Coverage Report

Created: 2025-09-05 06:51

/src/aac/libFDK/src/dct.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file   dct.cpp
105
  \brief  DCT Implementations
106
  Library functions to calculate standard DCTs. This will most likely be
107
  replaced by hand-optimized functions for the specific target processor.
108
109
  Three different implementations of the dct type II and the dct type III
110
  transforms are provided.
111
112
  By default implementations which are based on a single, standard complex
113
  FFT-kernel are used (dctII_f() and dctIII_f()). These are specifically helpful
114
  in cases where optimized FFT libraries are already available. The FFT used in
115
  these implementation is FFT rad2 from FDK_tools.
116
117
  Of course, one might also use DCT-libraries should they be available. The DCT
118
  and DST type IV implementations are only available in a version based on a
119
  complex FFT kernel.
120
*/
121
122
#include "dct.h"
123
124
#include "FDK_tools_rom.h"
125
#include "fft.h"
126
127
void dct_getTables(const FIXP_WTP **ptwiddle, const FIXP_STP **sin_twiddle,
128
0
                   int *sin_step, int length) {
129
0
  const FIXP_WTP *twiddle;
130
0
  int ld2_length;
131
132
  /* Get ld2 of length - 2 + 1
133
      -2: because first table entry is window of size 4
134
      +1: because we already include +1 because of ceil(log2(length)) */
135
0
  ld2_length = DFRACT_BITS - 1 - fNormz((FIXP_DBL)length) - 1;
136
137
  /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */
138
0
  switch ((length) >> (ld2_length - 1)) {
139
0
    case 0x4: /* radix 2 */
140
0
      *sin_twiddle = SineTable1024;
141
0
      *sin_step = 1 << (10 - ld2_length);
142
0
      twiddle = windowSlopes[0][0][ld2_length - 1];
143
0
      break;
144
0
    case 0x7: /* 10 ms */
145
0
      *sin_twiddle = SineTable480;
146
0
      *sin_step = 1 << (8 - ld2_length);
147
0
      twiddle = windowSlopes[0][1][ld2_length];
148
0
      break;
149
0
    case 0x6: /* 3/4 of radix 2 */
150
0
      *sin_twiddle = SineTable384;
151
0
      *sin_step = 1 << (8 - ld2_length);
152
0
      twiddle = windowSlopes[0][2][ld2_length];
153
0
      break;
154
0
    case 0x5: /* 5/16 of radix 2*/
155
0
      *sin_twiddle = SineTable80;
156
0
      *sin_step = 1 << (6 - ld2_length);
157
0
      twiddle = windowSlopes[0][3][ld2_length];
158
0
      break;
159
0
    default:
160
0
      *sin_twiddle = NULL;
161
0
      *sin_step = 0;
162
0
      twiddle = NULL;
163
0
      break;
164
0
  }
165
166
0
  if (ptwiddle != NULL) {
167
0
    FDK_ASSERT(twiddle != NULL);
168
0
    *ptwiddle = twiddle;
169
0
  }
170
171
0
  FDK_ASSERT(*sin_step > 0);
172
0
}
173
174
#if !defined(FUNCTION_dct_III)
175
void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */
176
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
177
             int L,          /*!< lenght of transform */
178
0
             int *pDat_e) {
179
0
  const FIXP_WTP *sin_twiddle;
180
0
  int i;
181
0
  FIXP_DBL xr, accu1, accu2;
182
0
  int inc, index;
183
0
  int M = L >> 1;
184
185
0
  FDK_ASSERT(L % 4 == 0);
186
0
  dct_getTables(NULL, &sin_twiddle, &inc, L);
187
0
  inc >>= 1;
188
189
0
  FIXP_DBL *pTmp_0 = &tmp[2];
190
0
  FIXP_DBL *pTmp_1 = &tmp[(M - 1) * 2];
191
192
0
  index = 4 * inc;
193
194
  /* This loop performs multiplication for index i (i*inc) */
195
0
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
196
0
    FIXP_DBL accu3, accu4, accu5, accu6;
197
198
0
    cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle[i * inc]);
199
0
    cplxMultDiv2(&accu4, &accu3, pDat[M + i], pDat[M - i],
200
0
                 sin_twiddle[(M - i) * inc]);
201
0
    accu3 >>= 1;
202
0
    accu4 >>= 1;
203
204
    /* This method is better for ARM926, that uses operand2 shifted right by 1
205
     * always */
206
0
    if (2 * i < (M / 2)) {
207
0
      cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1 >> 1)),
208
0
                   ((accu2 >> 1) + accu4), sin_twiddle[index]);
209
0
    } else {
210
0
      cplxMultDiv2(&accu6, &accu5, ((accu2 >> 1) + accu4),
211
0
                   (accu3 - (accu1 >> 1)), sin_twiddle[index]);
212
0
      accu6 = -accu6;
213
0
    }
214
0
    xr = (accu1 >> 1) + accu3;
215
0
    pTmp_0[0] = (xr >> 1) - accu5;
216
0
    pTmp_1[0] = (xr >> 1) + accu5;
217
218
0
    xr = (accu2 >> 1) - accu4;
219
0
    pTmp_0[1] = (xr >> 1) - accu6;
220
0
    pTmp_1[1] = -((xr >> 1) + accu6);
221
222
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
223
     * short tables. */
224
0
    if (2 * i < ((M / 2) - 1)) {
225
0
      index += 4 * inc;
226
0
    } else if (2 * i >= ((M / 2))) {
227
0
      index -= 4 * inc;
228
0
    }
229
0
  }
230
231
0
  xr = fMultDiv2(pDat[M], sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
232
0
  tmp[0] = ((pDat[0] >> 1) + xr) >> 1;
233
0
  tmp[1] = ((pDat[0] >> 1) - xr) >> 1;
234
235
0
  cplxMultDiv2(&accu2, &accu1, pDat[L - (M / 2)], pDat[M / 2],
236
0
               sin_twiddle[M * inc / 2]);
237
0
  tmp[M] = accu1 >> 1;
238
0
  tmp[M + 1] = accu2 >> 1;
239
240
  /* dit_fft expects 1 bit scaled input values */
241
0
  fft(M, tmp, pDat_e);
242
243
  /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */
244
0
  pTmp_1 = &tmp[L];
245
0
  for (i = M >> 1; i--;) {
246
0
    FIXP_DBL tmp1, tmp2, tmp3, tmp4;
247
0
    tmp1 = *tmp++;
248
0
    tmp2 = *tmp++;
249
0
    tmp3 = *--pTmp_1;
250
0
    tmp4 = *--pTmp_1;
251
0
    *pDat++ = tmp1;
252
0
    *pDat++ = tmp3;
253
0
    *pDat++ = tmp2;
254
0
    *pDat++ = tmp4;
255
0
  }
256
257
0
  *pDat_e += 2;
258
0
}
259
260
void dst_III(FIXP_DBL *pDat, /*!< pointer to input/output */
261
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
262
             int L,          /*!< lenght of transform */
263
0
             int *pDat_e) {
264
0
  int L2 = L >> 1;
265
0
  int i;
266
0
  FIXP_DBL t;
267
268
  /* note: DCT III is reused here, direct DST III implementation might be more
269
   * efficient */
270
271
  /* mirror input */
272
0
  for (i = 0; i < L2; i++) {
273
0
    t = pDat[i];
274
0
    pDat[i] = pDat[L - 1 - i];
275
0
    pDat[L - 1 - i] = t;
276
0
  }
277
278
  /* DCT-III */
279
0
  dct_III(pDat, tmp, L, pDat_e);
280
281
  /* flip signs at odd indices */
282
0
  for (i = 1; i < L; i += 2) pDat[i] = -pDat[i];
283
0
}
284
285
#endif
286
287
#if !defined(FUNCTION_dct_II)
288
void dct_II(
289
    FIXP_DBL *pDat, /*!< pointer to input/output */
290
    FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
291
    int L, /*!< lenght of transform (has to be a multiple of 8 (or 4 in case
292
              DCT_II_L_MULTIPLE_OF_4_SUPPORT is defined) */
293
0
    int *pDat_e) {
294
0
  const FIXP_WTP *sin_twiddle;
295
0
  FIXP_DBL accu1, accu2;
296
0
  FIXP_DBL *pTmp_0, *pTmp_1;
297
298
0
  int i;
299
0
  int inc, index = 0;
300
0
  int M = L >> 1;
301
302
0
  FDK_ASSERT(L % 4 == 0);
303
0
  dct_getTables(NULL, &sin_twiddle, &inc, L);
304
0
  inc >>= 1;
305
306
0
  {
307
0
    for (i = 0; i < M; i++) {
308
0
      tmp[i] = pDat[2 * i] >> 2;
309
0
      tmp[L - 1 - i] = pDat[2 * i + 1] >> 2;
310
0
    }
311
0
  }
312
313
0
  fft(M, tmp, pDat_e);
314
315
0
  pTmp_0 = &tmp[2];
316
0
  pTmp_1 = &tmp[(M - 1) * 2];
317
318
0
  index = inc * 4;
319
320
0
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
321
0
    FIXP_DBL a1, a2;
322
0
    FIXP_DBL accu3, accu4;
323
324
0
    a1 = ((pTmp_0[1] >> 1) + (pTmp_1[1] >> 1));
325
0
    a2 = ((pTmp_1[0] >> 1) - (pTmp_0[0] >> 1));
326
327
0
    if (2 * i < (M / 2)) {
328
0
      cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle[index]);
329
0
    } else {
330
0
      cplxMultDiv2(&accu1, &accu2, a1, a2, sin_twiddle[index]);
331
0
      accu1 = -accu1;
332
0
    }
333
0
    accu1 <<= 1;
334
0
    accu2 <<= 1;
335
336
0
    a1 = ((pTmp_0[0] >> 1) + (pTmp_1[0] >> 1));
337
0
    a2 = ((pTmp_0[1] >> 1) - (pTmp_1[1] >> 1));
338
339
0
    cplxMult(&accu3, &accu4, (accu1 + a2), (a1 + accu2), sin_twiddle[i * inc]);
340
0
    pDat[L - i] = -accu3;
341
0
    pDat[i] = accu4;
342
343
0
    cplxMult(&accu3, &accu4, (accu1 - a2), (a1 - accu2),
344
0
             sin_twiddle[(M - i) * inc]);
345
0
    pDat[M + i] = -accu3;
346
0
    pDat[M - i] = accu4;
347
348
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
349
     * short tables. */
350
0
    if (2 * i < ((M / 2) - 1)) {
351
0
      index += 4 * inc;
352
0
    } else if (2 * i >= ((M / 2))) {
353
0
      index -= 4 * inc;
354
0
    }
355
0
  }
356
357
0
  cplxMult(&accu1, &accu2, tmp[M], tmp[M + 1], sin_twiddle[(M / 2) * inc]);
358
0
  pDat[L - (M / 2)] = accu2;
359
0
  pDat[M / 2] = accu1;
360
361
0
  pDat[0] = tmp[0] + tmp[1];
362
0
  pDat[M] = fMult(tmp[0] - tmp[1],
363
0
                  sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
364
365
0
  *pDat_e += 2;
366
0
}
367
#endif
368
369
#if !defined(FUNCTION_dct_IV)
370
371
0
void dct_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
372
0
  int sin_step = 0;
373
0
  int M = L >> 1;
374
375
0
  const FIXP_WTP *twiddle;
376
0
  const FIXP_STP *sin_twiddle;
377
378
0
  FDK_ASSERT(L >= 4);
379
380
0
  FDK_ASSERT(L >= 4);
381
382
0
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
383
384
0
  {
385
0
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
386
0
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
387
0
    int i;
388
389
    /* 29 cycles on ARM926 */
390
0
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
391
0
      FIXP_DBL accu1, accu2, accu3, accu4;
392
393
0
      accu1 = pDat_1[1];
394
0
      accu2 = pDat_0[0];
395
0
      accu3 = pDat_0[1];
396
0
      accu4 = pDat_1[0];
397
398
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
399
0
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
400
401
0
      pDat_0[0] = accu2 >> 1;
402
0
      pDat_0[1] = accu1 >> 1;
403
0
      pDat_1[0] = accu4 >> 1;
404
0
      pDat_1[1] = -(accu3 >> 1);
405
0
    }
406
0
    if (M & 1) {
407
0
      FIXP_DBL accu1, accu2;
408
409
0
      accu1 = pDat_1[1];
410
0
      accu2 = pDat_0[0];
411
412
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
413
414
0
      pDat_0[0] = accu2 >> 1;
415
0
      pDat_0[1] = accu1 >> 1;
416
0
    }
417
0
  }
418
419
0
  fft(M, pDat, pDat_e);
420
421
0
  {
422
0
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
423
0
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
424
0
    FIXP_DBL accu1, accu2, accu3, accu4;
425
0
    int idx, i;
426
427
    /* Sin and Cos values are 0.0f and 1.0f */
428
0
    accu1 = pDat_1[0];
429
0
    accu2 = pDat_1[1];
430
431
0
    pDat_1[1] = -pDat_0[1];
432
433
    /* 28 cycles for ARM926 */
434
0
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
435
0
      FIXP_STP twd = sin_twiddle[idx];
436
0
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
437
0
      pDat_0[1] = accu3;
438
0
      pDat_1[0] = accu4;
439
440
0
      pDat_0 += 2;
441
0
      pDat_1 -= 2;
442
443
0
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
444
445
0
      accu1 = pDat_1[0];
446
0
      accu2 = pDat_1[1];
447
448
0
      pDat_1[1] = -accu3;
449
0
      pDat_0[0] = accu4;
450
0
    }
451
452
0
    if ((M & 1) == 0) {
453
      /* Last Sin and Cos value pair are the same */
454
0
      accu1 = fMult(accu1, WTC(0x5a82799a));
455
0
      accu2 = fMult(accu2, WTC(0x5a82799a));
456
457
0
      pDat_1[0] = accu1 + accu2;
458
0
      pDat_0[1] = accu1 - accu2;
459
0
    }
460
0
  }
461
462
  /* Add twiddeling scale. */
463
0
  *pDat_e += 2;
464
0
}
465
#endif /* defined (FUNCTION_dct_IV) */
466
467
#if !defined(FUNCTION_dst_IV)
468
0
void dst_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
469
0
  int sin_step = 0;
470
0
  int M = L >> 1;
471
472
0
  const FIXP_WTP *twiddle;
473
0
  const FIXP_STP *sin_twiddle;
474
475
0
  FDK_ASSERT(L >= 4);
476
477
0
  FDK_ASSERT(L >= 4);
478
479
0
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
480
481
0
  {
482
0
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
483
0
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
484
0
    int i;
485
486
    /* 34 cycles on ARM926 */
487
0
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
488
0
      FIXP_DBL accu1, accu2, accu3, accu4;
489
490
0
      accu1 = pDat_1[1] >> 1;
491
0
      accu2 = -(pDat_0[0] >> 1);
492
0
      accu3 = pDat_0[1] >> 1;
493
0
      accu4 = -(pDat_1[0] >> 1);
494
495
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
496
0
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
497
498
0
      pDat_0[0] = accu2;
499
0
      pDat_0[1] = accu1;
500
0
      pDat_1[0] = accu4;
501
0
      pDat_1[1] = -accu3;
502
0
    }
503
0
    if (M & 1) {
504
0
      FIXP_DBL accu1, accu2;
505
506
0
      accu1 = pDat_1[1];
507
0
      accu2 = -pDat_0[0];
508
509
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
510
511
0
      pDat_0[0] = accu2 >> 1;
512
0
      pDat_0[1] = accu1 >> 1;
513
0
    }
514
0
  }
515
516
0
  fft(M, pDat, pDat_e);
517
518
0
  {
519
0
    FIXP_DBL *RESTRICT pDat_0;
520
0
    FIXP_DBL *RESTRICT pDat_1;
521
0
    FIXP_DBL accu1, accu2, accu3, accu4;
522
0
    int idx, i;
523
524
0
    pDat_0 = &pDat[0];
525
0
    pDat_1 = &pDat[L - 2];
526
527
    /* Sin and Cos values are 0.0f and 1.0f */
528
0
    accu1 = pDat_1[0];
529
0
    accu2 = pDat_1[1];
530
531
0
    pDat_1[1] = -pDat_0[0];
532
0
    pDat_0[0] = pDat_0[1];
533
534
0
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
535
0
      FIXP_STP twd = sin_twiddle[idx];
536
537
0
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
538
0
      pDat_1[0] = -accu3;
539
0
      pDat_0[1] = -accu4;
540
541
0
      pDat_0 += 2;
542
0
      pDat_1 -= 2;
543
544
0
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
545
546
0
      accu1 = pDat_1[0];
547
0
      accu2 = pDat_1[1];
548
549
0
      pDat_0[0] = accu3;
550
0
      pDat_1[1] = -accu4;
551
0
    }
552
553
0
    if ((M & 1) == 0) {
554
      /* Last Sin and Cos value pair are the same */
555
0
      accu1 = fMult(accu1, WTC(0x5a82799a));
556
0
      accu2 = fMult(accu2, WTC(0x5a82799a));
557
558
0
      pDat_0[1] = -accu1 - accu2;
559
0
      pDat_1[0] = accu2 - accu1;
560
0
    }
561
0
  }
562
563
  /* Add twiddeling scale. */
564
0
  *pDat_e += 2;
565
0
}
566
#endif /* !defined(FUNCTION_dst_IV) */