/src/aac/libSBRdec/src/env_dec.cpp
Line  | Count  | Source  | 
1  |  | /* -----------------------------------------------------------------------------  | 
2  |  | Software License for The Fraunhofer FDK AAC Codec Library for Android  | 
3  |  |  | 
4  |  | © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten  | 
5  |  | Forschung e.V. All rights reserved.  | 
6  |  |  | 
7  |  |  1.    INTRODUCTION  | 
8  |  | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software | 
9  |  | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding | 
10  |  | scheme for digital audio. This FDK AAC Codec software is intended to be used on  | 
11  |  | a wide variety of Android devices.  | 
12  |  |  | 
13  |  | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient  | 
14  |  | general perceptual audio codecs. AAC-ELD is considered the best-performing  | 
15  |  | full-bandwidth communications codec by independent studies and is widely  | 
16  |  | deployed. AAC has been standardized by ISO and IEC as part of the MPEG  | 
17  |  | specifications.  | 
18  |  |  | 
19  |  | Patent licenses for necessary patent claims for the FDK AAC Codec (including  | 
20  |  | those of Fraunhofer) may be obtained through Via Licensing  | 
21  |  | (www.vialicensing.com) or through the respective patent owners individually for  | 
22  |  | the purpose of encoding or decoding bit streams in products that are compliant  | 
23  |  | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of  | 
24  |  | Android devices already license these patent claims through Via Licensing or  | 
25  |  | directly from the patent owners, and therefore FDK AAC Codec software may  | 
26  |  | already be covered under those patent licenses when it is used for those  | 
27  |  | licensed purposes only.  | 
28  |  |  | 
29  |  | Commercially-licensed AAC software libraries, including floating-point versions  | 
30  |  | with enhanced sound quality, are also available from Fraunhofer. Users are  | 
31  |  | encouraged to check the Fraunhofer website for additional applications  | 
32  |  | information and documentation.  | 
33  |  |  | 
34  |  | 2.    COPYRIGHT LICENSE  | 
35  |  |  | 
36  |  | Redistribution and use in source and binary forms, with or without modification,  | 
37  |  | are permitted without payment of copyright license fees provided that you  | 
38  |  | satisfy the following conditions:  | 
39  |  |  | 
40  |  | You must retain the complete text of this software license in redistributions of  | 
41  |  | the FDK AAC Codec or your modifications thereto in source code form.  | 
42  |  |  | 
43  |  | You must retain the complete text of this software license in the documentation  | 
44  |  | and/or other materials provided with redistributions of the FDK AAC Codec or  | 
45  |  | your modifications thereto in binary form. You must make available free of  | 
46  |  | charge copies of the complete source code of the FDK AAC Codec and your  | 
47  |  | modifications thereto to recipients of copies in binary form.  | 
48  |  |  | 
49  |  | The name of Fraunhofer may not be used to endorse or promote products derived  | 
50  |  | from this library without prior written permission.  | 
51  |  |  | 
52  |  | You may not charge copyright license fees for anyone to use, copy or distribute  | 
53  |  | the FDK AAC Codec software or your modifications thereto.  | 
54  |  |  | 
55  |  | Your modified versions of the FDK AAC Codec must carry prominent notices stating  | 
56  |  | that you changed the software and the date of any change. For modified versions  | 
57  |  | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"  | 
58  |  | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK  | 
59  |  | AAC Codec Library for Android."  | 
60  |  |  | 
61  |  | 3.    NO PATENT LICENSE  | 
62  |  |  | 
63  |  | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without  | 
64  |  | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.  | 
65  |  | Fraunhofer provides no warranty of patent non-infringement with respect to this  | 
66  |  | software.  | 
67  |  |  | 
68  |  | You may use this FDK AAC Codec software or modifications thereto only for  | 
69  |  | purposes that are authorized by appropriate patent licenses.  | 
70  |  |  | 
71  |  | 4.    DISCLAIMER  | 
72  |  |  | 
73  |  | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright  | 
74  |  | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,  | 
75  |  | including but not limited to the implied warranties of merchantability and  | 
76  |  | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR  | 
77  |  | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,  | 
78  |  | or consequential damages, including but not limited to procurement of substitute  | 
79  |  | goods or services; loss of use, data, or profits, or business interruption,  | 
80  |  | however caused and on any theory of liability, whether in contract, strict  | 
81  |  | liability, or tort (including negligence), arising in any way out of the use of  | 
82  |  | this software, even if advised of the possibility of such damage.  | 
83  |  |  | 
84  |  | 5.    CONTACT INFORMATION  | 
85  |  |  | 
86  |  | Fraunhofer Institute for Integrated Circuits IIS  | 
87  |  | Attention: Audio and Multimedia Departments - FDK AAC LL  | 
88  |  | Am Wolfsmantel 33  | 
89  |  | 91058 Erlangen, Germany  | 
90  |  |  | 
91  |  | www.iis.fraunhofer.de/amm  | 
92  |  | amm-info@iis.fraunhofer.de  | 
93  |  | ----------------------------------------------------------------------------- */  | 
94  |  |  | 
95  |  | /**************************** SBR decoder library ******************************  | 
96  |  |  | 
97  |  |    Author(s):  | 
98  |  |  | 
99  |  |    Description:  | 
100  |  |  | 
101  |  | *******************************************************************************/  | 
102  |  |  | 
103  |  | /*!  | 
104  |  |   \file  | 
105  |  |   \brief  envelope decoding  | 
106  |  |   This module provides envelope decoding and error concealment algorithms. The  | 
107  |  |   main entry point is decodeSbrData().  | 
108  |  |  | 
109  |  |   \sa decodeSbrData(),\ref documentationOverview  | 
110  |  | */  | 
111  |  |  | 
112  |  | #include "env_dec.h"  | 
113  |  |  | 
114  |  | #include "env_extr.h"  | 
115  |  | #include "transcendent.h"  | 
116  |  |  | 
117  |  | #include "genericStds.h"  | 
118  |  |  | 
119  |  | static void decodeEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,  | 
120  |  |                            HANDLE_SBR_FRAME_DATA h_sbr_data,  | 
121  |  |                            HANDLE_SBR_PREV_FRAME_DATA h_prev_data,  | 
122  |  |                            HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel);  | 
123  |  | static void sbr_envelope_unmapping(HANDLE_SBR_HEADER_DATA hHeaderData,  | 
124  |  |                                    HANDLE_SBR_FRAME_DATA h_data_left,  | 
125  |  |                                    HANDLE_SBR_FRAME_DATA h_data_right);  | 
126  |  | static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,  | 
127  |  |                                    int ampResolution);  | 
128  |  | static void deltaToLinearPcmEnvelopeDecoding(  | 
129  |  |     HANDLE_SBR_HEADER_DATA hHeaderData, HANDLE_SBR_FRAME_DATA h_sbr_data,  | 
130  |  |     HANDLE_SBR_PREV_FRAME_DATA h_prev_data);  | 
131  |  | static void decodeNoiseFloorlevels(HANDLE_SBR_HEADER_DATA hHeaderData,  | 
132  |  |                                    HANDLE_SBR_FRAME_DATA h_sbr_data,  | 
133  |  |                                    HANDLE_SBR_PREV_FRAME_DATA h_prev_data);  | 
134  |  | static void timeCompensateFirstEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,  | 
135  |  |                                         HANDLE_SBR_FRAME_DATA h_sbr_data,  | 
136  |  |                                         HANDLE_SBR_PREV_FRAME_DATA h_prev_data);  | 
137  |  | static int checkEnvelopeData(HANDLE_SBR_HEADER_DATA hHeaderData,  | 
138  |  |                              HANDLE_SBR_FRAME_DATA h_sbr_data,  | 
139  |  |                              HANDLE_SBR_PREV_FRAME_DATA h_prev_data);  | 
140  |  |  | 
141  | 0  | #define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT)  | 
142  | 0  | #define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT)  | 
143  |  |  | 
144  | 0  | #define DECAY (1 << ENV_EXP_FRACT)  | 
145  |  |  | 
146  |  | #if ENV_EXP_FRACT  | 
147  |  | #define DECAY_COUPLING \  | 
148  |  |   (1 << (ENV_EXP_FRACT - 1)) /*!< corresponds to a value of 0.5 */  | 
149  |  | #else  | 
150  |  | #define DECAY_COUPLING \  | 
151  | 0  |   1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */  | 
152  |  | #endif  | 
153  |  |  | 
154  |  | /*!  | 
155  |  |   \brief  Convert table index  | 
156  |  | */  | 
157  |  | static int indexLow2High(int offset, /*!< mapping factor */  | 
158  |  |                          int index,  /*!< index to scalefactor band */  | 
159  |  |                          int res)    /*!< frequency resolution */  | 
160  | 0  | { | 
161  | 0  |   if (res == 0) { | 
162  | 0  |     if (offset >= 0) { | 
163  | 0  |       if (index < offset)  | 
164  | 0  |         return (index);  | 
165  | 0  |       else  | 
166  | 0  |         return (2 * index - offset);  | 
167  | 0  |     } else { | 
168  | 0  |       offset = -offset;  | 
169  | 0  |       if (index < offset)  | 
170  | 0  |         return (2 * index + index);  | 
171  | 0  |       else  | 
172  | 0  |         return (2 * index + offset);  | 
173  | 0  |     }  | 
174  | 0  |   } else  | 
175  | 0  |     return (index);  | 
176  | 0  | }  | 
177  |  |  | 
178  |  | /*!  | 
179  |  |   \brief  Update previous envelope value for delta-coding  | 
180  |  |  | 
181  |  |   The current envelope values needs to be stored for delta-coding  | 
182  |  |   in the next frame.  The stored envelope is always represented with  | 
183  |  |   the high frequency resolution.  If the current envelope uses the  | 
184  |  |   low frequency resolution, the energy value will be mapped to the  | 
185  |  |   corresponding high-res bands.  | 
186  |  | */  | 
187  |  | static void mapLowResEnergyVal(  | 
188  |  |     FIXP_SGL currVal,   /*!< current energy value */  | 
189  |  |     FIXP_SGL *prevData, /*!< pointer to previous data vector */  | 
190  |  |     int offset,         /*!< mapping factor */  | 
191  |  |     int index,          /*!< index to scalefactor band */  | 
192  |  |     int res)            /*!< frequeny resolution */  | 
193  | 0  | { | 
194  | 0  |   if (res == 0) { | 
195  | 0  |     if (offset >= 0) { | 
196  | 0  |       if (index < offset)  | 
197  | 0  |         prevData[index] = currVal;  | 
198  | 0  |       else { | 
199  | 0  |         prevData[2 * index - offset] = currVal;  | 
200  | 0  |         prevData[2 * index + 1 - offset] = currVal;  | 
201  | 0  |       }  | 
202  | 0  |     } else { | 
203  | 0  |       offset = -offset;  | 
204  | 0  |       if (index < offset) { | 
205  | 0  |         prevData[3 * index] = currVal;  | 
206  | 0  |         prevData[3 * index + 1] = currVal;  | 
207  | 0  |         prevData[3 * index + 2] = currVal;  | 
208  | 0  |       } else { | 
209  | 0  |         prevData[2 * index + offset] = currVal;  | 
210  | 0  |         prevData[2 * index + 1 + offset] = currVal;  | 
211  | 0  |       }  | 
212  | 0  |     }  | 
213  | 0  |   } else  | 
214  | 0  |     prevData[index] = currVal;  | 
215  | 0  | }  | 
216  |  |  | 
217  |  | /*!  | 
218  |  |   \brief    Convert raw envelope and noisefloor data to energy levels  | 
219  |  |  | 
220  |  |   This function is being called by sbrDecoder_ParseElement() and provides two  | 
221  |  |   important algorithms:  | 
222  |  |  | 
223  |  |   First the function decodes envelopes and noise floor levels as described in  | 
224  |  |   requantizeEnvelopeData() and sbr_envelope_unmapping(). The function also  | 
225  |  |   implements concealment algorithms in case there are errors within the sbr  | 
226  |  |   data. For both operations fractional arithmetic is used. Therefore you might  | 
227  |  |   encounter different output values on your target system compared to the  | 
228  |  |   reference implementation.  | 
229  |  | */  | 
230  |  | void decodeSbrData(  | 
231  |  |     HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */  | 
232  |  |     HANDLE_SBR_FRAME_DATA  | 
233  |  |         h_data_left, /*!< pointer to left channel frame data */  | 
234  |  |     HANDLE_SBR_PREV_FRAME_DATA  | 
235  |  |         h_prev_data_left, /*!< pointer to left channel previous frame data */  | 
236  |  |     HANDLE_SBR_FRAME_DATA  | 
237  |  |         h_data_right, /*!< pointer to right channel frame data */  | 
238  |  |     HANDLE_SBR_PREV_FRAME_DATA  | 
239  |  |         h_prev_data_right) /*!< pointer to right channel previous frame data */  | 
240  | 0  | { | 
241  | 0  |   FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];  | 
242  | 0  |   int errLeft;  | 
243  |  |  | 
244  |  |   /* Save previous energy values to be able to reuse them later for concealment.  | 
245  |  |    */  | 
246  | 0  |   FDKmemcpy(tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev,  | 
247  | 0  |             MAX_FREQ_COEFFS * sizeof(FIXP_SGL));  | 
248  |  | 
  | 
249  | 0  |   if (hHeaderData->frameErrorFlag || hHeaderData->bs_info.pvc_mode == 0) { | 
250  | 0  |     decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,  | 
251  | 0  |                    h_prev_data_right);  | 
252  | 0  |   } else { | 
253  | 0  |     FDK_ASSERT(h_data_right == NULL);  | 
254  | 0  |   }  | 
255  | 0  |   decodeNoiseFloorlevels(hHeaderData, h_data_left, h_prev_data_left);  | 
256  |  | 
  | 
257  | 0  |   if (h_data_right != NULL) { | 
258  | 0  |     errLeft = hHeaderData->frameErrorFlag;  | 
259  | 0  |     decodeEnvelope(hHeaderData, h_data_right, h_prev_data_right,  | 
260  | 0  |                    h_prev_data_left);  | 
261  | 0  |     decodeNoiseFloorlevels(hHeaderData, h_data_right, h_prev_data_right);  | 
262  |  | 
  | 
263  | 0  |     if (!errLeft && hHeaderData->frameErrorFlag) { | 
264  |  |       /* If an error occurs in the right channel where the left channel seemed  | 
265  |  |          ok, we apply concealment also on the left channel. This ensures that  | 
266  |  |          the coupling modes of both channels match and that we have the same  | 
267  |  |          number of envelopes in coupling mode. However, as the left channel has  | 
268  |  |          already been processed before, the resulting energy levels are not the  | 
269  |  |          same as if the left channel had been concealed during the first call of  | 
270  |  |          decodeEnvelope().  | 
271  |  |       */  | 
272  |  |       /* Restore previous energy values for concealment, because the values have  | 
273  |  |          been overwritten by the first call of decodeEnvelope(). */  | 
274  | 0  |       FDKmemcpy(h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev,  | 
275  | 0  |                 MAX_FREQ_COEFFS * sizeof(FIXP_SGL));  | 
276  |  |       /* Do concealment */  | 
277  | 0  |       decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,  | 
278  | 0  |                      h_prev_data_right);  | 
279  | 0  |     }  | 
280  |  | 
  | 
281  | 0  |     if (h_data_left->coupling) { | 
282  | 0  |       sbr_envelope_unmapping(hHeaderData, h_data_left, h_data_right);  | 
283  | 0  |     }  | 
284  | 0  |   }  | 
285  |  |  | 
286  |  |   /* Display the data for debugging: */  | 
287  | 0  | }  | 
288  |  |  | 
289  |  | /*!  | 
290  |  |   \brief   Convert from coupled channels to independent L/R data  | 
291  |  | */  | 
292  |  | static void sbr_envelope_unmapping(  | 
293  |  |     HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */  | 
294  |  |     HANDLE_SBR_FRAME_DATA h_data_left,  /*!< pointer to left channel */  | 
295  |  |     HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */  | 
296  | 0  | { | 
297  | 0  |   int i;  | 
298  | 0  |   FIXP_SGL tempL_m, tempR_m, tempRplus1_m, newL_m, newR_m;  | 
299  | 0  |   SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e;  | 
300  |  |  | 
301  |  |   /* 1. Unmap (already dequantized) coupled envelope energies */  | 
302  |  | 
  | 
303  | 0  |   for (i = 0; i < h_data_left->nScaleFactors; i++) { | 
304  | 0  |     tempR_m = (FIXP_SGL)((LONG)h_data_right->iEnvelope[i] & MASK_M);  | 
305  | 0  |     tempR_e = (SCHAR)((LONG)h_data_right->iEnvelope[i] & MASK_E);  | 
306  |  | 
  | 
307  | 0  |     tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE /  | 
308  |  |                                          h_data_right->nChannels) */  | 
309  | 0  |     tempL_m = (FIXP_SGL)((LONG)h_data_left->iEnvelope[i] & MASK_M);  | 
310  | 0  |     tempL_e = (SCHAR)((LONG)h_data_left->iEnvelope[i] & MASK_E);  | 
311  |  | 
  | 
312  | 0  |     tempL_e -= NRG_EXP_OFFSET;  | 
313  |  |  | 
314  |  |     /* Calculate tempRight+1 */  | 
315  | 0  |     FDK_add_MantExp(tempR_m, tempR_e, FL2FXCONST_SGL(0.5f), 1, /* 1.0 */  | 
316  | 0  |                     &tempRplus1_m, &tempRplus1_e);  | 
317  |  | 
  | 
318  | 0  |     FDK_divide_MantExp(tempL_m, tempL_e + 1, /*  2 * tempLeft */  | 
319  | 0  |                        tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);  | 
320  |  | 
  | 
321  | 0  |     if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) { | 
322  | 0  |       newR_m >>= 1;  | 
323  | 0  |       newR_e += 1;  | 
324  | 0  |     }  | 
325  |  | 
  | 
326  | 0  |     newL_m = FX_DBL2FX_SGL(fMult(tempR_m, newR_m));  | 
327  | 0  |     newL_e = tempR_e + newR_e;  | 
328  |  | 
  | 
329  | 0  |     h_data_right->iEnvelope[i] =  | 
330  | 0  |         ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +  | 
331  | 0  |         (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E);  | 
332  | 0  |     h_data_left->iEnvelope[i] =  | 
333  | 0  |         ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +  | 
334  | 0  |         (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E);  | 
335  | 0  |   }  | 
336  |  |  | 
337  |  |   /* 2. Dequantize and unmap coupled noise floor levels */  | 
338  |  | 
  | 
339  | 0  |   for (i = 0; i < hHeaderData->freqBandData.nNfb *  | 
340  | 0  |                       h_data_left->frameInfo.nNoiseEnvelopes;  | 
341  | 0  |        i++) { | 
342  | 0  |     tempL_e = (SCHAR)(6 - (LONG)h_data_left->sbrNoiseFloorLevel[i]);  | 
343  | 0  |     tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] -  | 
344  | 0  |                       12) /*SBR_ENERGY_PAN_OFFSET*/;  | 
345  |  |  | 
346  |  |     /* Calculate tempR+1 */  | 
347  | 0  |     FDK_add_MantExp(FL2FXCONST_SGL(0.5f), 1 + tempR_e, /* tempR */  | 
348  | 0  |                     FL2FXCONST_SGL(0.5f), 1,           /*  1.0  */  | 
349  | 0  |                     &tempRplus1_m, &tempRplus1_e);  | 
350  |  |  | 
351  |  |     /* Calculate 2*tempLeft/(tempR+1) */  | 
352  | 0  |     FDK_divide_MantExp(FL2FXCONST_SGL(0.5f), tempL_e + 2, /*  2 * tempLeft */  | 
353  | 0  |                        tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);  | 
354  |  |  | 
355  |  |     /* if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) { | 
356  |  |       newR_m >>= 1;  | 
357  |  |       newR_e += 1;  | 
358  |  |     } */  | 
359  |  |  | 
360  |  |     /* L = tempR * R */  | 
361  | 0  |     newL_m = newR_m;  | 
362  | 0  |     newL_e = newR_e + tempR_e;  | 
363  | 0  |     h_data_right->sbrNoiseFloorLevel[i] =  | 
364  | 0  |         ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +  | 
365  | 0  |         (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E);  | 
366  | 0  |     h_data_left->sbrNoiseFloorLevel[i] =  | 
367  | 0  |         ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +  | 
368  | 0  |         (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E);  | 
369  | 0  |   }  | 
370  | 0  | }  | 
371  |  |  | 
372  |  | /*!  | 
373  |  |   \brief    Simple alternative to the real SBR concealment  | 
374  |  |  | 
375  |  |   If the real frameInfo is not available due to a frame loss, a replacement will  | 
376  |  |   be constructed with 1 envelope spanning the whole frame (FIX-FIX).  | 
377  |  |   The delta-coded energies are set to negative values, resulting in a fade-down.  | 
378  |  |   In case of coupling, the balance-channel will move towards the center.  | 
379  |  | */  | 
380  |  | static void leanSbrConcealment(  | 
381  |  |     HANDLE_SBR_HEADER_DATA hHeaderData,    /*!< Static control data */  | 
382  |  |     HANDLE_SBR_FRAME_DATA h_sbr_data,      /*!< pointer to current data */  | 
383  |  |     HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */  | 
384  | 0  | ) { | 
385  | 0  |   FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */  | 
386  | 0  |   FIXP_SGL step;   /* speed of fade */  | 
387  | 0  |   int i;  | 
388  |  | 
  | 
389  | 0  |   int currentStartPos =  | 
390  | 0  |       fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);  | 
391  | 0  |   int currentStopPos = hHeaderData->numberTimeSlots;  | 
392  |  |  | 
393  |  |   /* Use some settings of the previous frame */  | 
394  | 0  |   h_sbr_data->ampResolutionCurrentFrame = h_prev_data->ampRes;  | 
395  | 0  |   h_sbr_data->coupling = h_prev_data->coupling;  | 
396  | 0  |   for (i = 0; i < MAX_INVF_BANDS; i++)  | 
397  | 0  |     h_sbr_data->sbr_invf_mode[i] = h_prev_data->sbr_invf_mode[i];  | 
398  |  |  | 
399  |  |   /* Generate concealing control data */  | 
400  |  | 
  | 
401  | 0  |   h_sbr_data->frameInfo.nEnvelopes = 1;  | 
402  | 0  |   h_sbr_data->frameInfo.borders[0] = currentStartPos;  | 
403  | 0  |   h_sbr_data->frameInfo.borders[1] = currentStopPos;  | 
404  | 0  |   h_sbr_data->frameInfo.freqRes[0] = 1;  | 
405  | 0  |   h_sbr_data->frameInfo.tranEnv = -1; /* no transient */  | 
406  | 0  |   h_sbr_data->frameInfo.nNoiseEnvelopes = 1;  | 
407  | 0  |   h_sbr_data->frameInfo.bordersNoise[0] = currentStartPos;  | 
408  | 0  |   h_sbr_data->frameInfo.bordersNoise[1] = currentStopPos;  | 
409  |  | 
  | 
410  | 0  |   h_sbr_data->nScaleFactors = hHeaderData->freqBandData.nSfb[1];  | 
411  |  |  | 
412  |  |   /* Generate fake envelope data */  | 
413  |  | 
  | 
414  | 0  |   h_sbr_data->domain_vec[0] = 1;  | 
415  |  | 
  | 
416  | 0  |   if (h_sbr_data->coupling == COUPLING_BAL) { | 
417  | 0  |     target = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;  | 
418  | 0  |     step = (FIXP_SGL)DECAY_COUPLING;  | 
419  | 0  |   } else { | 
420  | 0  |     target = FL2FXCONST_SGL(0.0f);  | 
421  | 0  |     step = (FIXP_SGL)DECAY;  | 
422  | 0  |   }  | 
423  | 0  |   if (hHeaderData->bs_info.ampResolution == 0) { | 
424  | 0  |     target <<= 1;  | 
425  | 0  |     step <<= 1;  | 
426  | 0  |   }  | 
427  |  | 
  | 
428  | 0  |   for (i = 0; i < h_sbr_data->nScaleFactors; i++) { | 
429  | 0  |     if (h_prev_data->sfb_nrg_prev[i] > target)  | 
430  | 0  |       h_sbr_data->iEnvelope[i] = -step;  | 
431  | 0  |     else  | 
432  | 0  |       h_sbr_data->iEnvelope[i] = step;  | 
433  | 0  |   }  | 
434  |  |  | 
435  |  |   /* Noisefloor levels are always cleared ... */  | 
436  |  | 
  | 
437  | 0  |   h_sbr_data->domain_vec_noise[0] = 1;  | 
438  | 0  |   FDKmemclear(h_sbr_data->sbrNoiseFloorLevel,  | 
439  | 0  |               sizeof(h_sbr_data->sbrNoiseFloorLevel));  | 
440  |  |  | 
441  |  |   /* ... and so are the sines */  | 
442  | 0  |   FDKmemclear(h_sbr_data->addHarmonics,  | 
443  | 0  |               sizeof(ULONG) * ADD_HARMONICS_FLAGS_SIZE);  | 
444  | 0  | }  | 
445  |  |  | 
446  |  | /*!  | 
447  |  |   \brief   Build reference energies and noise levels from bitstream elements  | 
448  |  | */  | 
449  |  | static void decodeEnvelope(  | 
450  |  |     HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */  | 
451  |  |     HANDLE_SBR_FRAME_DATA h_sbr_data,   /*!< pointer to current data */  | 
452  |  |     HANDLE_SBR_PREV_FRAME_DATA  | 
453  |  |         h_prev_data, /*!< pointer to data of last frame */  | 
454  |  |     HANDLE_SBR_PREV_FRAME_DATA  | 
455  |  |         otherChannel /*!< other channel's last frame data */  | 
456  | 0  | ) { | 
457  | 0  |   int i;  | 
458  | 0  |   int fFrameError = hHeaderData->frameErrorFlag;  | 
459  | 0  |   FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];  | 
460  |  | 
  | 
461  | 0  |   if (!fFrameError) { | 
462  |  |     /*  | 
463  |  |       To avoid distortions after bad frames, set the error flag if delta coding  | 
464  |  |       in time occurs. However, SBR can take a little longer to come up again.  | 
465  |  |     */  | 
466  | 0  |     if (h_prev_data->frameErrorFlag) { | 
467  | 0  |       if (h_sbr_data->domain_vec[0] != 0) { | 
468  | 0  |         fFrameError = 1;  | 
469  | 0  |       }  | 
470  | 0  |     } else { | 
471  |  |       /* Check that the previous stop position and the current start position  | 
472  |  |          match. (Could be done in checkFrameInfo(), but the previous frame data  | 
473  |  |          is not available there) */  | 
474  | 0  |       if (h_sbr_data->frameInfo.borders[0] !=  | 
475  | 0  |           h_prev_data->stopPos - hHeaderData->numberTimeSlots) { | 
476  |  |         /* Both the previous as well as the current frame are flagged to be ok,  | 
477  |  |          * but they do not match! */  | 
478  | 0  |         if (h_sbr_data->domain_vec[0] == 1) { | 
479  |  |           /* Prefer concealment over delta-time coding between the mismatching  | 
480  |  |            * frames */  | 
481  | 0  |           fFrameError = 1;  | 
482  | 0  |         } else { | 
483  |  |           /* Close the gap in time by triggering timeCompensateFirstEnvelope()  | 
484  |  |            */  | 
485  | 0  |           fFrameError = 1;  | 
486  | 0  |         }  | 
487  | 0  |       }  | 
488  | 0  |     }  | 
489  | 0  |   }  | 
490  |  | 
  | 
491  | 0  |   if (fFrameError) /* Error is detected */  | 
492  | 0  |   { | 
493  | 0  |     leanSbrConcealment(hHeaderData, h_sbr_data, h_prev_data);  | 
494  |  |  | 
495  |  |     /* decode the envelope data to linear PCM */  | 
496  | 0  |     deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);  | 
497  | 0  |   } else /*Do a temporary dummy decoding and check that the envelope values are  | 
498  |  |             within limits */  | 
499  | 0  |   { | 
500  | 0  |     if (h_prev_data->frameErrorFlag) { | 
501  | 0  |       timeCompensateFirstEnvelope(hHeaderData, h_sbr_data, h_prev_data);  | 
502  | 0  |       if (h_sbr_data->coupling != h_prev_data->coupling) { | 
503  |  |         /*  | 
504  |  |           Coupling mode has changed during concealment.  | 
505  |  |            The stored energy levels need to be converted.  | 
506  |  |          */  | 
507  | 0  |         for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) { | 
508  |  |           /* Former Level-Channel will be used for both channels */  | 
509  | 0  |           if (h_prev_data->coupling == COUPLING_BAL) { | 
510  | 0  |             h_prev_data->sfb_nrg_prev[i] =  | 
511  | 0  |                 (otherChannel != NULL) ? otherChannel->sfb_nrg_prev[i]  | 
512  | 0  |                                        : (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;  | 
513  | 0  |           }  | 
514  |  |           /* Former L/R will be combined as the new Level-Channel */  | 
515  | 0  |           else if (h_sbr_data->coupling == COUPLING_LEVEL &&  | 
516  | 0  |                    otherChannel != NULL) { | 
517  | 0  |             h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] +  | 
518  | 0  |                                             otherChannel->sfb_nrg_prev[i]) >>  | 
519  | 0  |                                            1;  | 
520  | 0  |           } else if (h_sbr_data->coupling == COUPLING_BAL) { | 
521  | 0  |             h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;  | 
522  | 0  |           }  | 
523  | 0  |         }  | 
524  | 0  |       }  | 
525  | 0  |     }  | 
526  | 0  |     FDKmemcpy(tempSfbNrgPrev, h_prev_data->sfb_nrg_prev,  | 
527  | 0  |               MAX_FREQ_COEFFS * sizeof(FIXP_SGL));  | 
528  |  | 
  | 
529  | 0  |     deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);  | 
530  |  | 
  | 
531  | 0  |     fFrameError = checkEnvelopeData(hHeaderData, h_sbr_data, h_prev_data);  | 
532  |  | 
  | 
533  | 0  |     if (fFrameError) { | 
534  | 0  |       hHeaderData->frameErrorFlag = 1;  | 
535  | 0  |       FDKmemcpy(h_prev_data->sfb_nrg_prev, tempSfbNrgPrev,  | 
536  | 0  |                 MAX_FREQ_COEFFS * sizeof(FIXP_SGL));  | 
537  | 0  |       decodeEnvelope(hHeaderData, h_sbr_data, h_prev_data, otherChannel);  | 
538  | 0  |       return;  | 
539  | 0  |     }  | 
540  | 0  |   }  | 
541  |  |  | 
542  | 0  |   requantizeEnvelopeData(h_sbr_data, h_sbr_data->ampResolutionCurrentFrame);  | 
543  |  | 
  | 
544  | 0  |   hHeaderData->frameErrorFlag = fFrameError;  | 
545  | 0  | }  | 
546  |  |  | 
547  |  | /*!  | 
548  |  |   \brief   Verify that envelope energies are within the allowed range  | 
549  |  |   \return  0 if all is fine, 1 if an envelope value was too high  | 
550  |  | */  | 
551  |  | static int checkEnvelopeData(  | 
552  |  |     HANDLE_SBR_HEADER_DATA hHeaderData,    /*!< Static control data */  | 
553  |  |     HANDLE_SBR_FRAME_DATA h_sbr_data,      /*!< pointer to current data */  | 
554  |  |     HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */  | 
555  | 0  | ) { | 
556  | 0  |   FIXP_SGL *iEnvelope = h_sbr_data->iEnvelope;  | 
557  | 0  |   FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;  | 
558  | 0  |   int i = 0, errorFlag = 0;  | 
559  | 0  |   FIXP_SGL sbr_max_energy = (h_sbr_data->ampResolutionCurrentFrame == 1)  | 
560  | 0  |                                 ? SBR_MAX_ENERGY  | 
561  | 0  |                                 : (SBR_MAX_ENERGY << 1);  | 
562  |  |  | 
563  |  |   /*  | 
564  |  |     Range check for current energies  | 
565  |  |   */  | 
566  | 0  |   for (i = 0; i < h_sbr_data->nScaleFactors; i++) { | 
567  | 0  |     if (iEnvelope[i] > sbr_max_energy) { | 
568  | 0  |       errorFlag = 1;  | 
569  | 0  |     }  | 
570  | 0  |     if (iEnvelope[i] < FL2FXCONST_SGL(0.0f)) { | 
571  | 0  |       errorFlag = 1;  | 
572  |  |       /* iEnvelope[i] = FL2FXCONST_SGL(0.0f); */  | 
573  | 0  |     }  | 
574  | 0  |   }  | 
575  |  |  | 
576  |  |   /*  | 
577  |  |     Range check for previous energies  | 
578  |  |   */  | 
579  | 0  |   for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) { | 
580  | 0  |     sfb_nrg_prev[i] = fixMax(sfb_nrg_prev[i], FL2FXCONST_SGL(0.0f));  | 
581  | 0  |     sfb_nrg_prev[i] = fixMin(sfb_nrg_prev[i], sbr_max_energy);  | 
582  | 0  |   }  | 
583  |  | 
  | 
584  | 0  |   return (errorFlag);  | 
585  | 0  | }  | 
586  |  |  | 
587  |  | /*!  | 
588  |  |   \brief   Verify that the noise levels are within the allowed range  | 
589  |  |  | 
590  |  |   The function is equivalent to checkEnvelopeData().  | 
591  |  |   When the noise-levels are being decoded, it is already too late for  | 
592  |  |   concealment. Therefore the noise levels are simply limited here.  | 
593  |  | */  | 
594  |  | static void limitNoiseLevels(  | 
595  |  |     HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */  | 
596  |  |     HANDLE_SBR_FRAME_DATA h_sbr_data)   /*!< pointer to current data */  | 
597  | 0  | { | 
598  | 0  |   int i;  | 
599  | 0  |   int nNfb = hHeaderData->freqBandData.nNfb;  | 
600  |  |  | 
601  |  | /*  | 
602  |  |   Set range limits. The exact values depend on the coupling mode.  | 
603  |  |   However this limitation is primarily intended to avoid unlimited  | 
604  |  |   accumulation of the delta-coded noise levels.  | 
605  |  | */  | 
606  | 0  | #define lowerLimit \  | 
607  | 0  |   ((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */  | 
608  | 0  | #define upperLimit \  | 
609  | 0  |   ((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */  | 
610  |  |  | 
611  |  |   /*  | 
612  |  |     Range check for current noise levels  | 
613  |  |   */  | 
614  | 0  |   for (i = 0; i < h_sbr_data->frameInfo.nNoiseEnvelopes * nNfb; i++) { | 
615  | 0  |     h_sbr_data->sbrNoiseFloorLevel[i] =  | 
616  | 0  |         fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit);  | 
617  | 0  |     h_sbr_data->sbrNoiseFloorLevel[i] =  | 
618  | 0  |         fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit);  | 
619  | 0  |   }  | 
620  | 0  | }  | 
621  |  |  | 
622  |  | /*!  | 
623  |  |   \brief   Compensate for the wrong timing that might occur after a frame error.  | 
624  |  | */  | 
625  |  | static void timeCompensateFirstEnvelope(  | 
626  |  |     HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */  | 
627  |  |     HANDLE_SBR_FRAME_DATA h_sbr_data,   /*!< pointer to actual data */  | 
628  |  |     HANDLE_SBR_PREV_FRAME_DATA  | 
629  |  |         h_prev_data) /*!< pointer to data of last frame */  | 
630  | 0  | { | 
631  | 0  |   int i, nScalefactors;  | 
632  | 0  |   FRAME_INFO *pFrameInfo = &h_sbr_data->frameInfo;  | 
633  | 0  |   UCHAR *nSfb = hHeaderData->freqBandData.nSfb;  | 
634  | 0  |   int estimatedStartPos =  | 
635  | 0  |       fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);  | 
636  | 0  |   int refLen, newLen, shift;  | 
637  | 0  |   FIXP_SGL deltaExp;  | 
638  |  |  | 
639  |  |   /* Original length of first envelope according to bitstream */  | 
640  | 0  |   refLen = pFrameInfo->borders[1] - pFrameInfo->borders[0];  | 
641  |  |   /* Corrected length of first envelope (concealing can make the first envelope  | 
642  |  |    * longer) */  | 
643  | 0  |   newLen = pFrameInfo->borders[1] - estimatedStartPos;  | 
644  |  | 
  | 
645  | 0  |   if (newLen <= 0) { | 
646  |  |     /* An envelope length of <= 0 would not work, so we don't use it.  | 
647  |  |        May occur if the previous frame was flagged bad due to a mismatch  | 
648  |  |        of the old and new frame infos. */  | 
649  | 0  |     newLen = refLen;  | 
650  | 0  |     estimatedStartPos = pFrameInfo->borders[0];  | 
651  | 0  |   }  | 
652  |  | 
  | 
653  | 0  |   deltaExp = FDK_getNumOctavesDiv8(newLen, refLen);  | 
654  |  |  | 
655  |  |   /* Shift by -3 to rescale ld-table, ampRes-1 to enable coarser steps */  | 
656  | 0  |   shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 +  | 
657  | 0  |            h_sbr_data->ampResolutionCurrentFrame - 3);  | 
658  | 0  |   deltaExp = deltaExp >> shift;  | 
659  | 0  |   pFrameInfo->borders[0] = estimatedStartPos;  | 
660  | 0  |   pFrameInfo->bordersNoise[0] = estimatedStartPos;  | 
661  |  | 
  | 
662  | 0  |   if (h_sbr_data->coupling != COUPLING_BAL) { | 
663  | 0  |     nScalefactors = (pFrameInfo->freqRes[0]) ? nSfb[1] : nSfb[0];  | 
664  |  | 
  | 
665  | 0  |     for (i = 0; i < nScalefactors; i++)  | 
666  | 0  |       h_sbr_data->iEnvelope[i] = h_sbr_data->iEnvelope[i] + deltaExp;  | 
667  | 0  |   }  | 
668  | 0  | }  | 
669  |  |  | 
670  |  | /*!  | 
671  |  |   \brief   Convert each envelope value from logarithmic to linear domain  | 
672  |  |  | 
673  |  |   Energy levels are transmitted in powers of 2, i.e. only the exponent  | 
674  |  |   is extracted from the bitstream.  | 
675  |  |   Therefore, normally only integer exponents can occur. However during  | 
676  |  |   fading (in case of a corrupt bitstream), a fractional part can also  | 
677  |  |   occur. The data in the array iEnvelope is shifted left by ENV_EXP_FRACT  | 
678  |  |   compared to an integer representation so that numbers smaller than 1  | 
679  |  |   can be represented.  | 
680  |  |  | 
681  |  |   This function calculates a mantissa corresponding to the fractional  | 
682  |  |   part of the exponent for each reference energy. The array iEnvelope  | 
683  |  |   is converted in place to save memory. Input and output data must  | 
684  |  |   be interpreted differently, as shown in the below figure:  | 
685  |  |  | 
686  |  |   \image html  EnvelopeData.png  | 
687  |  |  | 
688  |  |   The data is then used in calculateSbrEnvelope().  | 
689  |  | */  | 
690  |  | static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,  | 
691  | 0  |                                    int ampResolution) { | 
692  | 0  |   int i;  | 
693  | 0  |   FIXP_SGL mantissa;  | 
694  | 0  |   int ampShift = 1 - ampResolution;  | 
695  | 0  |   int exponent;  | 
696  |  |  | 
697  |  |   /* In case that ENV_EXP_FRACT is changed to something else but 0 or 8,  | 
698  |  |      the initialization of this array has to be adapted!  | 
699  |  |   */  | 
700  |  | #if ENV_EXP_FRACT  | 
701  |  |   static const FIXP_SGL pow2[ENV_EXP_FRACT] = { | 
702  |  |       FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */  | 
703  |  |       FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */  | 
704  |  |       FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))),  | 
705  |  |       FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))),  | 
706  |  |       FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))),  | 
707  |  |       FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))),  | 
708  |  |       FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))),  | 
709  |  |       FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */  | 
710  |  |   };  | 
711  |  |  | 
712  |  |   int bit, mask;  | 
713  |  | #endif  | 
714  |  | 
  | 
715  | 0  |   for (i = 0; i < h_sbr_data->nScaleFactors; i++) { | 
716  | 0  |     exponent = (LONG)h_sbr_data->iEnvelope[i];  | 
717  |  | 
  | 
718  |  | #if ENV_EXP_FRACT  | 
719  |  |  | 
720  |  |     exponent = exponent >> ampShift;  | 
721  |  |     mantissa = 0.5f;  | 
722  |  |  | 
723  |  |     /* Amplify mantissa according to the fractional part of the  | 
724  |  |        exponent (result will be between 0.500000 and 0.999999)  | 
725  |  |     */  | 
726  |  |     mask = 1; /* begin with lowest bit of exponent */  | 
727  |  |  | 
728  |  |     for (bit = ENV_EXP_FRACT - 1; bit >= 0; bit--) { | 
729  |  |       if (exponent & mask) { | 
730  |  |         /* The current bit of the exponent is set,  | 
731  |  |            multiply mantissa with the corresponding factor: */  | 
732  |  |         mantissa = (FIXP_SGL)((mantissa * pow2[bit]) << 1);  | 
733  |  |       }  | 
734  |  |       /* Advance to next bit */  | 
735  |  |       mask = mask << 1;  | 
736  |  |     }  | 
737  |  |  | 
738  |  |     /* Make integer part of exponent right aligned */  | 
739  |  |     exponent = exponent >> ENV_EXP_FRACT;  | 
740  |  |  | 
741  |  | #else  | 
742  |  |     /* In case of the high amplitude resolution, 1 bit of the exponent gets lost  | 
743  |  |        by the shift. This will be compensated by a mantissa of 0.5*sqrt(2)  | 
744  |  |        instead of 0.5 if that bit is 1. */  | 
745  | 0  |     mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f)  | 
746  | 0  |                                      : FL2FXCONST_SGL(0.5f);  | 
747  | 0  |     exponent = exponent >> ampShift;  | 
748  | 0  | #endif  | 
749  |  |  | 
750  |  |     /*  | 
751  |  |       Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by  | 
752  |  |       1). Multiply by L=nChannels=64 by increasing exponent by another 6.  | 
753  |  |       => Increase exponent by 7  | 
754  |  |     */  | 
755  | 0  |     exponent += 7 + NRG_EXP_OFFSET;  | 
756  |  |  | 
757  |  |     /* Combine mantissa and exponent and write back the result */  | 
758  | 0  |     h_sbr_data->iEnvelope[i] =  | 
759  | 0  |         ((FIXP_SGL)((SHORT)(FIXP_SGL)mantissa & MASK_M)) +  | 
760  | 0  |         (FIXP_SGL)((SHORT)(FIXP_SGL)exponent & MASK_E);  | 
761  | 0  |   }  | 
762  | 0  | }  | 
763  |  |  | 
764  |  | /*!  | 
765  |  |   \brief   Build new reference energies from old ones and delta coded data  | 
766  |  | */  | 
767  |  | static void deltaToLinearPcmEnvelopeDecoding(  | 
768  |  |     HANDLE_SBR_HEADER_DATA hHeaderData,     /*!< Static control data */  | 
769  |  |     HANDLE_SBR_FRAME_DATA h_sbr_data,       /*!< pointer to current data */  | 
770  |  |     HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */  | 
771  | 0  | { | 
772  | 0  |   int i, domain, no_of_bands, band, freqRes;  | 
773  |  | 
  | 
774  | 0  |   FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;  | 
775  | 0  |   FIXP_SGL *ptr_nrg = h_sbr_data->iEnvelope;  | 
776  |  | 
  | 
777  | 0  |   int offset =  | 
778  | 0  |       2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1];  | 
779  |  | 
  | 
780  | 0  |   for (i = 0; i < h_sbr_data->frameInfo.nEnvelopes; i++) { | 
781  | 0  |     domain = h_sbr_data->domain_vec[i];  | 
782  | 0  |     freqRes = h_sbr_data->frameInfo.freqRes[i];  | 
783  |  | 
  | 
784  | 0  |     FDK_ASSERT(freqRes >= 0 && freqRes <= 1);  | 
785  |  |  | 
786  | 0  |     no_of_bands = hHeaderData->freqBandData.nSfb[freqRes];  | 
787  |  | 
  | 
788  | 0  |     FDK_ASSERT(no_of_bands < (64));  | 
789  |  |  | 
790  | 0  |     if (domain == 0) { | 
791  | 0  |       mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, 0, freqRes);  | 
792  | 0  |       ptr_nrg++;  | 
793  | 0  |       for (band = 1; band < no_of_bands; band++) { | 
794  | 0  |         *ptr_nrg = *ptr_nrg + *(ptr_nrg - 1);  | 
795  | 0  |         mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);  | 
796  | 0  |         ptr_nrg++;  | 
797  | 0  |       }  | 
798  | 0  |     } else { | 
799  | 0  |       for (band = 0; band < no_of_bands; band++) { | 
800  | 0  |         *ptr_nrg =  | 
801  | 0  |             *ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)];  | 
802  | 0  |         mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);  | 
803  | 0  |         ptr_nrg++;  | 
804  | 0  |       }  | 
805  | 0  |     }  | 
806  | 0  |   }  | 
807  | 0  | }  | 
808  |  |  | 
809  |  | /*!  | 
810  |  |   \brief   Build new noise levels from old ones and delta coded data  | 
811  |  | */  | 
812  |  | static void decodeNoiseFloorlevels(  | 
813  |  |     HANDLE_SBR_HEADER_DATA hHeaderData,     /*!< Static control data */  | 
814  |  |     HANDLE_SBR_FRAME_DATA h_sbr_data,       /*!< pointer to current data */  | 
815  |  |     HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */  | 
816  | 0  | { | 
817  | 0  |   int i;  | 
818  | 0  |   int nNfb = hHeaderData->freqBandData.nNfb;  | 
819  | 0  |   int nNoiseFloorEnvelopes = h_sbr_data->frameInfo.nNoiseEnvelopes;  | 
820  |  |  | 
821  |  |   /* Decode first noise envelope */  | 
822  |  | 
  | 
823  | 0  |   if (h_sbr_data->domain_vec_noise[0] == 0) { | 
824  | 0  |     FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[0];  | 
825  | 0  |     for (i = 1; i < nNfb; i++) { | 
826  | 0  |       noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];  | 
827  | 0  |       h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;  | 
828  | 0  |     }  | 
829  | 0  |   } else { | 
830  | 0  |     for (i = 0; i < nNfb; i++) { | 
831  | 0  |       h_sbr_data->sbrNoiseFloorLevel[i] += h_prev_data->prevNoiseLevel[i];  | 
832  | 0  |     }  | 
833  | 0  |   }  | 
834  |  |  | 
835  |  |   /* If present, decode the second noise envelope  | 
836  |  |      Note:  nNoiseFloorEnvelopes can only be 1 or 2 */  | 
837  |  | 
  | 
838  | 0  |   if (nNoiseFloorEnvelopes > 1) { | 
839  | 0  |     if (h_sbr_data->domain_vec_noise[1] == 0) { | 
840  | 0  |       FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[nNfb];  | 
841  | 0  |       for (i = nNfb + 1; i < 2 * nNfb; i++) { | 
842  | 0  |         noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];  | 
843  | 0  |         h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;  | 
844  | 0  |       }  | 
845  | 0  |     } else { | 
846  | 0  |       for (i = 0; i < nNfb; i++) { | 
847  | 0  |         h_sbr_data->sbrNoiseFloorLevel[i + nNfb] +=  | 
848  | 0  |             h_sbr_data->sbrNoiseFloorLevel[i];  | 
849  | 0  |       }  | 
850  | 0  |     }  | 
851  | 0  |   }  | 
852  |  | 
  | 
853  | 0  |   limitNoiseLevels(hHeaderData, h_sbr_data);  | 
854  |  |  | 
855  |  |   /* Update prevNoiseLevel with the last noise envelope */  | 
856  | 0  |   for (i = 0; i < nNfb; i++)  | 
857  | 0  |     h_prev_data->prevNoiseLevel[i] =  | 
858  | 0  |         h_sbr_data->sbrNoiseFloorLevel[i + nNfb * (nNoiseFloorEnvelopes - 1)];  | 
859  |  |  | 
860  |  |   /* Requantize the noise floor levels in COUPLING_OFF-mode */  | 
861  | 0  |   if (!h_sbr_data->coupling) { | 
862  | 0  |     int nf_e;  | 
863  |  | 
  | 
864  | 0  |     for (i = 0; i < nNoiseFloorEnvelopes * nNfb; i++) { | 
865  | 0  |       nf_e = 6 - (LONG)h_sbr_data->sbrNoiseFloorLevel[i] + 1 + NOISE_EXP_OFFSET;  | 
866  |  |       /* +1 to compensate for a mantissa of 0.5 instead of 1.0 */  | 
867  |  | 
  | 
868  | 0  |       h_sbr_data->sbrNoiseFloorLevel[i] =  | 
869  | 0  |           (FIXP_SGL)(((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */  | 
870  | 0  |                      (nf_e & MASK_E));              /* exponent */  | 
871  | 0  |     }  | 
872  | 0  |   }  | 
873  | 0  | }  |