Coverage Report

Created: 2025-08-29 06:06

/src/aac/libSACdec/src/sac_stp.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2021 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/*********************** MPEG surround decoder library *************************
96
97
   Author(s):
98
99
   Description: SAC Dec subband processing
100
101
*******************************************************************************/
102
103
#include "sac_stp.h"
104
#include "sac_calcM1andM2.h"
105
#include "sac_bitdec.h"
106
#include "FDK_matrixCalloc.h"
107
#include "sac_rom.h"
108
109
0
#define SF_FREQ_DOMAIN_HEADROOM (2 * (1))
110
111
0
#define BP_GF_START 6
112
0
#define BP_GF_SIZE 25
113
0
#define HP_SIZE 9
114
0
#define STP_UPDATE_ENERGY_RATE 32
115
116
#define SF_WET 5
117
#define SF_DRY \
118
0
  3 /* SF_DRY == 2 would produce good conformance test results as well */
119
#define SF_DRY_NRG                                                           \
120
0
  (4 - 1) /* 8.495f = sum(BP_GF__FDK[i])                                     \
121
             i=0,..,(sizeof(BP_GF__FDK)/sizeof(FIXP_CFG)-1) => energy        \
122
             calculation needs 4 bits headroom, headroom can be reduced by 1 \
123
             bit due to fPow2Div2() usage */
124
#define SF_WET_NRG                                                           \
125
0
  (4 - 1) /* 8.495f = sum(BP_GF__FDK[i])                                     \
126
             i=0,..,(sizeof(BP_GF__FDK)/sizeof(FIXP_CFG)-1) => energy        \
127
             calculation needs 4 bits headroom, headroom can be reduced by 1 \
128
             bit due to fPow2Div2() usage */
129
#define SF_PRODUCT_BP_GF 13
130
#define SF_PRODUCT_BP_GF_GF 26
131
#define SF_SCALE 2
132
133
0
#define SF_SCALE_LD64 FL2FXCONST_DBL(0.03125)      /* LD64((1<<SF_SCALE))*/
134
0
#define STP_LPF_COEFF1__FDK FL2FXCONST_DBL(0.950f) /* 0.95 */
135
0
#define ONE_MINUS_STP_LPF_COEFF1__FDK FL2FXCONST_DBL(0.05f) /* 1.0 - 0.95 */
136
0
#define STP_LPF_COEFF2__FDK FL2FXCONST_DBL(0.450f)          /* 0.45 */
137
#define ONE_MINUS_STP_LPF_COEFF2__FDK \
138
0
  FL2FXCONST_DBL(1.0f - 0.450f) /* 1.0 - 0.45 */
139
#define STP_SCALE_LIMIT__FDK \
140
0
  FL2FXCONST_DBL(2.82f / (float)(1 << SF_SCALE)) /* scaled by SF_SCALE */
141
#define ONE_DIV_STP_SCALE_LIMIT__FDK                                          \
142
0
  FL2FXCONST_DBL(1.0f / 2.82f / (float)(1 << SF_SCALE)) /* scaled by SF_SCALE \
143
                                                         */
144
#define ABS_THR__FDK       \
145
  FL2FXCONST_DBL(ABS_THR / \
146
                 ((float)(1 << (22 + 22 - 26)))) /* scaled by 18 bits */
147
#define ABS_THR2__FDK                      \
148
  FL2FXCONST_DBL(ABS_THR * 32.0f * 32.0f / \
149
                 ((float)(1 << (22 + 22 - 26)))) /* scaled by 10 bits */
150
#define STP_SCALE_LIMIT_HI \
151
0
  FL2FXCONST_DBL(3.02222222222 / (1 << SF_SCALE)) /* see 4. below */
152
#define STP_SCALE_LIMIT_LO \
153
0
  FL2FXCONST_DBL(0.28289992119 / (1 << SF_SCALE)) /* see 4. below */
154
#define STP_SCALE_LIMIT_HI_LD64                 \
155
0
  FL2FXCONST_DBL(0.04986280452) /* see 4. below \
156
                                 */
157
#define STP_SCALE_LIMIT_LO_LD64                 \
158
0
  FL2FXCONST_DBL(0.05692613500) /* see 4. below \
159
                                 */
160
161
/*  Scale factor calculation for the diffuse signal needs adapted thresholds
162
    for STP_SCALE_LIMIT and 1/STP_SCALE_LIMIT:
163
164
    1. scale = sqrt(DryNrg/WetNrg)
165
166
    2. Damping of scale factor
167
       scale2 = 0.1 + 0.9 * scale
168
169
    3. Limiting of scale factor
170
          STP_SCALE_LIMIT           >=        scale2        >= 1/STP_SCALE_LIMIT
171
       => STP_SCALE_LIMIT           >=  (0.1 + 0.9 * scale) >= 1/STP_SCALE_LIMIT
172
       => (STP_SCALE_LIMIT-0.1)/0.9 >=        scale         >=
173
   (1/STP_SCALE_LIMIT-0.1)/0.9
174
175
    3. Limiting of scale factor before sqrt calculation
176
       ((STP_SCALE_LIMIT-0.1)/0.9)^2 >= (scale^2) >=
177
   ((1/STP_SCALE_LIMIT-0.1)/0.9)^2 (STP_SCALE_LIMIT_HI)^2        >= (scale^2) >=
178
   (STP_SCALE_LIMIT_LO)^2
179
180
    4. Thresholds for limiting of scale factor
181
       STP_SCALE_LIMIT_HI      = ((2.82-0.1)/0.9)
182
       STP_SCALE_LIMIT_LO      = (((1.0/2.82)-0.1)/0.9)
183
       STP_SCALE_LIMIT_HI_LD64 = LD64(STP_SCALE_LIMIT_HI*STP_SCALE_LIMIT_HI)
184
       STP_SCALE_LIMIT_LO_LD64 = LD64(STP_SCALE_LIMIT_LO*STP_SCALE_LIMIT_LO)
185
*/
186
187
#define CALC_WET_SCALE(dryIdx, wetIdx)                                         \
188
0
  if ((DryEnerLD64[dryIdx] - STP_SCALE_LIMIT_HI_LD64) > WetEnerLD64[wetIdx]) { \
189
0
    scale[wetIdx] = STP_SCALE_LIMIT_HI;                                        \
190
0
  } else if (DryEnerLD64[dryIdx] <                                             \
191
0
             (WetEnerLD64[wetIdx] - STP_SCALE_LIMIT_LO_LD64)) {                \
192
0
    scale[wetIdx] = STP_SCALE_LIMIT_LO;                                        \
193
0
  } else {                                                                     \
194
0
    tmp = ((DryEnerLD64[dryIdx] - WetEnerLD64[wetIdx]) >> 1) - SF_SCALE_LD64;  \
195
0
    scale[wetIdx] = CalcInvLdData(tmp);                                        \
196
0
  }
197
198
struct STP_DEC {
199
  FIXP_DBL runDryEner[MAX_INPUT_CHANNELS];
200
  FIXP_DBL runWetEner[MAX_OUTPUT_CHANNELS];
201
  FIXP_DBL oldDryEnerLD64[MAX_INPUT_CHANNELS];
202
  FIXP_DBL oldWetEnerLD64[MAX_OUTPUT_CHANNELS];
203
  FIXP_DBL prev_tp_scale[MAX_OUTPUT_CHANNELS];
204
  const FIXP_CFG *BP;
205
  const FIXP_CFG *BP_GF;
206
  int update_old_ener;
207
};
208
209
inline void combineSignalCplx(FIXP_DBL *hybOutputRealDry,
210
                              FIXP_DBL *hybOutputImagDry,
211
                              FIXP_DBL *hybOutputRealWet,
212
0
                              FIXP_DBL *hybOutputImagWet, int bands) {
213
0
  int n;
214
215
0
  for (n = bands - 1; n >= 0; n--) {
216
0
    *hybOutputRealDry = fAddSaturate(*hybOutputRealDry, *hybOutputRealWet);
217
0
    *hybOutputImagDry = fAddSaturate(*hybOutputImagDry, *hybOutputImagWet);
218
0
    hybOutputRealDry++, hybOutputRealWet++;
219
0
    hybOutputImagDry++, hybOutputImagWet++;
220
0
  }
221
0
}
222
223
inline void combineSignalCplxScale1(FIXP_DBL *hybOutputRealDry,
224
                                    FIXP_DBL *hybOutputImagDry,
225
                                    FIXP_DBL *hybOutputRealWet,
226
                                    FIXP_DBL *hybOutputImagWet,
227
                                    const FIXP_CFG *pBP, FIXP_DBL scaleX,
228
0
                                    int bands) {
229
0
  int n;
230
0
  FIXP_DBL scaleY;
231
0
  for (n = bands - 1; n >= 0; n--) {
232
0
    scaleY = fMult(scaleX, *pBP);
233
0
    *hybOutputRealDry = SATURATE_LEFT_SHIFT(
234
0
        (*hybOutputRealDry >> SF_SCALE) + fMult(*hybOutputRealWet, scaleY),
235
0
        SF_SCALE, DFRACT_BITS);
236
0
    *hybOutputImagDry = SATURATE_LEFT_SHIFT(
237
0
        (*hybOutputImagDry >> SF_SCALE) + fMult(*hybOutputImagWet, scaleY),
238
0
        SF_SCALE, DFRACT_BITS);
239
0
    hybOutputRealDry++, hybOutputRealWet++;
240
0
    hybOutputImagDry++, hybOutputImagWet++;
241
0
    pBP++;
242
0
  }
243
0
}
244
245
inline void combineSignalCplxScale2(FIXP_DBL *hybOutputRealDry,
246
                                    FIXP_DBL *hybOutputImagDry,
247
                                    FIXP_DBL *hybOutputRealWet,
248
                                    FIXP_DBL *hybOutputImagWet, FIXP_DBL scaleX,
249
0
                                    int bands) {
250
0
  int n;
251
252
0
  for (n = bands - 1; n >= 0; n--) {
253
0
    *hybOutputRealDry = SATURATE_LEFT_SHIFT(
254
0
        (*hybOutputRealDry >> SF_SCALE) + fMult(*hybOutputRealWet, scaleX),
255
0
        SF_SCALE, DFRACT_BITS);
256
0
    *hybOutputImagDry = SATURATE_LEFT_SHIFT(
257
0
        (*hybOutputImagDry >> SF_SCALE) + fMult(*hybOutputImagWet, scaleX),
258
0
        SF_SCALE, DFRACT_BITS);
259
0
    hybOutputRealDry++, hybOutputRealWet++;
260
0
    hybOutputImagDry++, hybOutputImagWet++;
261
0
  }
262
0
}
263
264
/*******************************************************************************
265
 Functionname: subbandTPCreate
266
 ******************************************************************************/
267
89
SACDEC_ERROR subbandTPCreate(HANDLE_STP_DEC *hStpDec) {
268
89
  HANDLE_STP_DEC self = NULL;
269
89
  FDK_ALLOCATE_MEMORY_1D(self, 1, struct STP_DEC)
270
89
  if (hStpDec != NULL) {
271
89
    *hStpDec = self;
272
89
  }
273
274
89
  return MPS_OK;
275
0
bail:
276
0
  return MPS_OUTOFMEMORY;
277
89
}
278
279
0
SACDEC_ERROR subbandTPInit(HANDLE_STP_DEC self) {
280
0
  SACDEC_ERROR err = MPS_OK;
281
0
  int ch;
282
283
0
  for (ch = 0; ch < MAX_OUTPUT_CHANNELS; ch++) {
284
0
    self->prev_tp_scale[ch] = FL2FXCONST_DBL(1.0f / (1 << SF_SCALE));
285
0
    self->oldWetEnerLD64[ch] = FL2FXCONST_DBL(0.0);
286
0
  }
287
0
  for (ch = 0; ch < MAX_INPUT_CHANNELS; ch++) {
288
0
    self->oldDryEnerLD64[ch] = FL2FXCONST_DBL(0.0);
289
0
  }
290
291
0
  self->BP = BP__FDK;
292
0
  self->BP_GF = BP_GF__FDK;
293
294
0
  self->update_old_ener = 0;
295
296
0
  return err;
297
0
}
298
299
/*******************************************************************************
300
 Functionname: subbandTPDestroy
301
 ******************************************************************************/
302
89
void subbandTPDestroy(HANDLE_STP_DEC *hStpDec) {
303
89
  if (hStpDec != NULL) {
304
89
    FDK_FREE_MEMORY_1D(*hStpDec);
305
89
  }
306
89
}
307
308
/*******************************************************************************
309
 Functionname: subbandTPApply
310
 ******************************************************************************/
311
0
SACDEC_ERROR subbandTPApply(spatialDec *self, const SPATIAL_BS_FRAME *frame) {
312
0
  FIXP_DBL *qmfOutputRealDry[MAX_OUTPUT_CHANNELS];
313
0
  FIXP_DBL *qmfOutputImagDry[MAX_OUTPUT_CHANNELS];
314
0
  FIXP_DBL *qmfOutputRealWet[MAX_OUTPUT_CHANNELS];
315
0
  FIXP_DBL *qmfOutputImagWet[MAX_OUTPUT_CHANNELS];
316
317
0
  FIXP_DBL DryEner[MAX_INPUT_CHANNELS];
318
0
  FIXP_DBL scale[MAX_OUTPUT_CHANNELS];
319
320
0
  FIXP_DBL DryEnerLD64[MAX_INPUT_CHANNELS];
321
0
  FIXP_DBL WetEnerLD64[MAX_OUTPUT_CHANNELS];
322
323
0
  FIXP_DBL DryEner0 = FL2FXCONST_DBL(0.0f);
324
0
  FIXP_DBL WetEnerX, damp, tmp;
325
0
  FIXP_DBL dmxReal0, dmxImag0;
326
0
  int skipChannels[MAX_OUTPUT_CHANNELS];
327
0
  int n, ch, cplxBands, cplxHybBands;
328
0
  int dry_scale_dmx, wet_scale_dmx;
329
0
  int i_LF, i_RF;
330
0
  HANDLE_STP_DEC hStpDec;
331
0
  const FIXP_CFG *pBP;
332
333
0
  int nrgScale = (2 * self->clipProtectGainSF__FDK);
334
335
0
  hStpDec = self->hStpDec;
336
337
  /* set scalefactor and loop counter */
338
0
  FDK_ASSERT(SF_DRY >= 1);
339
0
  {
340
0
    cplxBands = BP_GF_SIZE;
341
0
    cplxHybBands = self->hybridBands;
342
0
    if (self->treeConfig == TREE_212) {
343
0
      dry_scale_dmx = 2; /* 2 bits to compensate fMultDiv2() and fPow2Div2()
344
                            used in energy calculation */
345
0
    } else {
346
0
      dry_scale_dmx = (2 * SF_DRY) - 2;
347
0
    }
348
0
    wet_scale_dmx = 2;
349
0
  }
350
351
  /* setup pointer for forming the direct downmix signal */
352
0
  for (ch = 0; ch < self->numOutputChannels; ch++) {
353
0
    qmfOutputRealDry[ch] = &self->hybOutputRealDry__FDK[ch][7];
354
0
    qmfOutputRealWet[ch] = &self->hybOutputRealWet__FDK[ch][7];
355
0
    qmfOutputImagDry[ch] = &self->hybOutputImagDry__FDK[ch][7];
356
0
    qmfOutputImagWet[ch] = &self->hybOutputImagWet__FDK[ch][7];
357
0
  }
358
359
  /* clear skipping flag for all output channels */
360
0
  FDKmemset(skipChannels, 0, self->numOutputChannels * sizeof(int));
361
362
  /* set scale values to zero */
363
0
  FDKmemset(scale, 0, self->numOutputChannels * sizeof(FIXP_DBL));
364
365
  /* update normalisation energy with latest smoothed energy */
366
0
  if (hStpDec->update_old_ener == STP_UPDATE_ENERGY_RATE) {
367
0
    hStpDec->update_old_ener = 1;
368
0
    for (ch = 0; ch < self->numInputChannels; ch++) {
369
0
      hStpDec->oldDryEnerLD64[ch] =
370
0
          CalcLdData(fAddSaturate(hStpDec->runDryEner[ch], ABS_THR__FDK));
371
0
    }
372
0
    for (ch = 0; ch < self->numOutputChannels; ch++) {
373
0
      if (self->treeConfig == TREE_212)
374
0
        hStpDec->oldWetEnerLD64[ch] =
375
0
            CalcLdData(fAddSaturate(hStpDec->runWetEner[ch], ABS_THR__FDK));
376
0
      else
377
0
        hStpDec->oldWetEnerLD64[ch] =
378
0
            CalcLdData(fAddSaturate(hStpDec->runWetEner[ch], ABS_THR2__FDK));
379
0
    }
380
0
  } else {
381
0
    hStpDec->update_old_ener++;
382
0
  }
383
384
  /* get channel configuration */
385
0
  switch (self->treeConfig) {
386
0
    case TREE_212:
387
0
      i_LF = 0;
388
0
      i_RF = 1;
389
0
      break;
390
0
    default:
391
0
      return MPS_WRONG_TREECONFIG;
392
0
  }
393
394
  /* form the 'direct' downmix signal */
395
0
  pBP = hStpDec->BP_GF - BP_GF_START;
396
0
  switch (self->treeConfig) {
397
0
    case TREE_212:
398
0
      INT sMin, sNorm, sReal, sImag;
399
400
0
      sReal = fMin(getScalefactor(&qmfOutputRealDry[i_LF][BP_GF_START],
401
0
                                  cplxBands - BP_GF_START),
402
0
                   getScalefactor(&qmfOutputRealDry[i_RF][BP_GF_START],
403
0
                                  cplxBands - BP_GF_START));
404
0
      sImag = fMin(getScalefactor(&qmfOutputImagDry[i_LF][BP_GF_START],
405
0
                                  cplxBands - BP_GF_START),
406
0
                   getScalefactor(&qmfOutputImagDry[i_RF][BP_GF_START],
407
0
                                  cplxBands - BP_GF_START));
408
0
      sMin = fMin(sReal, sImag) - 1;
409
410
0
      for (n = BP_GF_START; n < cplxBands; n++) {
411
0
        dmxReal0 = scaleValue(qmfOutputRealDry[i_LF][n], sMin) +
412
0
                   scaleValue(qmfOutputRealDry[i_RF][n], sMin);
413
0
        dmxImag0 = scaleValue(qmfOutputImagDry[i_LF][n], sMin) +
414
0
                   scaleValue(qmfOutputImagDry[i_RF][n], sMin);
415
416
0
        DryEner0 += (fMultDiv2(fPow2Div2(dmxReal0), pBP[n]) +
417
0
                     fMultDiv2(fPow2Div2(dmxImag0), pBP[n])) >>
418
0
                    SF_DRY_NRG;
419
0
      }
420
421
0
      sNorm = SF_FREQ_DOMAIN_HEADROOM + SF_DRY_NRG + dry_scale_dmx -
422
0
              (2 * sMin) + nrgScale;
423
0
      DryEner0 = scaleValueSaturate(
424
0
          DryEner0, fMax(fMin(sNorm, DFRACT_BITS - 1), -(DFRACT_BITS - 1)));
425
0
      break;
426
0
    default:;
427
0
  }
428
0
  DryEner[0] = DryEner0;
429
430
  /* normalise the 'direct' signals */
431
0
  for (ch = 0; ch < self->numInputChannels; ch++) {
432
0
    if (self->treeConfig != TREE_212) DryEner[ch] = DryEner[ch] << nrgScale;
433
0
    hStpDec->runDryEner[ch] =
434
0
        fMult(STP_LPF_COEFF1__FDK, hStpDec->runDryEner[ch]) +
435
0
        fMult(ONE_MINUS_STP_LPF_COEFF1__FDK, DryEner[ch]);
436
0
    if (DryEner[ch] != FL2FXCONST_DBL(0.0f)) {
437
0
      DryEnerLD64[ch] =
438
0
          fixMax((CalcLdData(DryEner[ch]) - hStpDec->oldDryEnerLD64[ch]),
439
0
                 FL2FXCONST_DBL(-0.484375f));
440
0
    } else {
441
0
      DryEnerLD64[ch] = FL2FXCONST_DBL(-0.484375f);
442
0
    }
443
0
  }
444
0
  for (; ch < MAX_INPUT_CHANNELS; ch++) {
445
0
    DryEnerLD64[ch] = FL2FXCONST_DBL(-0.484375f);
446
0
  }
447
448
  /* normalise the 'diffuse' signals */
449
0
  pBP = hStpDec->BP_GF - BP_GF_START;
450
0
  for (ch = 0; ch < self->numOutputChannels; ch++) {
451
0
    if (skipChannels[ch]) {
452
0
      continue;
453
0
    }
454
455
0
    WetEnerX = FL2FXCONST_DBL(0.0f);
456
457
0
    if (self->treeConfig == TREE_212) {
458
0
      INT sMin, sNorm;
459
460
0
      sMin = fMin(getScalefactor(&qmfOutputRealWet[ch][BP_GF_START],
461
0
                                 cplxBands - BP_GF_START),
462
0
                  getScalefactor(&qmfOutputImagWet[ch][BP_GF_START],
463
0
                                 cplxBands - BP_GF_START));
464
465
0
      for (n = BP_GF_START; n < cplxBands; n++) {
466
0
        WetEnerX +=
467
0
            (fMultDiv2(fPow2Div2(scaleValue(qmfOutputRealWet[ch][n], sMin)),
468
0
                       pBP[n]) +
469
0
             fMultDiv2(fPow2Div2(scaleValue(qmfOutputImagWet[ch][n], sMin)),
470
0
                       pBP[n])) >>
471
0
            SF_WET_NRG;
472
0
      }
473
0
      sNorm = SF_FREQ_DOMAIN_HEADROOM + SF_WET_NRG + wet_scale_dmx -
474
0
              (2 * sMin) + nrgScale;
475
0
      WetEnerX = scaleValueSaturate(
476
0
          WetEnerX, fMax(fMin(sNorm, DFRACT_BITS - 1), -(DFRACT_BITS - 1)));
477
0
    } else
478
0
      FDK_ASSERT(self->treeConfig == TREE_212);
479
480
0
    hStpDec->runWetEner[ch] =
481
0
        fMult(STP_LPF_COEFF1__FDK, hStpDec->runWetEner[ch]) +
482
0
        fMult(ONE_MINUS_STP_LPF_COEFF1__FDK, WetEnerX);
483
484
0
    if (WetEnerX == FL2FXCONST_DBL(0.0f)) {
485
0
      WetEnerLD64[ch] = FL2FXCONST_DBL(-0.484375f);
486
0
    } else {
487
0
      WetEnerLD64[ch] =
488
0
          fixMax((CalcLdData(WetEnerX) - hStpDec->oldWetEnerLD64[ch]),
489
0
                 FL2FXCONST_DBL(-0.484375f));
490
0
    }
491
0
  }
492
493
  /* compute scale factor for the 'diffuse' signals */
494
0
  switch (self->treeConfig) {
495
0
    case TREE_212:
496
0
      if (DryEner[0] != FL2FXCONST_DBL(0.0f)) {
497
0
        CALC_WET_SCALE(0, i_LF);
498
0
        CALC_WET_SCALE(0, i_RF);
499
0
      }
500
0
      break;
501
0
    default:;
502
0
  }
503
504
0
  damp = FL2FXCONST_DBL(0.1f / (1 << SF_SCALE));
505
0
  for (ch = 0; ch < self->numOutputChannels; ch++) {
506
    /* damp the scaling factor */
507
0
    scale[ch] = damp + fMult(FL2FXCONST_DBL(0.9f), scale[ch]);
508
509
    /* limiting the scale factor */
510
0
    if (scale[ch] > STP_SCALE_LIMIT__FDK) {
511
0
      scale[ch] = STP_SCALE_LIMIT__FDK;
512
0
    }
513
0
    if (scale[ch] < ONE_DIV_STP_SCALE_LIMIT__FDK) {
514
0
      scale[ch] = ONE_DIV_STP_SCALE_LIMIT__FDK;
515
0
    }
516
517
    /* low pass filter the scaling factor */
518
0
    scale[ch] =
519
0
        fMult(STP_LPF_COEFF2__FDK, scale[ch]) +
520
0
        fMult(ONE_MINUS_STP_LPF_COEFF2__FDK, hStpDec->prev_tp_scale[ch]);
521
0
    hStpDec->prev_tp_scale[ch] = scale[ch];
522
0
  }
523
524
  /* combine 'direct' and scaled 'diffuse' signal */
525
0
  FDK_ASSERT((HP_SIZE - 3 + 10 - 1) == PC_NUM_HYB_BANDS);
526
0
  const SCHAR *channlIndex = row2channelSTP[self->treeConfig];
527
528
0
  for (ch = 0; ch < self->numOutputChannels; ch++) {
529
0
    int no_scaling;
530
531
0
    no_scaling = !frame->tempShapeEnableChannelSTP[channlIndex[ch]];
532
0
    if (no_scaling) {
533
0
      combineSignalCplx(
534
0
          &self->hybOutputRealDry__FDK[ch][self->tp_hybBandBorder],
535
0
          &self->hybOutputImagDry__FDK[ch][self->tp_hybBandBorder],
536
0
          &self->hybOutputRealWet__FDK[ch][self->tp_hybBandBorder],
537
0
          &self->hybOutputImagWet__FDK[ch][self->tp_hybBandBorder],
538
0
          cplxHybBands - self->tp_hybBandBorder);
539
540
0
    } else {
541
0
      FIXP_DBL scaleX;
542
0
      scaleX = scale[ch];
543
0
      pBP = hStpDec->BP - self->tp_hybBandBorder;
544
      /* Band[HP_SIZE-3+10-1] needs not to be processed in
545
         combineSignalCplxScale1(), because pB[HP_SIZE-3+10-1] would be 1.0 */
546
0
      combineSignalCplxScale1(
547
0
          &self->hybOutputRealDry__FDK[ch][self->tp_hybBandBorder],
548
0
          &self->hybOutputImagDry__FDK[ch][self->tp_hybBandBorder],
549
0
          &self->hybOutputRealWet__FDK[ch][self->tp_hybBandBorder],
550
0
          &self->hybOutputImagWet__FDK[ch][self->tp_hybBandBorder],
551
0
          &pBP[self->tp_hybBandBorder], scaleX,
552
0
          (HP_SIZE - 3 + 10 - 1) - self->tp_hybBandBorder);
553
554
0
      {
555
0
        combineSignalCplxScale2(
556
0
            &self->hybOutputRealDry__FDK[ch][HP_SIZE - 3 + 10 - 1],
557
0
            &self->hybOutputImagDry__FDK[ch][HP_SIZE - 3 + 10 - 1],
558
0
            &self->hybOutputRealWet__FDK[ch][HP_SIZE - 3 + 10 - 1],
559
0
            &self->hybOutputImagWet__FDK[ch][HP_SIZE - 3 + 10 - 1], scaleX,
560
0
            cplxHybBands - (HP_SIZE - 3 + 10 - 1));
561
0
      }
562
0
    }
563
0
  }
564
565
0
  return (SACDEC_ERROR)MPS_OK;
566
0
  ;
567
0
}