/src/aac/libAACenc/src/sf_estim.cpp
Line  | Count  | Source  | 
1  |  | /* -----------------------------------------------------------------------------  | 
2  |  | Software License for The Fraunhofer FDK AAC Codec Library for Android  | 
3  |  |  | 
4  |  | © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten  | 
5  |  | Forschung e.V. All rights reserved.  | 
6  |  |  | 
7  |  |  1.    INTRODUCTION  | 
8  |  | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software | 
9  |  | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding | 
10  |  | scheme for digital audio. This FDK AAC Codec software is intended to be used on  | 
11  |  | a wide variety of Android devices.  | 
12  |  |  | 
13  |  | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient  | 
14  |  | general perceptual audio codecs. AAC-ELD is considered the best-performing  | 
15  |  | full-bandwidth communications codec by independent studies and is widely  | 
16  |  | deployed. AAC has been standardized by ISO and IEC as part of the MPEG  | 
17  |  | specifications.  | 
18  |  |  | 
19  |  | Patent licenses for necessary patent claims for the FDK AAC Codec (including  | 
20  |  | those of Fraunhofer) may be obtained through Via Licensing  | 
21  |  | (www.vialicensing.com) or through the respective patent owners individually for  | 
22  |  | the purpose of encoding or decoding bit streams in products that are compliant  | 
23  |  | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of  | 
24  |  | Android devices already license these patent claims through Via Licensing or  | 
25  |  | directly from the patent owners, and therefore FDK AAC Codec software may  | 
26  |  | already be covered under those patent licenses when it is used for those  | 
27  |  | licensed purposes only.  | 
28  |  |  | 
29  |  | Commercially-licensed AAC software libraries, including floating-point versions  | 
30  |  | with enhanced sound quality, are also available from Fraunhofer. Users are  | 
31  |  | encouraged to check the Fraunhofer website for additional applications  | 
32  |  | information and documentation.  | 
33  |  |  | 
34  |  | 2.    COPYRIGHT LICENSE  | 
35  |  |  | 
36  |  | Redistribution and use in source and binary forms, with or without modification,  | 
37  |  | are permitted without payment of copyright license fees provided that you  | 
38  |  | satisfy the following conditions:  | 
39  |  |  | 
40  |  | You must retain the complete text of this software license in redistributions of  | 
41  |  | the FDK AAC Codec or your modifications thereto in source code form.  | 
42  |  |  | 
43  |  | You must retain the complete text of this software license in the documentation  | 
44  |  | and/or other materials provided with redistributions of the FDK AAC Codec or  | 
45  |  | your modifications thereto in binary form. You must make available free of  | 
46  |  | charge copies of the complete source code of the FDK AAC Codec and your  | 
47  |  | modifications thereto to recipients of copies in binary form.  | 
48  |  |  | 
49  |  | The name of Fraunhofer may not be used to endorse or promote products derived  | 
50  |  | from this library without prior written permission.  | 
51  |  |  | 
52  |  | You may not charge copyright license fees for anyone to use, copy or distribute  | 
53  |  | the FDK AAC Codec software or your modifications thereto.  | 
54  |  |  | 
55  |  | Your modified versions of the FDK AAC Codec must carry prominent notices stating  | 
56  |  | that you changed the software and the date of any change. For modified versions  | 
57  |  | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"  | 
58  |  | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK  | 
59  |  | AAC Codec Library for Android."  | 
60  |  |  | 
61  |  | 3.    NO PATENT LICENSE  | 
62  |  |  | 
63  |  | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without  | 
64  |  | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.  | 
65  |  | Fraunhofer provides no warranty of patent non-infringement with respect to this  | 
66  |  | software.  | 
67  |  |  | 
68  |  | You may use this FDK AAC Codec software or modifications thereto only for  | 
69  |  | purposes that are authorized by appropriate patent licenses.  | 
70  |  |  | 
71  |  | 4.    DISCLAIMER  | 
72  |  |  | 
73  |  | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright  | 
74  |  | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,  | 
75  |  | including but not limited to the implied warranties of merchantability and  | 
76  |  | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR  | 
77  |  | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,  | 
78  |  | or consequential damages, including but not limited to procurement of substitute  | 
79  |  | goods or services; loss of use, data, or profits, or business interruption,  | 
80  |  | however caused and on any theory of liability, whether in contract, strict  | 
81  |  | liability, or tort (including negligence), arising in any way out of the use of  | 
82  |  | this software, even if advised of the possibility of such damage.  | 
83  |  |  | 
84  |  | 5.    CONTACT INFORMATION  | 
85  |  |  | 
86  |  | Fraunhofer Institute for Integrated Circuits IIS  | 
87  |  | Attention: Audio and Multimedia Departments - FDK AAC LL  | 
88  |  | Am Wolfsmantel 33  | 
89  |  | 91058 Erlangen, Germany  | 
90  |  |  | 
91  |  | www.iis.fraunhofer.de/amm  | 
92  |  | amm-info@iis.fraunhofer.de  | 
93  |  | ----------------------------------------------------------------------------- */  | 
94  |  |  | 
95  |  | /**************************** AAC encoder library ******************************  | 
96  |  |  | 
97  |  |    Author(s):   M. Werner  | 
98  |  |  | 
99  |  |    Description: Scale factor estimation  | 
100  |  |  | 
101  |  | *******************************************************************************/  | 
102  |  |  | 
103  |  | #include "sf_estim.h"  | 
104  |  | #include "aacEnc_rom.h"  | 
105  |  | #include "quantize.h"  | 
106  |  | #include "bit_cnt.h"  | 
107  |  |  | 
108  |  | #ifdef __arm__  | 
109  |  | #endif  | 
110  |  |  | 
111  | 0  | #define UPCOUNT_LIMIT 1  | 
112  | 0  | #define AS_PE_FAC_SHIFT 7  | 
113  | 0  | #define DIST_FAC_SHIFT 3  | 
114  |  | #define AS_PE_FAC_FLOAT (float)(1 << AS_PE_FAC_SHIFT)  | 
115  |  | static const INT MAX_SCF_DELTA = 60;  | 
116  |  |  | 
117  |  | static const FIXP_DBL PE_C1 = FL2FXCONST_DBL(  | 
118  |  |     3.0f / AS_PE_FAC_FLOAT); /* (log(8.0)/log(2)) >> AS_PE_FAC_SHIFT */  | 
119  |  | static const FIXP_DBL PE_C2 = FL2FXCONST_DBL(  | 
120  |  |     1.3219281f / AS_PE_FAC_FLOAT); /* (log(2.5)/log(2)) >> AS_PE_FAC_SHIFT */  | 
121  |  | static const FIXP_DBL PE_C3 = FL2FXCONST_DBL(0.5593573f); /* 1-C2/C1 */  | 
122  |  |  | 
123  |  | /*  | 
124  |  |   Function; FDKaacEnc_FDKaacEnc_CalcFormFactorChannel  | 
125  |  |  | 
126  |  |   Description: Calculates the formfactor  | 
127  |  |  | 
128  |  |   sf: scale factor of the mdct spectrum  | 
129  |  |   sfbFormFactorLdData is scaled with the factor 1/(((2^sf)^0.5) *  | 
130  |  |   (2^FORM_FAC_SHIFT))  | 
131  |  | */  | 
132  |  | static void FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(  | 
133  |  |     FIXP_DBL *RESTRICT sfbFormFactorLdData,  | 
134  | 0  |     PSY_OUT_CHANNEL *RESTRICT psyOutChan) { | 
135  | 0  |   INT j, sfb, sfbGrp;  | 
136  | 0  |   FIXP_DBL formFactor;  | 
137  |  | 
  | 
138  | 0  |   int tmp0 = psyOutChan->sfbCnt;  | 
139  | 0  |   int tmp1 = psyOutChan->maxSfbPerGroup;  | 
140  | 0  |   int step = psyOutChan->sfbPerGroup;  | 
141  | 0  |   for (sfbGrp = 0; sfbGrp < tmp0; sfbGrp += step) { | 
142  | 0  |     for (sfb = 0; sfb < tmp1; sfb++) { | 
143  | 0  |       formFactor = FL2FXCONST_DBL(0.0f);  | 
144  |  |       /* calc sum of sqrt(spec) */  | 
145  | 0  |       for (j = psyOutChan->sfbOffsets[sfbGrp + sfb];  | 
146  | 0  |            j < psyOutChan->sfbOffsets[sfbGrp + sfb + 1]; j++) { | 
147  | 0  |         formFactor +=  | 
148  | 0  |             sqrtFixp(fixp_abs(psyOutChan->mdctSpectrum[j])) >> FORM_FAC_SHIFT;  | 
149  | 0  |       }  | 
150  | 0  |       sfbFormFactorLdData[sfbGrp + sfb] = CalcLdData(formFactor);  | 
151  | 0  |     }  | 
152  |  |     /* set sfbFormFactor for sfbs with zero spec to zero. Just for debugging. */  | 
153  | 0  |     for (; sfb < psyOutChan->sfbPerGroup; sfb++) { | 
154  | 0  |       sfbFormFactorLdData[sfbGrp + sfb] = FL2FXCONST_DBL(-1.0f);  | 
155  | 0  |     }  | 
156  | 0  |   }  | 
157  | 0  | }  | 
158  |  |  | 
159  |  | /*  | 
160  |  |   Function: FDKaacEnc_CalcFormFactor  | 
161  |  |  | 
162  |  |   Description: Calls FDKaacEnc_FDKaacEnc_CalcFormFactorChannel() for each  | 
163  |  |   channel  | 
164  |  | */  | 
165  |  |  | 
166  |  | void FDKaacEnc_CalcFormFactor(QC_OUT_CHANNEL *qcOutChannel[(2)],  | 
167  |  |                               PSY_OUT_CHANNEL *psyOutChannel[(2)],  | 
168  | 0  |                               const INT nChannels) { | 
169  | 0  |   INT j;  | 
170  | 0  |   for (j = 0; j < nChannels; j++) { | 
171  | 0  |     FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(  | 
172  | 0  |         qcOutChannel[j]->sfbFormFactorLdData, psyOutChannel[j]);  | 
173  | 0  |   }  | 
174  | 0  | }  | 
175  |  |  | 
176  |  | /*  | 
177  |  |   Function: FDKaacEnc_calcSfbRelevantLines  | 
178  |  |  | 
179  |  |   Description: Calculates sfbNRelevantLines  | 
180  |  |  | 
181  |  |   sfbNRelevantLines is scaled with the factor 1/((2^FORM_FAC_SHIFT) * 2.0)  | 
182  |  | */  | 
183  |  | static void FDKaacEnc_calcSfbRelevantLines(  | 
184  |  |     const FIXP_DBL *const sfbFormFactorLdData,  | 
185  |  |     const FIXP_DBL *const sfbEnergyLdData,  | 
186  |  |     const FIXP_DBL *const sfbThresholdLdData, const INT *const sfbOffsets,  | 
187  |  |     const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup,  | 
188  | 0  |     FIXP_DBL *sfbNRelevantLines) { | 
189  | 0  |   INT sfbOffs, sfb;  | 
190  | 0  |   FIXP_DBL sfbWidthLdData;  | 
191  | 0  |   FIXP_DBL asPeFacLdData =  | 
192  | 0  |       FL2FXCONST_DBL(0.109375); /* AS_PE_FAC_SHIFT*ld64(2) */  | 
193  | 0  |   FIXP_DBL accu;  | 
194  |  |  | 
195  |  |   /* sfbNRelevantLines[i] = 2^( (sfbFormFactorLdData[i] - 0.25 *  | 
196  |  |    * (sfbEnergyLdData[i] - ld64(sfbWidth[i]/(2^7)) - AS_PE_FAC_SHIFT*ld64(2)) *  | 
197  |  |    * 64); */  | 
198  |  | 
  | 
199  | 0  |   FDKmemclear(sfbNRelevantLines, sfbCnt * sizeof(FIXP_DBL));  | 
200  |  | 
  | 
201  | 0  |   for (sfbOffs = 0; sfbOffs < sfbCnt; sfbOffs += sfbPerGroup) { | 
202  | 0  |     for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { | 
203  |  |       /* calc sum of sqrt(spec) */  | 
204  | 0  |       if ((FIXP_DBL)sfbEnergyLdData[sfbOffs + sfb] >  | 
205  | 0  |           (FIXP_DBL)sfbThresholdLdData[sfbOffs + sfb]) { | 
206  | 0  |         INT sfbWidth =  | 
207  | 0  |             sfbOffsets[sfbOffs + sfb + 1] - sfbOffsets[sfbOffs + sfb];  | 
208  |  |  | 
209  |  |         /* avgFormFactorLdData =  | 
210  |  |          * sqrtFixp(sqrtFixp(sfbEnergyLdData[sfbOffs+sfb]/sfbWidth)); */  | 
211  |  |         /* sfbNRelevantLines[sfbOffs+sfb] = sfbFormFactor[sfbOffs+sfb] /  | 
212  |  |          * avgFormFactorLdData; */  | 
213  | 0  |         sfbWidthLdData =  | 
214  | 0  |             (FIXP_DBL)(sfbWidth << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));  | 
215  | 0  |         sfbWidthLdData = CalcLdData(sfbWidthLdData);  | 
216  |  | 
  | 
217  | 0  |         accu = sfbEnergyLdData[sfbOffs + sfb] - sfbWidthLdData - asPeFacLdData;  | 
218  | 0  |         accu = sfbFormFactorLdData[sfbOffs + sfb] - (accu >> 2);  | 
219  |  | 
  | 
220  | 0  |         sfbNRelevantLines[sfbOffs + sfb] = CalcInvLdData(accu) >> 1;  | 
221  | 0  |       }  | 
222  | 0  |     }  | 
223  | 0  |   }  | 
224  | 0  | }  | 
225  |  |  | 
226  |  | /*  | 
227  |  |   Function: FDKaacEnc_countSingleScfBits  | 
228  |  |  | 
229  |  |   Description:  | 
230  |  |  | 
231  |  |   scfBitsFract is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))  | 
232  |  | */  | 
233  |  | static FIXP_DBL FDKaacEnc_countSingleScfBits(INT scf, INT scfLeft,  | 
234  | 0  |                                              INT scfRight) { | 
235  | 0  |   FIXP_DBL scfBitsFract;  | 
236  |  | 
  | 
237  | 0  |   scfBitsFract = (FIXP_DBL)(FDKaacEnc_bitCountScalefactorDelta(scfLeft - scf) +  | 
238  | 0  |                             FDKaacEnc_bitCountScalefactorDelta(scf - scfRight));  | 
239  |  | 
  | 
240  | 0  |   scfBitsFract = scfBitsFract << (DFRACT_BITS - 1 - (2 * AS_PE_FAC_SHIFT));  | 
241  |  | 
  | 
242  | 0  |   return scfBitsFract; /* output scaled by 1/(2^(2*AS_PE_FAC)) */  | 
243  | 0  | }  | 
244  |  |  | 
245  |  | /*  | 
246  |  |   Function: FDKaacEnc_calcSingleSpecPe  | 
247  |  |  | 
248  |  |   specPe is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))  | 
249  |  | */  | 
250  |  | static FIXP_DBL FDKaacEnc_calcSingleSpecPe(INT scf, FIXP_DBL sfbConstPePart,  | 
251  | 0  |                                            FIXP_DBL nLines) { | 
252  | 0  |   FIXP_DBL specPe = FL2FXCONST_DBL(0.0f);  | 
253  | 0  |   FIXP_DBL ldRatio;  | 
254  | 0  |   FIXP_DBL scfFract;  | 
255  |  | 
  | 
256  | 0  |   scfFract = (FIXP_DBL)(scf << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));  | 
257  |  | 
  | 
258  | 0  |   ldRatio = sfbConstPePart - fMult(FL2FXCONST_DBL(0.375f), scfFract);  | 
259  |  | 
  | 
260  | 0  |   if (ldRatio >= PE_C1) { | 
261  | 0  |     specPe = fMult(FL2FXCONST_DBL(0.7f), fMult(nLines, ldRatio));  | 
262  | 0  |   } else { | 
263  | 0  |     specPe = fMult(FL2FXCONST_DBL(0.7f),  | 
264  | 0  |                    fMult(nLines, (PE_C2 + fMult(PE_C3, ldRatio))));  | 
265  | 0  |   }  | 
266  |  | 
  | 
267  | 0  |   return specPe; /* output scaled by 1/(2^(2*AS_PE_FAC)) */  | 
268  | 0  | }  | 
269  |  |  | 
270  |  | /*  | 
271  |  |   Function: FDKaacEnc_countScfBitsDiff  | 
272  |  |  | 
273  |  |   scfBitsDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))  | 
274  |  | */  | 
275  |  | static FIXP_DBL FDKaacEnc_countScfBitsDiff(INT *scfOld, INT *scfNew, INT sfbCnt,  | 
276  | 0  |                                            INT startSfb, INT stopSfb) { | 
277  | 0  |   FIXP_DBL scfBitsFract;  | 
278  | 0  |   INT scfBitsDiff = 0;  | 
279  | 0  |   INT sfb = 0, sfbLast;  | 
280  | 0  |   INT sfbPrev, sfbNext;  | 
281  |  |  | 
282  |  |   /* search for first relevant sfb */  | 
283  | 0  |   sfbLast = startSfb;  | 
284  | 0  |   while ((sfbLast < stopSfb) && (scfOld[sfbLast] == FDK_INT_MIN)) sfbLast++;  | 
285  |  |   /* search for previous relevant sfb and count diff */  | 
286  | 0  |   sfbPrev = startSfb - 1;  | 
287  | 0  |   while ((sfbPrev >= 0) && (scfOld[sfbPrev] == FDK_INT_MIN)) sfbPrev--;  | 
288  | 0  |   if (sfbPrev >= 0)  | 
289  | 0  |     scfBitsDiff +=  | 
290  | 0  |         FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbPrev] - scfNew[sfbLast]) -  | 
291  | 0  |         FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbPrev] - scfOld[sfbLast]);  | 
292  |  |   /* now loop through all sfbs and count diffs of relevant sfbs */  | 
293  | 0  |   for (sfb = sfbLast + 1; sfb < stopSfb; sfb++) { | 
294  | 0  |     if (scfOld[sfb] != FDK_INT_MIN) { | 
295  | 0  |       scfBitsDiff +=  | 
296  | 0  |           FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast] - scfNew[sfb]) -  | 
297  | 0  |           FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast] - scfOld[sfb]);  | 
298  | 0  |       sfbLast = sfb;  | 
299  | 0  |     }  | 
300  | 0  |   }  | 
301  |  |   /* search for next relevant sfb and count diff */  | 
302  | 0  |   sfbNext = stopSfb;  | 
303  | 0  |   while ((sfbNext < sfbCnt) && (scfOld[sfbNext] == FDK_INT_MIN)) sfbNext++;  | 
304  | 0  |   if (sfbNext < sfbCnt)  | 
305  | 0  |     scfBitsDiff +=  | 
306  | 0  |         FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbLast] - scfNew[sfbNext]) -  | 
307  | 0  |         FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbLast] - scfOld[sfbNext]);  | 
308  |  | 
  | 
309  | 0  |   scfBitsFract =  | 
310  | 0  |       (FIXP_DBL)(scfBitsDiff << (DFRACT_BITS - 1 - (2 * AS_PE_FAC_SHIFT)));  | 
311  |  | 
  | 
312  | 0  |   return scfBitsFract;  | 
313  | 0  | }  | 
314  |  |  | 
315  |  | /*  | 
316  |  |   Function: FDKaacEnc_calcSpecPeDiff  | 
317  |  |  | 
318  |  |   specPeDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT))  | 
319  |  | */  | 
320  |  | static FIXP_DBL FDKaacEnc_calcSpecPeDiff(  | 
321  |  |     PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, INT *scfOld,  | 
322  |  |     INT *scfNew, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,  | 
323  | 0  |     FIXP_DBL *sfbNRelevantLines, INT startSfb, INT stopSfb) { | 
324  | 0  |   FIXP_DBL specPeDiff = FL2FXCONST_DBL(0.0f);  | 
325  | 0  |   FIXP_DBL scfFract = FL2FXCONST_DBL(0.0f);  | 
326  | 0  |   INT sfb;  | 
327  |  |  | 
328  |  |   /* loop through all sfbs and count pe difference */  | 
329  | 0  |   for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
330  | 0  |     if (scfOld[sfb] != FDK_INT_MIN) { | 
331  | 0  |       FIXP_DBL ldRatioOld, ldRatioNew, pOld, pNew;  | 
332  |  |  | 
333  |  |       /* sfbConstPePart[sfb] = (float)log(psyOutChan->sfbEnergy[sfb] * 6.75f /  | 
334  |  |        * sfbFormFactor[sfb]) * LOG2_1; */  | 
335  |  |       /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for  | 
336  |  |        * log2 */  | 
337  |  |       /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */  | 
338  | 0  |       if (sfbConstPePart[sfb] == (FIXP_DBL)FDK_INT_MIN)  | 
339  | 0  |         sfbConstPePart[sfb] =  | 
340  | 0  |             ((psyOutChan->sfbEnergyLdData[sfb] - sfbFormFactorLdData[sfb] -  | 
341  | 0  |               FL2FXCONST_DBL(0.09375f)) >>  | 
342  | 0  |              1) +  | 
343  | 0  |             FL2FXCONST_DBL(0.02152255861f);  | 
344  |  | 
  | 
345  | 0  |       scfFract = (FIXP_DBL)(scfOld[sfb] << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));  | 
346  | 0  |       ldRatioOld =  | 
347  | 0  |           sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f), scfFract);  | 
348  |  | 
  | 
349  | 0  |       scfFract = (FIXP_DBL)(scfNew[sfb] << (DFRACT_BITS - 1 - AS_PE_FAC_SHIFT));  | 
350  | 0  |       ldRatioNew =  | 
351  | 0  |           sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f), scfFract);  | 
352  |  | 
  | 
353  | 0  |       if (ldRatioOld >= PE_C1)  | 
354  | 0  |         pOld = ldRatioOld;  | 
355  | 0  |       else  | 
356  | 0  |         pOld = PE_C2 + fMult(PE_C3, ldRatioOld);  | 
357  |  | 
  | 
358  | 0  |       if (ldRatioNew >= PE_C1)  | 
359  | 0  |         pNew = ldRatioNew;  | 
360  | 0  |       else  | 
361  | 0  |         pNew = PE_C2 + fMult(PE_C3, ldRatioNew);  | 
362  |  | 
  | 
363  | 0  |       specPeDiff += fMult(FL2FXCONST_DBL(0.7f),  | 
364  | 0  |                           fMult(sfbNRelevantLines[sfb], (pNew - pOld)));  | 
365  | 0  |     }  | 
366  | 0  |   }  | 
367  |  | 
  | 
368  | 0  |   return specPeDiff;  | 
369  | 0  | }  | 
370  |  |  | 
371  |  | /*  | 
372  |  |   Function: FDKaacEnc_improveScf  | 
373  |  |  | 
374  |  |   Description: Calculate the distortion by quantization and inverse quantization  | 
375  |  |   of the spectrum with various scalefactors. The scalefactor which provides the  | 
376  |  |   best results will be used.  | 
377  |  | */  | 
378  |  | static INT FDKaacEnc_improveScf(const FIXP_DBL *spec, SHORT *quantSpec,  | 
379  |  |                                 SHORT *quantSpecTmp, INT sfbWidth,  | 
380  |  |                                 FIXP_DBL threshLdData, INT scf, INT minScf,  | 
381  |  |                                 FIXP_DBL *distLdData, INT *minScfCalculated,  | 
382  | 0  |                                 INT dZoneQuantEnable) { | 
383  | 0  |   FIXP_DBL sfbDistLdData;  | 
384  | 0  |   INT scfBest = scf;  | 
385  | 0  |   INT k;  | 
386  | 0  |   FIXP_DBL distFactorLdData = FL2FXCONST_DBL(-0.0050301265); /* ld64(1/1.25) */  | 
387  |  |  | 
388  |  |   /* calc real distortion */  | 
389  | 0  |   sfbDistLdData =  | 
390  | 0  |       FDKaacEnc_calcSfbDist(spec, quantSpec, sfbWidth, scf, dZoneQuantEnable);  | 
391  | 0  |   *minScfCalculated = scf;  | 
392  |  |   /* nmr > 1.25 -> try to improve nmr */  | 
393  | 0  |   if (sfbDistLdData > (threshLdData - distFactorLdData)) { | 
394  | 0  |     INT scfEstimated = scf;  | 
395  | 0  |     FIXP_DBL sfbDistBestLdData = sfbDistLdData;  | 
396  | 0  |     INT cnt;  | 
397  |  |     /* improve by bigger scf ? */  | 
398  | 0  |     cnt = 0;  | 
399  |  | 
  | 
400  | 0  |     while ((sfbDistLdData > (threshLdData - distFactorLdData)) &&  | 
401  | 0  |            (cnt++ < UPCOUNT_LIMIT)) { | 
402  | 0  |       scf++;  | 
403  | 0  |       sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,  | 
404  | 0  |                                             dZoneQuantEnable);  | 
405  |  | 
  | 
406  | 0  |       if (sfbDistLdData < sfbDistBestLdData) { | 
407  | 0  |         scfBest = scf;  | 
408  | 0  |         sfbDistBestLdData = sfbDistLdData;  | 
409  | 0  |         for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];  | 
410  | 0  |       }  | 
411  | 0  |     }  | 
412  |  |     /* improve by smaller scf ? */  | 
413  | 0  |     cnt = 0;  | 
414  | 0  |     scf = scfEstimated;  | 
415  | 0  |     sfbDistLdData = sfbDistBestLdData;  | 
416  | 0  |     while ((sfbDistLdData > (threshLdData - distFactorLdData)) && (cnt++ < 1) &&  | 
417  | 0  |            (scf > minScf)) { | 
418  | 0  |       scf--;  | 
419  | 0  |       sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,  | 
420  | 0  |                                             dZoneQuantEnable);  | 
421  |  | 
  | 
422  | 0  |       if (sfbDistLdData < sfbDistBestLdData) { | 
423  | 0  |         scfBest = scf;  | 
424  | 0  |         sfbDistBestLdData = sfbDistLdData;  | 
425  | 0  |         for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];  | 
426  | 0  |       }  | 
427  | 0  |       *minScfCalculated = scf;  | 
428  | 0  |     }  | 
429  | 0  |     *distLdData = sfbDistBestLdData;  | 
430  | 0  |   } else { /* nmr <= 1.25 -> try to find bigger scf to use less bits */ | 
431  | 0  |     FIXP_DBL sfbDistBestLdData = sfbDistLdData;  | 
432  | 0  |     FIXP_DBL sfbDistAllowedLdData =  | 
433  | 0  |         fixMin(sfbDistLdData - distFactorLdData, threshLdData);  | 
434  | 0  |     int cnt;  | 
435  | 0  |     for (cnt = 0; cnt < UPCOUNT_LIMIT; cnt++) { | 
436  | 0  |       scf++;  | 
437  | 0  |       sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf,  | 
438  | 0  |                                             dZoneQuantEnable);  | 
439  |  | 
  | 
440  | 0  |       if (sfbDistLdData < sfbDistAllowedLdData) { | 
441  | 0  |         *minScfCalculated = scfBest + 1;  | 
442  | 0  |         scfBest = scf;  | 
443  | 0  |         sfbDistBestLdData = sfbDistLdData;  | 
444  | 0  |         for (k = 0; k < sfbWidth; k++) quantSpec[k] = quantSpecTmp[k];  | 
445  | 0  |       }  | 
446  | 0  |     }  | 
447  | 0  |     *distLdData = sfbDistBestLdData;  | 
448  | 0  |   }  | 
449  |  |  | 
450  |  |   /* return best scalefactor */  | 
451  | 0  |   return scfBest;  | 
452  | 0  | }  | 
453  |  |  | 
454  |  | /*  | 
455  |  |   Function: FDKaacEnc_assimilateSingleScf  | 
456  |  |  | 
457  |  | */  | 
458  |  | static void FDKaacEnc_assimilateSingleScf(  | 
459  |  |     const PSY_OUT_CHANNEL *psyOutChan, const QC_OUT_CHANNEL *qcOutChannel,  | 
460  |  |     SHORT *quantSpec, SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf,  | 
461  |  |     const INT *minScf, FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart,  | 
462  |  |     const FIXP_DBL *sfbFormFactorLdData, const FIXP_DBL *sfbNRelevantLines,  | 
463  | 0  |     INT *minScfCalculated, INT restartOnSuccess) { | 
464  | 0  |   INT sfbLast, sfbAct, sfbNext;  | 
465  | 0  |   INT scfAct, *scfLast, *scfNext, scfMin, scfMax;  | 
466  | 0  |   INT sfbWidth, sfbOffs;  | 
467  | 0  |   FIXP_DBL enLdData;  | 
468  | 0  |   FIXP_DBL sfbPeOld, sfbPeNew;  | 
469  | 0  |   FIXP_DBL sfbDistNew;  | 
470  | 0  |   INT i, k;  | 
471  | 0  |   INT success = 0;  | 
472  | 0  |   FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);  | 
473  | 0  |   FIXP_DBL deltaPeNew, deltaPeTmp;  | 
474  | 0  |   INT prevScfLast[MAX_GROUPED_SFB], prevScfNext[MAX_GROUPED_SFB];  | 
475  | 0  |   FIXP_DBL deltaPeLast[MAX_GROUPED_SFB];  | 
476  | 0  |   INT updateMinScfCalculated;  | 
477  |  | 
  | 
478  | 0  |   for (i = 0; i < psyOutChan->sfbCnt; i++) { | 
479  | 0  |     prevScfLast[i] = FDK_INT_MAX;  | 
480  | 0  |     prevScfNext[i] = FDK_INT_MAX;  | 
481  | 0  |     deltaPeLast[i] = (FIXP_DBL)FDK_INT_MAX;  | 
482  | 0  |   }  | 
483  |  | 
  | 
484  | 0  |   sfbLast = -1;  | 
485  | 0  |   sfbAct = -1;  | 
486  | 0  |   sfbNext = -1;  | 
487  | 0  |   scfLast = 0;  | 
488  | 0  |   scfNext = 0;  | 
489  | 0  |   scfMin = FDK_INT_MAX;  | 
490  | 0  |   scfMax = FDK_INT_MAX;  | 
491  | 0  |   do { | 
492  |  |     /* search for new relevant sfb */  | 
493  | 0  |     sfbNext++;  | 
494  | 0  |     while ((sfbNext < psyOutChan->sfbCnt) && (scf[sfbNext] == FDK_INT_MIN))  | 
495  | 0  |       sfbNext++;  | 
496  | 0  |     if ((sfbLast >= 0) && (sfbAct >= 0) && (sfbNext < psyOutChan->sfbCnt)) { | 
497  |  |       /* relevant scfs to the left and to the right */  | 
498  | 0  |       scfAct = scf[sfbAct];  | 
499  | 0  |       scfLast = scf + sfbLast;  | 
500  | 0  |       scfNext = scf + sfbNext;  | 
501  | 0  |       scfMin = fixMin(*scfLast, *scfNext);  | 
502  | 0  |       scfMax = fixMax(*scfLast, *scfNext);  | 
503  | 0  |     } else if ((sfbLast == -1) && (sfbAct >= 0) &&  | 
504  | 0  |                (sfbNext < psyOutChan->sfbCnt)) { | 
505  |  |       /* first relevant scf */  | 
506  | 0  |       scfAct = scf[sfbAct];  | 
507  | 0  |       scfLast = &scfAct;  | 
508  | 0  |       scfNext = scf + sfbNext;  | 
509  | 0  |       scfMin = *scfNext;  | 
510  | 0  |       scfMax = *scfNext;  | 
511  | 0  |     } else if ((sfbLast >= 0) && (sfbAct >= 0) &&  | 
512  | 0  |                (sfbNext == psyOutChan->sfbCnt)) { | 
513  |  |       /* last relevant scf */  | 
514  | 0  |       scfAct = scf[sfbAct];  | 
515  | 0  |       scfLast = scf + sfbLast;  | 
516  | 0  |       scfNext = &scfAct;  | 
517  | 0  |       scfMin = *scfLast;  | 
518  | 0  |       scfMax = *scfLast;  | 
519  | 0  |     }  | 
520  | 0  |     if (sfbAct >= 0) scfMin = fixMax(scfMin, minScf[sfbAct]);  | 
521  |  | 
  | 
522  | 0  |     if ((sfbAct >= 0) && (sfbLast >= 0 || sfbNext < psyOutChan->sfbCnt) &&  | 
523  | 0  |         (scfAct > scfMin) && (scfAct <= scfMin + MAX_SCF_DELTA) &&  | 
524  | 0  |         (scfAct >= scfMax - MAX_SCF_DELTA) &&  | 
525  | 0  |         (scfAct <=  | 
526  | 0  |          fixMin(scfMin, fixMin(*scfLast, *scfNext)) + MAX_SCF_DELTA) &&  | 
527  | 0  |         (*scfLast != prevScfLast[sfbAct] || *scfNext != prevScfNext[sfbAct] ||  | 
528  | 0  |          deltaPe < deltaPeLast[sfbAct])) { | 
529  |  |       /* bigger than neighbouring scf found, try to use smaller scf */  | 
530  | 0  |       success = 0;  | 
531  |  | 
  | 
532  | 0  |       sfbWidth =  | 
533  | 0  |           psyOutChan->sfbOffsets[sfbAct + 1] - psyOutChan->sfbOffsets[sfbAct];  | 
534  | 0  |       sfbOffs = psyOutChan->sfbOffsets[sfbAct];  | 
535  |  |  | 
536  |  |       /* estimate required bits for actual scf */  | 
537  | 0  |       enLdData = qcOutChannel->sfbEnergyLdData[sfbAct];  | 
538  |  |  | 
539  |  |       /* sfbConstPePart[sfbAct] = (float)log(6.75f*en/sfbFormFactor[sfbAct]) *  | 
540  |  |        * LOG2_1; */  | 
541  |  |       /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for  | 
542  |  |        * log2 */  | 
543  |  |       /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */  | 
544  | 0  |       if (sfbConstPePart[sfbAct] == (FIXP_DBL)FDK_INT_MIN) { | 
545  | 0  |         sfbConstPePart[sfbAct] = ((enLdData - sfbFormFactorLdData[sfbAct] -  | 
546  | 0  |                                    FL2FXCONST_DBL(0.09375f)) >>  | 
547  | 0  |                                   1) +  | 
548  | 0  |                                  FL2FXCONST_DBL(0.02152255861f);  | 
549  | 0  |       }  | 
550  |  | 
  | 
551  | 0  |       sfbPeOld = FDKaacEnc_calcSingleSpecPe(scfAct, sfbConstPePart[sfbAct],  | 
552  | 0  |                                             sfbNRelevantLines[sfbAct]) +  | 
553  | 0  |                  FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);  | 
554  |  | 
  | 
555  | 0  |       deltaPeNew = deltaPe;  | 
556  | 0  |       updateMinScfCalculated = 1;  | 
557  |  | 
  | 
558  | 0  |       do { | 
559  |  |         /* estimate required bits for smaller scf */  | 
560  | 0  |         scfAct--;  | 
561  |  |         /* check only if the same check was not done before */  | 
562  | 0  |         if (scfAct < minScfCalculated[sfbAct] &&  | 
563  | 0  |             scfAct >= scfMax - MAX_SCF_DELTA) { | 
564  |  |           /* estimate required bits for new scf */  | 
565  | 0  |           sfbPeNew = FDKaacEnc_calcSingleSpecPe(scfAct, sfbConstPePart[sfbAct],  | 
566  | 0  |                                                 sfbNRelevantLines[sfbAct]) +  | 
567  | 0  |                      FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext);  | 
568  |  |  | 
569  |  |           /* use new scf if no increase in pe and  | 
570  |  |              quantization error is smaller */  | 
571  | 0  |           deltaPeTmp = deltaPe + sfbPeNew - sfbPeOld;  | 
572  |  |           /* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */  | 
573  | 0  |           if (deltaPeTmp < FL2FXCONST_DBL(0.0006103515625f)) { | 
574  |  |             /* distortion of new scf */  | 
575  | 0  |             sfbDistNew = FDKaacEnc_calcSfbDist(  | 
576  | 0  |                 qcOutChannel->mdctSpectrum + sfbOffs, quantSpecTmp + sfbOffs,  | 
577  | 0  |                 sfbWidth, scfAct, dZoneQuantEnable);  | 
578  |  | 
  | 
579  | 0  |             if (sfbDistNew < sfbDist[sfbAct]) { | 
580  |  |               /* success, replace scf by new one */  | 
581  | 0  |               scf[sfbAct] = scfAct;  | 
582  | 0  |               sfbDist[sfbAct] = sfbDistNew;  | 
583  |  | 
  | 
584  | 0  |               for (k = 0; k < sfbWidth; k++)  | 
585  | 0  |                 quantSpec[sfbOffs + k] = quantSpecTmp[sfbOffs + k];  | 
586  |  | 
  | 
587  | 0  |               deltaPeNew = deltaPeTmp;  | 
588  | 0  |               success = 1;  | 
589  | 0  |             }  | 
590  |  |             /* mark as already checked */  | 
591  | 0  |             if (updateMinScfCalculated) minScfCalculated[sfbAct] = scfAct;  | 
592  | 0  |           } else { | 
593  |  |             /* from this scf value on not all new values have been checked */  | 
594  | 0  |             updateMinScfCalculated = 0;  | 
595  | 0  |           }  | 
596  | 0  |         }  | 
597  | 0  |       } while (scfAct > scfMin);  | 
598  |  | 
  | 
599  | 0  |       deltaPe = deltaPeNew;  | 
600  |  |  | 
601  |  |       /* save parameters to avoid multiple computations of the same sfb */  | 
602  | 0  |       prevScfLast[sfbAct] = *scfLast;  | 
603  | 0  |       prevScfNext[sfbAct] = *scfNext;  | 
604  | 0  |       deltaPeLast[sfbAct] = deltaPe;  | 
605  | 0  |     }  | 
606  |  | 
  | 
607  | 0  |     if (success && restartOnSuccess) { | 
608  |  |       /* start again at first sfb */  | 
609  | 0  |       sfbLast = -1;  | 
610  | 0  |       sfbAct = -1;  | 
611  | 0  |       sfbNext = -1;  | 
612  | 0  |       scfLast = 0;  | 
613  | 0  |       scfNext = 0;  | 
614  | 0  |       scfMin = FDK_INT_MAX;  | 
615  | 0  |       scfMax = FDK_INT_MAX;  | 
616  | 0  |       success = 0;  | 
617  | 0  |     } else { | 
618  |  |       /* shift sfbs for next band */  | 
619  | 0  |       sfbLast = sfbAct;  | 
620  | 0  |       sfbAct = sfbNext;  | 
621  | 0  |     }  | 
622  | 0  |   } while (sfbNext < psyOutChan->sfbCnt);  | 
623  | 0  | }  | 
624  |  |  | 
625  |  | /*  | 
626  |  |   Function: FDKaacEnc_assimilateMultipleScf  | 
627  |  |  | 
628  |  | */  | 
629  |  | static void FDKaacEnc_assimilateMultipleScf(  | 
630  |  |     PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, SHORT *quantSpec,  | 
631  |  |     SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf, const INT *minScf,  | 
632  |  |     FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,  | 
633  | 0  |     FIXP_DBL *sfbNRelevantLines) { | 
634  | 0  |   INT sfb, startSfb, stopSfb;  | 
635  | 0  |   INT scfTmp[MAX_GROUPED_SFB], scfMin, scfMax, scfAct;  | 
636  | 0  |   INT possibleRegionFound;  | 
637  | 0  |   INT sfbWidth, sfbOffs, i, k;  | 
638  | 0  |   FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], distOldSum, distNewSum;  | 
639  | 0  |   INT deltaScfBits;  | 
640  | 0  |   FIXP_DBL deltaSpecPe;  | 
641  | 0  |   FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);  | 
642  | 0  |   FIXP_DBL deltaPeNew;  | 
643  | 0  |   INT sfbCnt = psyOutChan->sfbCnt;  | 
644  |  |  | 
645  |  |   /* calc min and max scalfactors */  | 
646  | 0  |   scfMin = FDK_INT_MAX;  | 
647  | 0  |   scfMax = FDK_INT_MIN;  | 
648  | 0  |   for (sfb = 0; sfb < sfbCnt; sfb++) { | 
649  | 0  |     if (scf[sfb] != FDK_INT_MIN) { | 
650  | 0  |       scfMin = fixMin(scfMin, scf[sfb]);  | 
651  | 0  |       scfMax = fixMax(scfMax, scf[sfb]);  | 
652  | 0  |     }  | 
653  | 0  |   }  | 
654  |  | 
  | 
655  | 0  |   if (scfMax != FDK_INT_MIN && scfMax <= scfMin + MAX_SCF_DELTA) { | 
656  | 0  |     scfAct = scfMax;  | 
657  |  | 
  | 
658  | 0  |     do { | 
659  |  |       /* try smaller scf */  | 
660  | 0  |       scfAct--;  | 
661  | 0  |       for (i = 0; i < MAX_GROUPED_SFB; i++) scfTmp[i] = scf[i];  | 
662  | 0  |       stopSfb = 0;  | 
663  | 0  |       do { | 
664  |  |         /* search for region where all scfs are bigger than scfAct */  | 
665  | 0  |         sfb = stopSfb;  | 
666  | 0  |         while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN || scf[sfb] <= scfAct))  | 
667  | 0  |           sfb++;  | 
668  | 0  |         startSfb = sfb;  | 
669  | 0  |         sfb++;  | 
670  | 0  |         while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN || scf[sfb] > scfAct))  | 
671  | 0  |           sfb++;  | 
672  | 0  |         stopSfb = sfb;  | 
673  |  |  | 
674  |  |         /* check if in all sfb of a valid region scfAct >= minScf[sfb] */  | 
675  | 0  |         possibleRegionFound = 0;  | 
676  | 0  |         if (startSfb < sfbCnt) { | 
677  | 0  |           possibleRegionFound = 1;  | 
678  | 0  |           for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
679  | 0  |             if (scf[sfb] != FDK_INT_MIN)  | 
680  | 0  |               if (scfAct < minScf[sfb]) { | 
681  | 0  |                 possibleRegionFound = 0;  | 
682  | 0  |                 break;  | 
683  | 0  |               }  | 
684  | 0  |           }  | 
685  | 0  |         }  | 
686  |  | 
  | 
687  | 0  |         if (possibleRegionFound) { /* region found */ | 
688  |  |  | 
689  |  |           /* replace scfs in region by scfAct */  | 
690  | 0  |           for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
691  | 0  |             if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfAct;  | 
692  | 0  |           }  | 
693  |  |  | 
694  |  |           /* estimate change in bit demand for new scfs */  | 
695  | 0  |           deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,  | 
696  | 0  |                                                     startSfb, stopSfb);  | 
697  |  | 
  | 
698  | 0  |           deltaSpecPe = FDKaacEnc_calcSpecPeDiff(  | 
699  | 0  |               psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,  | 
700  | 0  |               sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);  | 
701  |  | 
  | 
702  | 0  |           deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;  | 
703  |  |  | 
704  |  |           /* new bit demand small enough ? */  | 
705  |  |           /* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */  | 
706  | 0  |           if (deltaPeNew < FL2FXCONST_DBL(0.0006103515625f)) { | 
707  |  |             /* quantize and calc sum of new distortion */  | 
708  | 0  |             distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);  | 
709  | 0  |             for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
710  | 0  |               if (scfTmp[sfb] != FDK_INT_MIN) { | 
711  | 0  |                 distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;  | 
712  |  | 
  | 
713  | 0  |                 sfbWidth = psyOutChan->sfbOffsets[sfb + 1] -  | 
714  | 0  |                            psyOutChan->sfbOffsets[sfb];  | 
715  | 0  |                 sfbOffs = psyOutChan->sfbOffsets[sfb];  | 
716  |  | 
  | 
717  | 0  |                 sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(  | 
718  | 0  |                     qcOutChannel->mdctSpectrum + sfbOffs,  | 
719  | 0  |                     quantSpecTmp + sfbOffs, sfbWidth, scfAct, dZoneQuantEnable);  | 
720  |  | 
  | 
721  | 0  |                 if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) { | 
722  |  |                   /* no improvement, skip further dist. calculations */  | 
723  | 0  |                   distNewSum = distOldSum << 1;  | 
724  | 0  |                   break;  | 
725  | 0  |                 }  | 
726  | 0  |                 distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;  | 
727  | 0  |               }  | 
728  | 0  |             }  | 
729  |  |             /* distortion smaller ? -> use new scalefactors */  | 
730  | 0  |             if (distNewSum < distOldSum) { | 
731  | 0  |               deltaPe = deltaPeNew;  | 
732  | 0  |               for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
733  | 0  |                 if (scf[sfb] != FDK_INT_MIN) { | 
734  | 0  |                   sfbWidth = psyOutChan->sfbOffsets[sfb + 1] -  | 
735  | 0  |                              psyOutChan->sfbOffsets[sfb];  | 
736  | 0  |                   sfbOffs = psyOutChan->sfbOffsets[sfb];  | 
737  | 0  |                   scf[sfb] = scfAct;  | 
738  | 0  |                   sfbDist[sfb] = sfbDistNew[sfb];  | 
739  |  | 
  | 
740  | 0  |                   for (k = 0; k < sfbWidth; k++)  | 
741  | 0  |                     quantSpec[sfbOffs + k] = quantSpecTmp[sfbOffs + k];  | 
742  | 0  |                 }  | 
743  | 0  |               }  | 
744  | 0  |             }  | 
745  | 0  |           }  | 
746  | 0  |         }  | 
747  |  | 
  | 
748  | 0  |       } while (stopSfb <= sfbCnt);  | 
749  |  | 
  | 
750  | 0  |     } while (scfAct > scfMin);  | 
751  | 0  |   }  | 
752  | 0  | }  | 
753  |  |  | 
754  |  | /*  | 
755  |  |   Function: FDKaacEnc_FDKaacEnc_assimilateMultipleScf2  | 
756  |  |  | 
757  |  | */  | 
758  |  | static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(  | 
759  |  |     PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, SHORT *quantSpec,  | 
760  |  |     SHORT *quantSpecTmp, INT dZoneQuantEnable, INT *scf, const INT *minScf,  | 
761  |  |     FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData,  | 
762  | 0  |     FIXP_DBL *sfbNRelevantLines) { | 
763  | 0  |   INT sfb, startSfb, stopSfb;  | 
764  | 0  |   INT scfTmp[MAX_GROUPED_SFB], scfAct, scfNew;  | 
765  | 0  |   INT scfPrev, scfNext, scfPrevNextMin, scfPrevNextMax, scfLo, scfHi;  | 
766  | 0  |   INT scfMin, scfMax;  | 
767  | 0  |   INT *sfbOffs = psyOutChan->sfbOffsets;  | 
768  | 0  |   FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], sfbDistMax[MAX_GROUPED_SFB];  | 
769  | 0  |   FIXP_DBL distOldSum, distNewSum;  | 
770  | 0  |   INT deltaScfBits;  | 
771  | 0  |   FIXP_DBL deltaSpecPe;  | 
772  | 0  |   FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f);  | 
773  | 0  |   FIXP_DBL deltaPeNew = FL2FXCONST_DBL(0.0f);  | 
774  | 0  |   INT sfbCnt = psyOutChan->sfbCnt;  | 
775  | 0  |   INT bSuccess, bCheckScf;  | 
776  | 0  |   INT i, k;  | 
777  |  |  | 
778  |  |   /* calc min and max scalfactors */  | 
779  | 0  |   scfMin = FDK_INT_MAX;  | 
780  | 0  |   scfMax = FDK_INT_MIN;  | 
781  | 0  |   for (sfb = 0; sfb < sfbCnt; sfb++) { | 
782  | 0  |     if (scf[sfb] != FDK_INT_MIN) { | 
783  | 0  |       scfMin = fixMin(scfMin, scf[sfb]);  | 
784  | 0  |       scfMax = fixMax(scfMax, scf[sfb]);  | 
785  | 0  |     }  | 
786  | 0  |   }  | 
787  |  | 
  | 
788  | 0  |   stopSfb = 0;  | 
789  | 0  |   scfAct = FDK_INT_MIN;  | 
790  | 0  |   do { | 
791  |  |     /* search for region with same scf values scfAct */  | 
792  | 0  |     scfPrev = scfAct;  | 
793  |  | 
  | 
794  | 0  |     sfb = stopSfb;  | 
795  | 0  |     while (sfb < sfbCnt && (scf[sfb] == FDK_INT_MIN)) sfb++;  | 
796  | 0  |     startSfb = sfb;  | 
797  | 0  |     scfAct = scf[startSfb];  | 
798  | 0  |     sfb++;  | 
799  | 0  |     while (sfb < sfbCnt &&  | 
800  | 0  |            ((scf[sfb] == FDK_INT_MIN) || (scf[sfb] == scf[startSfb])))  | 
801  | 0  |       sfb++;  | 
802  | 0  |     stopSfb = sfb;  | 
803  |  | 
  | 
804  | 0  |     if (stopSfb < sfbCnt)  | 
805  | 0  |       scfNext = scf[stopSfb];  | 
806  | 0  |     else  | 
807  | 0  |       scfNext = scfAct;  | 
808  |  | 
  | 
809  | 0  |     if (scfPrev == FDK_INT_MIN) scfPrev = scfAct;  | 
810  |  | 
  | 
811  | 0  |     scfPrevNextMax = fixMax(scfPrev, scfNext);  | 
812  | 0  |     scfPrevNextMin = fixMin(scfPrev, scfNext);  | 
813  |  |  | 
814  |  |     /* try to reduce bits by checking scf values in the range  | 
815  |  |        scf[startSfb]...scfHi */  | 
816  | 0  |     scfHi = fixMax(scfPrevNextMax, scfAct);  | 
817  |  |     /* try to find a better solution by reducing the scf difference to  | 
818  |  |        the nearest possible lower scf */  | 
819  | 0  |     if (scfPrevNextMax >= scfAct)  | 
820  | 0  |       scfLo = fixMin(scfAct, scfPrevNextMin);  | 
821  | 0  |     else  | 
822  | 0  |       scfLo = scfPrevNextMax;  | 
823  |  | 
  | 
824  | 0  |     if (startSfb < sfbCnt &&  | 
825  | 0  |         scfHi - scfLo <= MAX_SCF_DELTA) { /* region found */ | 
826  |  |       /* 1. try to save bits by coarser quantization */  | 
827  | 0  |       if (scfHi > scf[startSfb]) { | 
828  |  |         /* calculate the allowed distortion */  | 
829  | 0  |         for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
830  | 0  |           if (scf[sfb] != FDK_INT_MIN) { | 
831  |  |             /* sfbDistMax[sfb] =  | 
832  |  |              * (float)pow(qcOutChannel->sfbThreshold[sfb]*sfbDist[sfb]*sfbDist[sfb],1.0f/3.0f);  | 
833  |  |              */  | 
834  |  |             /* sfbDistMax[sfb] =  | 
835  |  |              * fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergy[sfb]*FL2FXCONST_DBL(1.e-3f));  | 
836  |  |              */  | 
837  |  |             /* -0.15571537944 = ld64(1.e-3f)*/  | 
838  | 0  |             sfbDistMax[sfb] = fMult(FL2FXCONST_DBL(1.0f / 3.0f),  | 
839  | 0  |                                     qcOutChannel->sfbThresholdLdData[sfb]) +  | 
840  | 0  |                               fMult(FL2FXCONST_DBL(1.0f / 3.0f), sfbDist[sfb]) +  | 
841  | 0  |                               fMult(FL2FXCONST_DBL(1.0f / 3.0f), sfbDist[sfb]);  | 
842  | 0  |             sfbDistMax[sfb] =  | 
843  | 0  |                 fixMax(sfbDistMax[sfb], qcOutChannel->sfbEnergyLdData[sfb] -  | 
844  | 0  |                                             FL2FXCONST_DBL(0.15571537944));  | 
845  | 0  |             sfbDistMax[sfb] =  | 
846  | 0  |                 fixMin(sfbDistMax[sfb], qcOutChannel->sfbThresholdLdData[sfb]);  | 
847  | 0  |           }  | 
848  | 0  |         }  | 
849  |  |  | 
850  |  |         /* loop over all possible scf values for this region */  | 
851  | 0  |         bCheckScf = 1;  | 
852  | 0  |         for (scfNew = scf[startSfb] + 1; scfNew <= scfHi; scfNew++) { | 
853  | 0  |           for (k = 0; k < MAX_GROUPED_SFB; k++) scfTmp[k] = scf[k];  | 
854  |  |  | 
855  |  |           /* replace scfs in region by scfNew */  | 
856  | 0  |           for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
857  | 0  |             if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfNew;  | 
858  | 0  |           }  | 
859  |  |  | 
860  |  |           /* estimate change in bit demand for new scfs */  | 
861  | 0  |           deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,  | 
862  | 0  |                                                     startSfb, stopSfb);  | 
863  |  | 
  | 
864  | 0  |           deltaSpecPe = FDKaacEnc_calcSpecPeDiff(  | 
865  | 0  |               psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,  | 
866  | 0  |               sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);  | 
867  |  | 
  | 
868  | 0  |           deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;  | 
869  |  |  | 
870  |  |           /* new bit demand small enough ? */  | 
871  | 0  |           if (deltaPeNew < FL2FXCONST_DBL(0.0f)) { | 
872  | 0  |             bSuccess = 1;  | 
873  |  |  | 
874  |  |             /* quantize and calc sum of new distortion */  | 
875  | 0  |             for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
876  | 0  |               if (scfTmp[sfb] != FDK_INT_MIN) { | 
877  | 0  |                 sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(  | 
878  | 0  |                     qcOutChannel->mdctSpectrum + sfbOffs[sfb],  | 
879  | 0  |                     quantSpecTmp + sfbOffs[sfb],  | 
880  | 0  |                     sfbOffs[sfb + 1] - sfbOffs[sfb], scfNew, dZoneQuantEnable);  | 
881  |  | 
  | 
882  | 0  |                 if (sfbDistNew[sfb] > sfbDistMax[sfb]) { | 
883  |  |                   /* no improvement, skip further dist. calculations */  | 
884  | 0  |                   bSuccess = 0;  | 
885  | 0  |                   if (sfbDistNew[sfb] == qcOutChannel->sfbEnergyLdData[sfb]) { | 
886  |  |                     /* if whole sfb is already quantized to 0, further  | 
887  |  |                        checks with even coarser quant. are useless*/  | 
888  | 0  |                     bCheckScf = 0;  | 
889  | 0  |                   }  | 
890  | 0  |                   break;  | 
891  | 0  |                 }  | 
892  | 0  |               }  | 
893  | 0  |             }  | 
894  | 0  |             if (bCheckScf == 0) /* further calculations useless ? */  | 
895  | 0  |               break;  | 
896  |  |             /* distortion small enough ? -> use new scalefactors */  | 
897  | 0  |             if (bSuccess) { | 
898  | 0  |               deltaPe = deltaPeNew;  | 
899  | 0  |               for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
900  | 0  |                 if (scf[sfb] != FDK_INT_MIN) { | 
901  | 0  |                   scf[sfb] = scfNew;  | 
902  | 0  |                   sfbDist[sfb] = sfbDistNew[sfb];  | 
903  |  | 
  | 
904  | 0  |                   for (k = 0; k < sfbOffs[sfb + 1] - sfbOffs[sfb]; k++)  | 
905  | 0  |                     quantSpec[sfbOffs[sfb] + k] =  | 
906  | 0  |                         quantSpecTmp[sfbOffs[sfb] + k];  | 
907  | 0  |                 }  | 
908  | 0  |               }  | 
909  | 0  |             }  | 
910  | 0  |           }  | 
911  | 0  |         }  | 
912  | 0  |       }  | 
913  |  |  | 
914  |  |       /* 2. only if coarser quantization was not successful, try to find  | 
915  |  |          a better solution by finer quantization and reducing bits for  | 
916  |  |          scalefactor coding */  | 
917  | 0  |       if (scfAct == scf[startSfb] && scfLo < scfAct &&  | 
918  | 0  |           scfMax - scfMin <= MAX_SCF_DELTA) { | 
919  | 0  |         int bminScfViolation = 0;  | 
920  |  | 
  | 
921  | 0  |         for (k = 0; k < MAX_GROUPED_SFB; k++) scfTmp[k] = scf[k];  | 
922  |  | 
  | 
923  | 0  |         scfNew = scfLo;  | 
924  |  |  | 
925  |  |         /* replace scfs in region by scfNew and  | 
926  |  |            check if in all sfb scfNew >= minScf[sfb] */  | 
927  | 0  |         for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
928  | 0  |           if (scfTmp[sfb] != FDK_INT_MIN) { | 
929  | 0  |             scfTmp[sfb] = scfNew;  | 
930  | 0  |             if (scfNew < minScf[sfb]) bminScfViolation = 1;  | 
931  | 0  |           }  | 
932  | 0  |         }  | 
933  |  | 
  | 
934  | 0  |         if (!bminScfViolation) { | 
935  |  |           /* estimate change in bit demand for new scfs */  | 
936  | 0  |           deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,  | 
937  | 0  |                                                     startSfb, stopSfb);  | 
938  |  | 
  | 
939  | 0  |           deltaSpecPe = FDKaacEnc_calcSpecPeDiff(  | 
940  | 0  |               psyOutChan, qcOutChannel, scf, scfTmp, sfbConstPePart,  | 
941  | 0  |               sfbFormFactorLdData, sfbNRelevantLines, startSfb, stopSfb);  | 
942  |  | 
  | 
943  | 0  |           deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits + deltaSpecPe;  | 
944  | 0  |         }  | 
945  |  |  | 
946  |  |         /* new bit demand small enough ? */  | 
947  | 0  |         if (!bminScfViolation && deltaPeNew < FL2FXCONST_DBL(0.0f)) { | 
948  |  |           /* quantize and calc sum of new distortion */  | 
949  | 0  |           distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);  | 
950  | 0  |           for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
951  | 0  |             if (scfTmp[sfb] != FDK_INT_MIN) { | 
952  | 0  |               distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;  | 
953  |  | 
  | 
954  | 0  |               sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(  | 
955  | 0  |                   qcOutChannel->mdctSpectrum + sfbOffs[sfb],  | 
956  | 0  |                   quantSpecTmp + sfbOffs[sfb], sfbOffs[sfb + 1] - sfbOffs[sfb],  | 
957  | 0  |                   scfNew, dZoneQuantEnable);  | 
958  |  | 
  | 
959  | 0  |               if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) { | 
960  |  |                 /* no improvement, skip further dist. calculations */  | 
961  | 0  |                 distNewSum = distOldSum << 1;  | 
962  | 0  |                 break;  | 
963  | 0  |               }  | 
964  | 0  |               distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;  | 
965  | 0  |             }  | 
966  | 0  |           }  | 
967  |  |           /* distortion smaller ? -> use new scalefactors */  | 
968  | 0  |           if (distNewSum < fMult(FL2FXCONST_DBL(0.8f), distOldSum)) { | 
969  | 0  |             deltaPe = deltaPeNew;  | 
970  | 0  |             for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
971  | 0  |               if (scf[sfb] != FDK_INT_MIN) { | 
972  | 0  |                 scf[sfb] = scfNew;  | 
973  | 0  |                 sfbDist[sfb] = sfbDistNew[sfb];  | 
974  |  | 
  | 
975  | 0  |                 for (k = 0; k < sfbOffs[sfb + 1] - sfbOffs[sfb]; k++)  | 
976  | 0  |                   quantSpec[sfbOffs[sfb] + k] = quantSpecTmp[sfbOffs[sfb] + k];  | 
977  | 0  |               }  | 
978  | 0  |             }  | 
979  | 0  |           }  | 
980  | 0  |         }  | 
981  | 0  |       }  | 
982  |  |  | 
983  |  |       /* 3. try to find a better solution (save bits) by only reducing the  | 
984  |  |          scalefactor without new quantization */  | 
985  | 0  |       if (scfMax - scfMin <=  | 
986  | 0  |           MAX_SCF_DELTA - 3) { /* 3 bec. scf is reduced 3 times, | 
987  |  |                                   see for loop below */  | 
988  |  | 
  | 
989  | 0  |         for (k = 0; k < sfbCnt; k++) scfTmp[k] = scf[k];  | 
990  |  | 
  | 
991  | 0  |         for (i = 0; i < 3; i++) { | 
992  | 0  |           scfNew = scfTmp[startSfb] - 1;  | 
993  |  |           /* replace scfs in region by scfNew */  | 
994  | 0  |           for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
995  | 0  |             if (scfTmp[sfb] != FDK_INT_MIN) scfTmp[sfb] = scfNew;  | 
996  | 0  |           }  | 
997  |  |           /* estimate change in bit demand for new scfs */  | 
998  | 0  |           deltaScfBits = FDKaacEnc_countScfBitsDiff(scf, scfTmp, sfbCnt,  | 
999  | 0  |                                                     startSfb, stopSfb);  | 
1000  | 0  |           deltaPeNew = deltaPe + (FIXP_DBL)deltaScfBits;  | 
1001  |  |           /* new bit demand small enough ? */  | 
1002  | 0  |           if (deltaPeNew <= FL2FXCONST_DBL(0.0f)) { | 
1003  | 0  |             bSuccess = 1;  | 
1004  | 0  |             distOldSum = distNewSum = FL2FXCONST_DBL(0.0f);  | 
1005  | 0  |             for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
1006  | 0  |               if (scfTmp[sfb] != FDK_INT_MIN) { | 
1007  | 0  |                 FIXP_DBL sfbEnQ;  | 
1008  |  |                 /* calc the energy and distortion of the quantized spectrum for  | 
1009  |  |                    a smaller scf */  | 
1010  | 0  |                 FDKaacEnc_calcSfbQuantEnergyAndDist(  | 
1011  | 0  |                     qcOutChannel->mdctSpectrum + sfbOffs[sfb],  | 
1012  | 0  |                     quantSpec + sfbOffs[sfb], sfbOffs[sfb + 1] - sfbOffs[sfb],  | 
1013  | 0  |                     scfNew, &sfbEnQ, &sfbDistNew[sfb]);  | 
1014  |  | 
  | 
1015  | 0  |                 distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT;  | 
1016  | 0  |                 distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT;  | 
1017  |  |  | 
1018  |  |                 /*  0.00259488556167 = ld64(1.122f) */  | 
1019  |  |                 /* -0.00778722686652 = ld64(0.7079f) */  | 
1020  | 0  |                 if ((sfbDistNew[sfb] >  | 
1021  | 0  |                      (sfbDist[sfb] + FL2FXCONST_DBL(0.00259488556167f))) ||  | 
1022  | 0  |                     (sfbEnQ < (qcOutChannel->sfbEnergyLdData[sfb] -  | 
1023  | 0  |                                FL2FXCONST_DBL(0.00778722686652f)))) { | 
1024  | 0  |                   bSuccess = 0;  | 
1025  | 0  |                   break;  | 
1026  | 0  |                 }  | 
1027  | 0  |               }  | 
1028  | 0  |             }  | 
1029  |  |             /* distortion smaller ? -> use new scalefactors */  | 
1030  | 0  |             if (distNewSum < distOldSum && bSuccess) { | 
1031  | 0  |               deltaPe = deltaPeNew;  | 
1032  | 0  |               for (sfb = startSfb; sfb < stopSfb; sfb++) { | 
1033  | 0  |                 if (scf[sfb] != FDK_INT_MIN) { | 
1034  | 0  |                   scf[sfb] = scfNew;  | 
1035  | 0  |                   sfbDist[sfb] = sfbDistNew[sfb];  | 
1036  | 0  |                 }  | 
1037  | 0  |               }  | 
1038  | 0  |             }  | 
1039  | 0  |           }  | 
1040  | 0  |         }  | 
1041  | 0  |       }  | 
1042  | 0  |     }  | 
1043  | 0  |   } while (stopSfb <= sfbCnt);  | 
1044  | 0  | }  | 
1045  |  |  | 
1046  |  | static void FDKaacEnc_EstimateScaleFactorsChannel(  | 
1047  |  |     QC_OUT_CHANNEL *qcOutChannel, PSY_OUT_CHANNEL *psyOutChannel,  | 
1048  |  |     INT *RESTRICT scf, INT *RESTRICT globalGain,  | 
1049  |  |     FIXP_DBL *RESTRICT sfbFormFactorLdData, const INT invQuant,  | 
1050  | 0  |     SHORT *RESTRICT quantSpec, const INT dZoneQuantEnable) { | 
1051  | 0  |   INT i, j, sfb, sfbOffs;  | 
1052  | 0  |   INT scfInt;  | 
1053  | 0  |   INT maxSf;  | 
1054  | 0  |   INT minSf;  | 
1055  | 0  |   FIXP_DBL threshLdData;  | 
1056  | 0  |   FIXP_DBL energyLdData;  | 
1057  | 0  |   FIXP_DBL energyPartLdData;  | 
1058  | 0  |   FIXP_DBL thresholdPartLdData;  | 
1059  | 0  |   FIXP_DBL scfFract;  | 
1060  | 0  |   FIXP_DBL maxSpec;  | 
1061  | 0  |   INT minScfCalculated[MAX_GROUPED_SFB];  | 
1062  | 0  |   FIXP_DBL sfbDistLdData[MAX_GROUPED_SFB];  | 
1063  | 0  |   C_ALLOC_SCRATCH_START(quantSpecTmp, SHORT, (1024))  | 
1064  | 0  |   INT minSfMaxQuant[MAX_GROUPED_SFB];  | 
1065  |  | 
  | 
1066  | 0  |   FIXP_DBL threshConstLdData =  | 
1067  | 0  |       FL2FXCONST_DBL(0.04304511722f); /* log10(6.75)/log10(2.0)/64.0 */  | 
1068  | 0  |   FIXP_DBL convConst = FL2FXCONST_DBL(0.30102999566f); /* log10(2.0) */  | 
1069  | 0  |   FIXP_DBL c1Const =  | 
1070  | 0  |       FL2FXCONST_DBL(-0.27083183594f); /* C1 = -69.33295 => C1/2^8 */  | 
1071  |  | 
  | 
1072  | 0  |   if (invQuant > 0) { | 
1073  | 0  |     FDKmemclear(quantSpec, (1024) * sizeof(SHORT));  | 
1074  | 0  |   }  | 
1075  |  |  | 
1076  |  |   /* scfs without energy or with thresh>energy are marked with FDK_INT_MIN */  | 
1077  | 0  |   for (i = 0; i < psyOutChannel->sfbCnt; i++) { | 
1078  | 0  |     scf[i] = FDK_INT_MIN;  | 
1079  | 0  |   }  | 
1080  |  | 
  | 
1081  | 0  |   for (i = 0; i < MAX_GROUPED_SFB; i++) { | 
1082  | 0  |     minSfMaxQuant[i] = FDK_INT_MIN;  | 
1083  | 0  |   }  | 
1084  |  | 
  | 
1085  | 0  |   for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;  | 
1086  | 0  |        sfbOffs += psyOutChannel->sfbPerGroup) { | 
1087  | 0  |     for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { | 
1088  | 0  |       threshLdData = qcOutChannel->sfbThresholdLdData[sfbOffs + sfb];  | 
1089  | 0  |       energyLdData = qcOutChannel->sfbEnergyLdData[sfbOffs + sfb];  | 
1090  |  | 
  | 
1091  | 0  |       sfbDistLdData[sfbOffs + sfb] = energyLdData;  | 
1092  |  | 
  | 
1093  | 0  |       if (energyLdData > threshLdData) { | 
1094  | 0  |         FIXP_DBL tmp;  | 
1095  |  |  | 
1096  |  |         /* energyPart = (float)log10(sfbFormFactor[sfbOffs+sfb]); */  | 
1097  |  |         /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */  | 
1098  | 0  |         energyPartLdData =  | 
1099  | 0  |             sfbFormFactorLdData[sfbOffs + sfb] + FL2FXCONST_DBL(0.09375f);  | 
1100  |  |  | 
1101  |  |         /* influence of allowed distortion */  | 
1102  |  |         /* thresholdPart = (float)log10(6.75*thresh+FLT_MIN); */  | 
1103  | 0  |         thresholdPartLdData = threshConstLdData + threshLdData;  | 
1104  |  |  | 
1105  |  |         /* scf calc */  | 
1106  |  |         /* scfFloat = 8.8585f * (thresholdPart - energyPart); */  | 
1107  | 0  |         scfFract = thresholdPartLdData - energyPartLdData;  | 
1108  |  |         /* conversion from log2 to log10 */  | 
1109  | 0  |         scfFract = fMult(convConst, scfFract);  | 
1110  |  |         /* (8.8585f * scfFract)/8 = 8/8 * scfFract + 0.8585 * scfFract/8 */  | 
1111  | 0  |         scfFract = scfFract + fMult(FL2FXCONST_DBL(0.8585f), scfFract >> 3);  | 
1112  |  |  | 
1113  |  |         /* integer scalefactor */  | 
1114  |  |         /* scfInt = (int)floor(scfFloat); */  | 
1115  | 0  |         scfInt =  | 
1116  | 0  |             (INT)(scfFract >>  | 
1117  | 0  |                   ((DFRACT_BITS - 1) - 3 -  | 
1118  | 0  |                    LD_DATA_SHIFT)); /* 3 bits => scfFract/8.0; 6 bits => ld64 */  | 
1119  |  |  | 
1120  |  |         /* maximum of spectrum */  | 
1121  | 0  |         maxSpec = FL2FXCONST_DBL(0.0f);  | 
1122  |  |  | 
1123  |  |         /* Unroll by 4, allow dual memory access */  | 
1124  | 0  |         DWORD_ALIGNED(qcOutChannel->mdctSpectrum);  | 
1125  | 0  |         for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];  | 
1126  | 0  |              j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j += 4) { | 
1127  | 0  |           maxSpec = fMax(maxSpec,  | 
1128  | 0  |                          fMax(fMax(fAbs(qcOutChannel->mdctSpectrum[j + 0]),  | 
1129  | 0  |                                    fAbs(qcOutChannel->mdctSpectrum[j + 1])),  | 
1130  | 0  |                               fMax(fAbs(qcOutChannel->mdctSpectrum[j + 2]),  | 
1131  | 0  |                                    fAbs(qcOutChannel->mdctSpectrum[j + 3]))));  | 
1132  | 0  |         }  | 
1133  |  |         /* lower scf limit to avoid quantized values bigger than MAX_QUANT */  | 
1134  |  |         /* C1 = -69.33295f, C2 = 5.77078f = 4/log(2) */  | 
1135  |  |         /* minSfMaxQuant[sfbOffs+sfb] = (int)ceil(C1 + C2*log(maxSpec)); */  | 
1136  |  |         /* C1/2^8 + 4/log(2.0)*log(maxSpec)/2^8  => C1/2^8 +  | 
1137  |  |          * log(maxSpec)/log(2.0)*4/2^8 => C1/2^8 + log(maxSpec)/log(2.0)/64.0 */  | 
1138  |  |  | 
1139  |  |         // minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + CalcLdData(maxSpec))  | 
1140  |  |         // >> ((DFRACT_BITS-1)-8))) + 1;  | 
1141  | 0  |         tmp = CalcLdData(maxSpec);  | 
1142  | 0  |         if (c1Const > FL2FXCONST_DBL(-1.f) - tmp) { | 
1143  | 0  |           minSfMaxQuant[sfbOffs + sfb] =  | 
1144  | 0  |               ((INT)((c1Const + tmp) >> ((DFRACT_BITS - 1) - 8))) + 1;  | 
1145  | 0  |         } else { | 
1146  | 0  |           minSfMaxQuant[sfbOffs + sfb] =  | 
1147  | 0  |               ((INT)(FL2FXCONST_DBL(-1.f) >> ((DFRACT_BITS - 1) - 8))) + 1;  | 
1148  | 0  |         }  | 
1149  |  | 
  | 
1150  | 0  |         scfInt = fixMax(scfInt, minSfMaxQuant[sfbOffs + sfb]);  | 
1151  |  |  | 
1152  |  |         /* find better scalefactor with analysis by synthesis */  | 
1153  | 0  |         if (invQuant > 0) { | 
1154  | 0  |           scfInt = FDKaacEnc_improveScf(  | 
1155  | 0  |               qcOutChannel->mdctSpectrum +  | 
1156  | 0  |                   psyOutChannel->sfbOffsets[sfbOffs + sfb],  | 
1157  | 0  |               quantSpec + psyOutChannel->sfbOffsets[sfbOffs + sfb],  | 
1158  | 0  |               quantSpecTmp + psyOutChannel->sfbOffsets[sfbOffs + sfb],  | 
1159  | 0  |               psyOutChannel->sfbOffsets[sfbOffs + sfb + 1] -  | 
1160  | 0  |                   psyOutChannel->sfbOffsets[sfbOffs + sfb],  | 
1161  | 0  |               threshLdData, scfInt, minSfMaxQuant[sfbOffs + sfb],  | 
1162  | 0  |               &sfbDistLdData[sfbOffs + sfb], &minScfCalculated[sfbOffs + sfb],  | 
1163  | 0  |               dZoneQuantEnable);  | 
1164  | 0  |         }  | 
1165  | 0  |         scf[sfbOffs + sfb] = scfInt;  | 
1166  | 0  |       }  | 
1167  | 0  |     }  | 
1168  | 0  |   }  | 
1169  |  | 
  | 
1170  | 0  |   if (invQuant > 0) { | 
1171  |  |     /* try to decrease scf differences */  | 
1172  | 0  |     FIXP_DBL sfbConstPePart[MAX_GROUPED_SFB];  | 
1173  | 0  |     FIXP_DBL sfbNRelevantLines[MAX_GROUPED_SFB];  | 
1174  |  | 
  | 
1175  | 0  |     for (i = 0; i < psyOutChannel->sfbCnt; i++)  | 
1176  | 0  |       sfbConstPePart[i] = (FIXP_DBL)FDK_INT_MIN;  | 
1177  |  | 
  | 
1178  | 0  |     FDKaacEnc_calcSfbRelevantLines(  | 
1179  | 0  |         sfbFormFactorLdData, qcOutChannel->sfbEnergyLdData,  | 
1180  | 0  |         qcOutChannel->sfbThresholdLdData, psyOutChannel->sfbOffsets,  | 
1181  | 0  |         psyOutChannel->sfbCnt, psyOutChannel->sfbPerGroup,  | 
1182  | 0  |         psyOutChannel->maxSfbPerGroup, sfbNRelevantLines);  | 
1183  |  | 
  | 
1184  | 0  |     FDKaacEnc_assimilateSingleScf(  | 
1185  | 0  |         psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, dZoneQuantEnable,  | 
1186  | 0  |         scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart, sfbFormFactorLdData,  | 
1187  | 0  |         sfbNRelevantLines, minScfCalculated, 1);  | 
1188  |  | 
  | 
1189  | 0  |     if (invQuant > 1) { | 
1190  | 0  |       FDKaacEnc_assimilateMultipleScf(  | 
1191  | 0  |           psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,  | 
1192  | 0  |           dZoneQuantEnable, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart,  | 
1193  | 0  |           sfbFormFactorLdData, sfbNRelevantLines);  | 
1194  |  | 
  | 
1195  | 0  |       FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(  | 
1196  | 0  |           psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp,  | 
1197  | 0  |           dZoneQuantEnable, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart,  | 
1198  | 0  |           sfbFormFactorLdData, sfbNRelevantLines);  | 
1199  | 0  |     }  | 
1200  | 0  |   }  | 
1201  |  |  | 
1202  |  |   /* get min scalefac */  | 
1203  | 0  |   minSf = FDK_INT_MAX;  | 
1204  | 0  |   for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;  | 
1205  | 0  |        sfbOffs += psyOutChannel->sfbPerGroup) { | 
1206  | 0  |     for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { | 
1207  | 0  |       if (scf[sfbOffs + sfb] != FDK_INT_MIN)  | 
1208  | 0  |         minSf = fixMin(minSf, scf[sfbOffs + sfb]);  | 
1209  | 0  |     }  | 
1210  | 0  |   }  | 
1211  |  |  | 
1212  |  |   /* limit scf delta */  | 
1213  | 0  |   for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;  | 
1214  | 0  |        sfbOffs += psyOutChannel->sfbPerGroup) { | 
1215  | 0  |     for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { | 
1216  | 0  |       if ((scf[sfbOffs + sfb] != FDK_INT_MIN) &&  | 
1217  | 0  |           (minSf + MAX_SCF_DELTA) < scf[sfbOffs + sfb]) { | 
1218  | 0  |         scf[sfbOffs + sfb] = minSf + MAX_SCF_DELTA;  | 
1219  | 0  |         if (invQuant > 0) { /* changed bands need to be quantized again */ | 
1220  | 0  |           sfbDistLdData[sfbOffs + sfb] = FDKaacEnc_calcSfbDist(  | 
1221  | 0  |               qcOutChannel->mdctSpectrum +  | 
1222  | 0  |                   psyOutChannel->sfbOffsets[sfbOffs + sfb],  | 
1223  | 0  |               quantSpec + psyOutChannel->sfbOffsets[sfbOffs + sfb],  | 
1224  | 0  |               psyOutChannel->sfbOffsets[sfbOffs + sfb + 1] -  | 
1225  | 0  |                   psyOutChannel->sfbOffsets[sfbOffs + sfb],  | 
1226  | 0  |               scf[sfbOffs + sfb], dZoneQuantEnable);  | 
1227  | 0  |         }  | 
1228  | 0  |       }  | 
1229  | 0  |     }  | 
1230  | 0  |   }  | 
1231  |  |  | 
1232  |  |   /* get max scalefac for global gain */  | 
1233  | 0  |   maxSf = FDK_INT_MIN;  | 
1234  | 0  |   for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;  | 
1235  | 0  |        sfbOffs += psyOutChannel->sfbPerGroup) { | 
1236  | 0  |     for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { | 
1237  | 0  |       maxSf = fixMax(maxSf, scf[sfbOffs + sfb]);  | 
1238  | 0  |     }  | 
1239  | 0  |   }  | 
1240  |  |  | 
1241  |  |   /* calc loop scalefactors, if spec is not all zero (i.e. maxSf == -99) */  | 
1242  | 0  |   if (maxSf > FDK_INT_MIN) { | 
1243  | 0  |     *globalGain = maxSf;  | 
1244  | 0  |     for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;  | 
1245  | 0  |          sfbOffs += psyOutChannel->sfbPerGroup) { | 
1246  | 0  |       for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { | 
1247  | 0  |         if (scf[sfbOffs + sfb] == FDK_INT_MIN) { | 
1248  | 0  |           scf[sfbOffs + sfb] = 0;  | 
1249  |  |           /* set band explicitely to zero */  | 
1250  | 0  |           for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];  | 
1251  | 0  |                j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j++) { | 
1252  | 0  |             qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);  | 
1253  | 0  |           }  | 
1254  | 0  |         } else { | 
1255  | 0  |           scf[sfbOffs + sfb] = maxSf - scf[sfbOffs + sfb];  | 
1256  | 0  |         }  | 
1257  | 0  |       }  | 
1258  | 0  |     }  | 
1259  | 0  |   } else { | 
1260  | 0  |     *globalGain = 0;  | 
1261  |  |     /* set spectrum explicitely to zero */  | 
1262  | 0  |     for (sfbOffs = 0; sfbOffs < psyOutChannel->sfbCnt;  | 
1263  | 0  |          sfbOffs += psyOutChannel->sfbPerGroup) { | 
1264  | 0  |       for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { | 
1265  | 0  |         scf[sfbOffs + sfb] = 0;  | 
1266  |  |         /* set band explicitely to zero */  | 
1267  | 0  |         for (j = psyOutChannel->sfbOffsets[sfbOffs + sfb];  | 
1268  | 0  |              j < psyOutChannel->sfbOffsets[sfbOffs + sfb + 1]; j++) { | 
1269  | 0  |           qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f);  | 
1270  | 0  |         }  | 
1271  | 0  |       }  | 
1272  | 0  |     }  | 
1273  | 0  |   }  | 
1274  |  |  | 
1275  |  |   /* free quantSpecTmp from scratch */  | 
1276  | 0  |   C_ALLOC_SCRATCH_END(quantSpecTmp, SHORT, (1024))  | 
1277  | 0  | }  | 
1278  |  |  | 
1279  |  | void FDKaacEnc_EstimateScaleFactors(PSY_OUT_CHANNEL *psyOutChannel[],  | 
1280  |  |                                     QC_OUT_CHANNEL *qcOutChannel[],  | 
1281  |  |                                     const INT invQuant,  | 
1282  |  |                                     const INT dZoneQuantEnable,  | 
1283  | 0  |                                     const INT nChannels) { | 
1284  | 0  |   int ch;  | 
1285  |  | 
  | 
1286  | 0  |   for (ch = 0; ch < nChannels; ch++) { | 
1287  | 0  |     FDKaacEnc_EstimateScaleFactorsChannel(  | 
1288  | 0  |         qcOutChannel[ch], psyOutChannel[ch], qcOutChannel[ch]->scf,  | 
1289  | 0  |         &qcOutChannel[ch]->globalGain, qcOutChannel[ch]->sfbFormFactorLdData,  | 
1290  | 0  |         invQuant, qcOutChannel[ch]->quantSpec, dZoneQuantEnable);  | 
1291  | 0  |   }  | 
1292  | 0  | }  |