChannelInfo->concealmentInfo
495
20.9k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
496
14.4k
            commonMin = fMin(
497
14.4k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
498
14.4k
                pAacDecoderChannelInfo->pComData->overlay.aac
499
14.4k
                    .aRvlcScfBwd[bnds]);
500
14.4k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
501
14.4k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
502
14.4k
                                    .aRvlcPreviousScaleFactor[bnds]);
503
14.4k
          } else {
504
6.60k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
505
6.60k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
506
6.60k
                pAacDecoderChannelInfo->pComData->overlay.aac
507
6.60k
                    .aRvlcScfBwd[bnds]);
508
6.60k
          }
509
21.0k
          break;
510
511
4.55k
        case NOISE_HCB:
512
4.55k
          if (pAacDecoderStaticChannelInfo->concealmentInfo
513
4.55k
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
514
436
            commonMin = fMin(
515
436
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
516
436
                pAacDecoderChannelInfo->pComData->overlay.aac
517
436
                    .aRvlcScfBwd[bnds]);
518
436
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
519
436
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
520
436
                                    .aRvlcPreviousScaleFactor[bnds]);
521
4.11k
          } else {
522
4.11k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
523
4.11k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
524
4.11k
                pAacDecoderChannelInfo->pComData->overlay.aac
525
4.11k
                    .aRvlcScfBwd[bnds]);
526
4.11k
          }
527
4.55k
          break;
528
529
36.5k
        default:
530
36.5k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
531
36.5k
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
532
36.5k
              (pAacDecoderStaticChannelInfo->concealmentInfo
533
9.24k
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
534
36.5k
              (pAacDecoderStaticChannelInfo->concealmentInfo
535
9.09k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
536
36.5k
              (pAacDecoderStaticChannelInfo->concealmentInfo
537
9.02k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
538
8.95k
            commonMin = fMin(
539
8.95k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
540
8.95k
                pAacDecoderChannelInfo->pComData->overlay.aac
541
8.95k
                    .aRvlcScfBwd[bnds]);
542
8.95k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
543
8.95k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
544
8.95k
                                    .aRvlcPreviousScaleFactor[bnds]);
545
27.5k
          } else {
546
27.5k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
547
27.5k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
548
27.5k
                pAacDecoderChannelInfo->pComData->overlay.aac
549
27.5k
                    .aRvlcScfBwd[bnds]);
550
27.5k
          }
551
36.5k
          break;
552
88.2k
      }
553
88.2k
    }
554
44.3k
    startBand = 0;
555
44.3k
    if ((group + 1) == conceal_group_max) endBand = conceal_max;
556
44.3k
  }
557
558
  /* now copy all data to the output buffer which needs not to be concealed */
559
36.6k
  if (conceal_group_min == 0)
560
31.5k
    endBand = conceal_min;
561
5.14k
  else
562
5.14k
    endBand = pRvlc->maxSfbTransmitted;
563
86.8k
  for (group = 0; group <= conceal_group_min; group++) {
564
97.2k
    for (band = 0; band < endBand; band++) {
565
47.0k
      bnds = 16 * group + band;
566
47.0k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
567
47.0k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
568
47.0k
    }
569
50.1k
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
570
50.1k
  }
571
572
36.6k
  startBand = conceal_max + 1;
573
77.7k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
574
64.3k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
575
23.2k
      bnds = 16 * group + band;
576
23.2k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
577
23.2k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
578
23.2k
    }
579
41.0k
    startBand = 0;
580
41.0k
  }
581
36.6k
}
582
583
/*---------------------------------------------------------------------------------------------
584
  function:      StatisticalEstimation
585
586
  description:   This approach by means of statistical estimation is generally
587
performed when both the start value and the end value are different and no
588
further errors have been detected. Considering the forward and backward decoded
589
scalefactors, the set with the lower scalefactors in sum will be considered as
590
the correct one. The scalefactors are differentially encoded. Normally it would
591
reach to compare one pair of the forward and backward decoded scalefactors to
592
specify the lower set. But having detected no further errors does not
593
necessarily mean the absence of errors. Therefore all scalefactors decoded in
594
forward and backward direction are summed up seperately. The set with the lower
595
sum will be used. The strategy must be applied to scalefactors, intensity data
596
and noise energy seperately.
597
-----------------------------------------------------------------------------------------------
598
  output:        Concealed scalefactor, noise energy and intensity data
599
-----------------------------------------------------------------------------------------------
600
  return:        -
601
--------------------------------------------------------------------------------------------
602
*/
603
604
3.42k
void StatisticalEstimation(CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
605
3.42k
  CErRvlcInfo *pRvlc =
606
3.42k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
607
3.42k
  int band, bnds, group;
608
3.42k
  int sumIsFwd, sumIsBwd;   /* sum of intensity data forward/backward */
609
3.42k
  int sumNrgFwd, sumNrgBwd; /* sum of noise energy data forward/backward */
610
3.42k
  int sumScfFwd, sumScfBwd; /* sum of scalefactor data forward/backward */
611
3.42k
  int useIsFwd, useNrgFwd, useScfFwd; /* the flags signals the elements which
612
                                         are used for the final result */
613
614
3.42k
  sumIsFwd = sumIsBwd = sumNrgFwd = sumNrgBwd = sumScfFwd = sumScfBwd = 0;
615
3.42k
  useIsFwd = useNrgFwd = useScfFwd = 0;
616
617
  /* calculate sum of each group (scf,nrg,is) of forward and backward direction
618
   */
619
8.34k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
620
30.2k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
621
25.3k
      bnds = 16 * group + band;
622
25.3k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
623
9.35k
        case ZERO_HCB:
624
9.35k
          break;
625
626
987
        case INTENSITY_HCB:
627
1.74k
        case INTENSITY_HCB2:
628
1.74k
          sumIsFwd +=
629
1.74k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
630
1.74k
          sumIsBwd +=
631
1.74k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
632
1.74k
          break;
633
634
1.88k
        case NOISE_HCB:
635
1.88k
          sumNrgFwd +=
636
1.88k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
637
1.88k
          sumNrgBwd +=
638
1.88k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
639
1.88k
          break;
640
641
12.3k
        default:
642
12.3k
          sumScfFwd +=
643
12.3k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
644
12.3k
          sumScfBwd +=
645
12.3k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
646
12.3k
          break;
647
25.3k
      }
648
25.3k
    }
649
4.92k
  }
650
651
  /* find for each group (scf,nrg,is) the correct direction */
652
3.42k
  if (sumIsFwd < sumIsBwd) useIsFwd = 1;
653
654
3.42k
  if (sumNrgFwd < sumNrgBwd) useNrgFwd = 1;
655
656
3.42k
  if (sumScfFwd < sumScfBwd) useScfFwd = 1;
657
658
  /* conceal each group (scf,nrg,is) */
659
8.34k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
660
30.2k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
661
25.3k
      bnds = 16 * group + band;
662
25.3k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
663
9.35k
        case ZERO_HCB:
664
9.35k
          break;
665
666
987
        case INTENSITY_HCB:
667
1.74k
        case INTENSITY_HCB2:
668
1.74k
          if (useIsFwd)
669
273
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
670
273
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
671
1.47k
          else
672
1.47k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
673
1.47k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
674
1.74k
          break;
675
676
1.88k
        case NOISE_HCB:
677
1.88k
          if (useNrgFwd)
678
367
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
679
367
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
680
1.51k
          else
681
1.51k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
682
1.51k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
683
1.88k
          break;
684
685
12.3k
        default:
686
12.3k
          if (useScfFwd)
687
5.04k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
688
5.04k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
689
7.33k
          else
690
7.33k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
691
7.33k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
692
12.3k
          break;
693
25.3k
      }
694
25.3k
    }
695
4.92k
  }
696
3.42k
}
697
698
/*---------------------------------------------------------------------------------------------
699
  description:   Approach by means of predictive interpolation
700
                 This approach by means of predictive estimation is generally
701
performed when the error cannot be isolated between 'conceal_min' and
702
'conceal_max', the 'sf_concealment' flag is set and the previous frame has the
703
same block type as the current frame. Check for each scalefactorband if the same
704
type of data (scalefactor, internsity data, noise energies) is transmitted. If
705
so use the scalefactor (intensity data, noise energy) in the current frame.
706
Otherwise set the scalefactor (intensity data, noise energy) for this
707
scalefactorband to zero.
708
-----------------------------------------------------------------------------------------------
709
  output:        Concealed scalefactor, noise energy and intensity data
710
-----------------------------------------------------------------------------------------------
711
  return:        -
712
--------------------------------------------------------------------------------------------
713
*/
714
715
void PredictiveInterpolation(
716
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
717
7.74k
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
718
7.74k
  CErRvlcInfo *pRvlc =
719
7.74k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
720
7.74k
  int band, bnds, group;
721
7.74k
  SHORT commonMin;
722
723
15.8k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
724
39.0k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
725
30.9k
      bnds = 16 * group + band;
726
30.9k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
727
224
        case ZERO_HCB:
728
224
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
729
224
          break;
730
731
131
        case INTENSITY_HCB:
732
16.5k
        case INTENSITY_HCB2:
733
16.5k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
734
16.5k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
735
16.5k
              (pAacDecoderStaticChannelInfo->concealmentInfo
736
16.4k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
737
15.0k
            commonMin = fMin(
738
15.0k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
739
15.0k
                pAacDecoderChannelInfo->pComData->overlay.aac
740
15.0k
                    .aRvlcScfBwd[bnds]);
741
15.0k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
742
15.0k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
743
15.0k
                                    .aRvlcPreviousScaleFactor[bnds]);
744
15.0k
          } else {
745
1.40k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
746
1.40k
          }
747
16.5k
          break;
748
749
1.15k
        case NOISE_HCB:
750
1.15k
          if (pAacDecoderStaticChannelInfo->concealmentInfo
751
1.15k
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
752
668
            commonMin = fMin(
753
668
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
754
668
                pAacDecoderChannelInfo->pComData->overlay.aac
755
668
                    .aRvlcScfBwd[bnds]);
756
668
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
757
668
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
758
668
                                    .aRvlcPreviousScaleFactor[bnds]);
759
668
          } else {
760
483
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
761
483
          }
762
1.15k
          break;
763
764
13.0k
        default:
765
13.0k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
766
13.0k
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
767
13.0k
              (pAacDecoderStaticChannelInfo->concealmentInfo
768
11.5k
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
769
13.0k
              (pAacDecoderStaticChannelInfo->concealmentInfo
770
11.4k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
771
13.0k
              (pAacDecoderStaticChannelInfo->concealmentInfo
772
11.3k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
773
11.3k
            commonMin = fMin(
774
11.3k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
775
11.3k
                pAacDecoderChannelInfo->pComData->overlay.aac
776
11.3k
                    .aRvlcScfBwd[bnds]);
777
11.3k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
778
11.3k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
779
11.3k
                                    .aRvlcPreviousScaleFactor[bnds]);
780
11.3k
          } else {
781
1.71k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
782
1.71k
          }
783
13.0k
          break;
784
30.9k
      }
785
30.9k
    }
786
8.12k
  }
787
7.74k
}