Coverage Report

Created: 2025-10-28 06:45

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libAACdec/src/rvlcconceal.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  rvlc concealment
106
  \author Josef Hoepfl
107
*/
108
109
#include "rvlcconceal.h"
110
111
#include "block.h"
112
#include "rvlc.h"
113
114
/*---------------------------------------------------------------------------------------------
115
  function:      calcRefValFwd
116
117
  description:   The function determines the scalefactor which is closed to the
118
scalefactorband conceal_min. The same is done for intensity data and noise
119
energies.
120
-----------------------------------------------------------------------------------------------
121
  output:        - reference value scf
122
                 - reference value internsity data
123
                 - reference value noise energy
124
-----------------------------------------------------------------------------------------------
125
  return:        -
126
--------------------------------------------------------------------------------------------
127
*/
128
129
static void calcRefValFwd(CErRvlcInfo *pRvlc,
130
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
131
45.1k
                          int *refIsFwd, int *refNrgFwd, int *refScfFwd) {
132
45.1k
  int band, bnds, group, startBand;
133
45.1k
  int idIs, idNrg, idScf;
134
45.1k
  int conceal_min, conceal_group_min;
135
45.1k
  int MaximumScaleFactorBands;
136
137
45.1k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
138
1.20k
    MaximumScaleFactorBands = 16;
139
43.9k
  else
140
43.9k
    MaximumScaleFactorBands = 64;
141
142
45.1k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
143
45.1k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
144
145
  /* calculate first reference value for approach in forward direction */
146
45.1k
  idIs = idNrg = idScf = 1;
147
148
  /* set reference values */
149
45.1k
  *refIsFwd = -SF_OFFSET;
150
45.1k
  *refNrgFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain -
151
45.1k
               SF_OFFSET - 90 - 256;
152
45.1k
  *refScfFwd =
153
45.1k
      pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET;
154
155
45.1k
  startBand = conceal_min - 1;
156
91.3k
  for (group = conceal_group_min; group >= 0; group--) {
157
64.6k
    for (band = startBand; band >= 0; band--) {
158
18.4k
      bnds = 16 * group + band;
159
18.4k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
160
2.72k
        case ZERO_HCB:
161
2.72k
          break;
162
1.30k
        case INTENSITY_HCB:
163
1.80k
        case INTENSITY_HCB2:
164
1.80k
          if (idIs) {
165
815
            *refIsFwd =
166
815
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
167
815
            idIs = 0; /* reference value has been set */
168
815
          }
169
1.80k
          break;
170
1.13k
        case NOISE_HCB:
171
1.13k
          if (idNrg) {
172
453
            *refNrgFwd =
173
453
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
174
453
            idNrg = 0; /* reference value has been set */
175
453
          }
176
1.13k
          break;
177
12.8k
        default:
178
12.8k
          if (idScf) {
179
7.88k
            *refScfFwd =
180
7.88k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
181
7.88k
            idScf = 0; /* reference value has been set */
182
7.88k
          }
183
12.8k
          break;
184
18.4k
      }
185
18.4k
    }
186
46.1k
    startBand = pRvlc->maxSfbTransmitted - 1;
187
46.1k
  }
188
45.1k
}
189
190
/*---------------------------------------------------------------------------------------------
191
  function:      calcRefValBwd
192
193
  description:   The function determines the scalefactor which is closed to the
194
scalefactorband conceal_max. The same is done for intensity data and noise
195
energies.
196
-----------------------------------------------------------------------------------------------
197
  output:        - reference value scf
198
                 - reference value internsity data
199
                 - reference value noise energy
200
-----------------------------------------------------------------------------------------------
201
  return:        -
202
--------------------------------------------------------------------------------------------
203
*/
204
205
static void calcRefValBwd(CErRvlcInfo *pRvlc,
206
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
207
45.1k
                          int *refIsBwd, int *refNrgBwd, int *refScfBwd) {
208
45.1k
  int band, bnds, group, startBand;
209
45.1k
  int idIs, idNrg, idScf;
210
45.1k
  int conceal_max, conceal_group_max;
211
45.1k
  int MaximumScaleFactorBands;
212
213
45.1k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
214
1.20k
    MaximumScaleFactorBands = 16;
215
43.9k
  else
216
43.9k
    MaximumScaleFactorBands = 64;
217
218
45.1k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
219
45.1k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
220
221
  /* calculate first reference value for approach in backward direction */
222
45.1k
  idIs = idNrg = idScf = 1;
223
224
  /* set reference values */
225
45.1k
  *refIsBwd = pRvlc->dpcm_is_last_position - SF_OFFSET;
226
45.1k
  *refNrgBwd = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position -
227
45.1k
               SF_OFFSET - 90 - 256 + pRvlc->dpcm_noise_nrg;
228
45.1k
  *refScfBwd = pRvlc->rev_global_gain - SF_OFFSET;
229
230
45.1k
  startBand = conceal_max + 1;
231
232
  /* if needed, re-set reference values */
233
93.2k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
234
81.6k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
235
33.5k
      bnds = 16 * group + band;
236
33.5k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
237
7.79k
        case ZERO_HCB:
238
7.79k
          break;
239
1.25k
        case INTENSITY_HCB:
240
2.59k
        case INTENSITY_HCB2:
241
2.59k
          if (idIs) {
242
702
            *refIsBwd =
243
702
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
244
702
            idIs = 0; /* reference value has been set */
245
702
          }
246
2.59k
          break;
247
1.10k
        case NOISE_HCB:
248
1.10k
          if (idNrg) {
249
297
            *refNrgBwd =
250
297
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
251
297
            idNrg = 0; /* reference value has been set */
252
297
          }
253
1.10k
          break;
254
22.0k
        default:
255
22.0k
          if (idScf) {
256
9.06k
            *refScfBwd =
257
9.06k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
258
9.06k
            idScf = 0; /* reference value has been set */
259
9.06k
          }
260
22.0k
          break;
261
33.5k
      }
262
33.5k
    }
263
48.0k
    startBand = 0;
264
48.0k
  }
265
45.1k
}
266
267
/*---------------------------------------------------------------------------------------------
268
  function:      BidirectionalEstimation_UseLowerScfOfCurrentFrame
269
270
  description:   This approach by means of bidirectional estimation is generally
271
performed when a single bit error has been detected, the bit error can be
272
isolated between 'conceal_min' and 'conceal_max' and the 'sf_concealment' flag
273
is not set. The sets of scalefactors decoded in forward and backward direction
274
are compared with each other. The smaller scalefactor will be considered as the
275
correct one respectively. The reconstruction of the scalefactors with this
276
approach archieve good results in audio quality. The strategy must be applied to
277
scalefactors, intensity data and noise energy seperately.
278
-----------------------------------------------------------------------------------------------
279
  output:        Concealed scalefactor, noise energy and intensity data between
280
conceal_min and conceal_max
281
-----------------------------------------------------------------------------------------------
282
  return:        -
283
--------------------------------------------------------------------------------------------
284
*/
285
286
void BidirectionalEstimation_UseLowerScfOfCurrentFrame(
287
56.4k
    CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
288
56.4k
  CErRvlcInfo *pRvlc =
289
56.4k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
290
56.4k
  int band, bnds, startBand, endBand, group;
291
56.4k
  int conceal_min, conceal_max;
292
56.4k
  int conceal_group_min, conceal_group_max;
293
56.4k
  int MaximumScaleFactorBands;
294
295
56.4k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
296
9.04k
    MaximumScaleFactorBands = 16;
297
47.3k
  } else {
298
47.3k
    MaximumScaleFactorBands = 64;
299
47.3k
  }
300
301
  /* If an error was detected just in forward or backward direction, set the
302
     corresponding border for concealment to a appropriate scalefactor band. The
303
     border is set to first or last sfb respectively, because the error will
304
     possibly not follow directly after the corrupt bit but just after decoding
305
     some more (wrong) scalefactors. */
306
56.4k
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
307
308
56.4k
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
309
4.95k
    pRvlc->conceal_max =
310
4.95k
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
311
312
56.4k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
313
56.4k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
314
56.4k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
315
56.4k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
316
317
56.4k
  if (pRvlc->conceal_min == pRvlc->conceal_max) {
318
45.1k
    int refIsFwd, refNrgFwd, refScfFwd;
319
45.1k
    int refIsBwd, refNrgBwd, refScfBwd;
320
321
45.1k
    bnds = pRvlc->conceal_min;
322
45.1k
    calcRefValFwd(pRvlc, pAacDecoderChannelInfo, &refIsFwd, &refNrgFwd,
323
45.1k
                  &refScfFwd);
324
45.1k
    calcRefValBwd(pRvlc, pAacDecoderChannelInfo, &refIsBwd, &refNrgBwd,
325
45.1k
                  &refScfBwd);
326
327
45.1k
    switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
328
31.8k
      case ZERO_HCB:
329
31.8k
        break;
330
829
      case INTENSITY_HCB:
331
1.06k
      case INTENSITY_HCB2:
332
1.06k
        if (refIsFwd < refIsBwd)
333
219
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsFwd;
334
849
        else
335
849
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsBwd;
336
1.06k
        break;
337
537
      case NOISE_HCB:
338
537
        if (refNrgFwd < refNrgBwd)
339
234
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgFwd;
340
303
        else
341
303
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgBwd;
342
537
        break;
343
11.6k
      default:
344
11.6k
        if (refScfFwd < refScfBwd)
345
9.72k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfFwd;
346
1.95k
        else
347
1.95k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfBwd;
348
11.6k
        break;
349
45.1k
    }
350
45.1k
  } else {
351
11.2k
    pAacDecoderChannelInfo->pComData->overlay.aac
352
11.2k
        .aRvlcScfFwd[pRvlc->conceal_max] =
353
11.2k
        pAacDecoderChannelInfo->pComData->overlay.aac
354
11.2k
            .aRvlcScfBwd[pRvlc->conceal_max];
355
11.2k
    pAacDecoderChannelInfo->pComData->overlay.aac
356
11.2k
        .aRvlcScfBwd[pRvlc->conceal_min] =
357
11.2k
        pAacDecoderChannelInfo->pComData->overlay.aac
358
11.2k
            .aRvlcScfFwd[pRvlc->conceal_min];
359
360
    /* consider the smaller of the forward and backward decoded value as the
361
     * correct one */
362
11.2k
    startBand = conceal_min;
363
11.2k
    if (conceal_group_min == conceal_group_max)
364
5.90k
      endBand = conceal_max;
365
5.35k
    else
366
5.35k
      endBand = pRvlc->maxSfbTransmitted - 1;
367
368
31.6k
    for (group = conceal_group_min; group <= conceal_group_max; group++) {
369
79.2k
      for (band = startBand; band <= endBand; band++) {
370
58.8k
        bnds = 16 * group + band;
371
58.8k
        if (pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds] <
372
58.8k
            pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds])
373
22.0k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
374
22.0k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
375
36.8k
        else
376
36.8k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
377
36.8k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
378
58.8k
      }
379
20.3k
      startBand = 0;
380
20.3k
      if ((group + 1) == conceal_group_max) endBand = conceal_max;
381
20.3k
    }
382
11.2k
  }
383
384
  /* now copy all data to the output buffer which needs not to be concealed */
385
56.4k
  if (conceal_group_min == 0)
386
51.8k
    endBand = conceal_min;
387
4.60k
  else
388
4.60k
    endBand = pRvlc->maxSfbTransmitted;
389
129k
  for (group = 0; group <= conceal_group_min; group++) {
390
158k
    for (band = 0; band < endBand; band++) {
391
85.1k
      bnds = 16 * group + band;
392
85.1k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
393
85.1k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
394
85.1k
    }
395
73.5k
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
396
73.5k
  }
397
398
56.4k
  startBand = conceal_max + 1;
399
129k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
400
158k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
401
85.6k
      bnds = 16 * group + band;
402
85.6k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
403
85.6k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
404
85.6k
    }
405
73.1k
    startBand = 0;
406
73.1k
  }
407
56.4k
}
408
409
/*---------------------------------------------------------------------------------------------
410
  function:      BidirectionalEstimation_UseScfOfPrevFrameAsReference
411
412
  description:   This approach by means of bidirectional estimation is generally
413
performed when a single bit error has been detected, the bit error can be
414
isolated between 'conceal_min' and 'conceal_max', the 'sf_concealment' flag is
415
set and the previous frame has the same block type as the current frame. The
416
scalefactor decoded in forward and backward direction and the scalefactor of the
417
previous frame are compared with each other. The smaller scalefactor will be
418
considered as the correct one. At this the codebook of the previous and current
419
frame must be of the same set (scf, nrg, is) in each scalefactorband. Otherwise
420
the scalefactor of the previous frame is not considered in the minimum
421
calculation. The reconstruction of the scalefactors with this approach archieve
422
good results in audio quality. The strategy must be applied to scalefactors,
423
intensity data and noise energy seperately.
424
-----------------------------------------------------------------------------------------------
425
  output:        Concealed scalefactor, noise energy and intensity data between
426
conceal_min and conceal_max
427
-----------------------------------------------------------------------------------------------
428
  return:        -
429
--------------------------------------------------------------------------------------------
430
*/
431
432
void BidirectionalEstimation_UseScfOfPrevFrameAsReference(
433
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
434
37.3k
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
435
37.3k
  CErRvlcInfo *pRvlc =
436
37.3k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
437
37.3k
  int band, bnds, startBand, endBand, group;
438
37.3k
  int conceal_min, conceal_max;
439
37.3k
  int conceal_group_min, conceal_group_max;
440
37.3k
  int MaximumScaleFactorBands;
441
37.3k
  SHORT commonMin;
442
443
37.3k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
444
6.00k
    MaximumScaleFactorBands = 16;
445
31.3k
  } else {
446
31.3k
    MaximumScaleFactorBands = 64;
447
31.3k
  }
448
449
  /* If an error was detected just in forward or backward direction, set the
450
     corresponding border for concealment to a appropriate scalefactor band. The
451
     border is set to first or last sfb respectively, because the error will
452
     possibly not follow directly after the corrupt bit but just after decoding
453
     some more (wrong) scalefactors. */
454
37.3k
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
455
456
37.3k
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
457
3.70k
    pRvlc->conceal_max =
458
3.70k
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
459
460
37.3k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
461
37.3k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
462
37.3k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
463
37.3k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
464
465
37.3k
  pAacDecoderChannelInfo->pComData->overlay.aac
466
37.3k
      .aRvlcScfFwd[pRvlc->conceal_max] =
467
37.3k
      pAacDecoderChannelInfo->pComData->overlay.aac
468
37.3k
          .aRvlcScfBwd[pRvlc->conceal_max];
469
37.3k
  pAacDecoderChannelInfo->pComData->overlay.aac
470
37.3k
      .aRvlcScfBwd[pRvlc->conceal_min] =
471
37.3k
      pAacDecoderChannelInfo->pComData->overlay.aac
472
37.3k
          .aRvlcScfFwd[pRvlc->conceal_min];
473
474
  /* consider the smaller of the forward and backward decoded value as the
475
   * correct one */
476
37.3k
  startBand = conceal_min;
477
37.3k
  if (conceal_group_min == conceal_group_max)
478
32.1k
    endBand = conceal_max;
479
5.18k
  else
480
5.18k
    endBand = pRvlc->maxSfbTransmitted - 1;
481
482
83.9k
  for (group = conceal_group_min; group <= conceal_group_max; group++) {
483
140k
    for (band = startBand; band <= endBand; band++) {
484
94.2k
      bnds = 16 * group + band;
485
94.2k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
486
25.7k
        case ZERO_HCB:
487
25.7k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
488
25.7k
          break;
489
490
4.87k
        case INTENSITY_HCB:
491
22.5k
        case INTENSITY_HCB2:
492
22.5k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
493
22.5k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
494
22.5k
              (pAacDecoderStaticChannelInfo->concealmentInfo
495
22.5k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
496
12.6k
            commonMin = fMin(
497
12.6k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
498
12.6k
                pAacDecoderChannelInfo->pComData->overlay.aac
499
12.6k
                    .aRvlcScfBwd[bnds]);
500
12.6k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
501
12.6k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
502
12.6k
                                    .aRvlcPreviousScaleFactor[bnds]);
503
12.6k
          } else {
504
9.97k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
505
9.97k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
506
9.97k
                pAacDecoderChannelInfo->pComData->overlay.aac
507
9.97k
                    .aRvlcScfBwd[bnds]);
508
9.97k
          }
509
22.5k
          break;
510
511
4.03k
        case NOISE_HCB:
512
4.03k
          if (pAacDecoderStaticChannelInfo->concealmentInfo
513
4.03k
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
514
340
            commonMin = fMin(
515
340
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
516
340
                pAacDecoderChannelInfo->pComData->overlay.aac
517
340
                    .aRvlcScfBwd[bnds]);
518
340
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
519
340
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
520
340
                                    .aRvlcPreviousScaleFactor[bnds]);
521
3.69k
          } else {
522
3.69k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
523
3.69k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
524
3.69k
                pAacDecoderChannelInfo->pComData->overlay.aac
525
3.69k
                    .aRvlcScfBwd[bnds]);
526
3.69k
          }
527
4.03k
          break;
528
529
41.8k
        default:
530
41.8k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
531
41.8k
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
532
8.10k
              (pAacDecoderStaticChannelInfo->concealmentInfo
533
8.10k
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
534
7.97k
              (pAacDecoderStaticChannelInfo->concealmentInfo
535
7.97k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
536
7.86k
              (pAacDecoderStaticChannelInfo->concealmentInfo
537
7.86k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
538
7.78k
            commonMin = fMin(
539
7.78k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
540
7.78k
                pAacDecoderChannelInfo->pComData->overlay.aac
541
7.78k
                    .aRvlcScfBwd[bnds]);
542
7.78k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
543
7.78k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
544
7.78k
                                    .aRvlcPreviousScaleFactor[bnds]);
545
34.1k
          } else {
546
34.1k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
547
34.1k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
548
34.1k
                pAacDecoderChannelInfo->pComData->overlay.aac
549
34.1k
                    .aRvlcScfBwd[bnds]);
550
34.1k
          }
551
41.8k
          break;
552
94.2k
      }
553
94.2k
    }
554
46.6k
    startBand = 0;
555
46.6k
    if ((group + 1) == conceal_group_max) endBand = conceal_max;
556
46.6k
  }
557
558
  /* now copy all data to the output buffer which needs not to be concealed */
559
37.3k
  if (conceal_group_min == 0)
560
31.4k
    endBand = conceal_min;
561
5.95k
  else
562
5.95k
    endBand = pRvlc->maxSfbTransmitted;
563
89.2k
  for (group = 0; group <= conceal_group_min; group++) {
564
102k
    for (band = 0; band < endBand; band++) {
565
50.7k
      bnds = 16 * group + band;
566
50.7k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
567
50.7k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
568
50.7k
    }
569
51.8k
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
570
51.8k
  }
571
572
37.3k
  startBand = conceal_max + 1;
573
80.5k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
574
72.9k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
575
29.7k
      bnds = 16 * group + band;
576
29.7k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
577
29.7k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
578
29.7k
    }
579
43.2k
    startBand = 0;
580
43.2k
  }
581
37.3k
}
582
583
/*---------------------------------------------------------------------------------------------
584
  function:      StatisticalEstimation
585
586
  description:   This approach by means of statistical estimation is generally
587
performed when both the start value and the end value are different and no
588
further errors have been detected. Considering the forward and backward decoded
589
scalefactors, the set with the lower scalefactors in sum will be considered as
590
the correct one. The scalefactors are differentially encoded. Normally it would
591
reach to compare one pair of the forward and backward decoded scalefactors to
592
specify the lower set. But having detected no further errors does not
593
necessarily mean the absence of errors. Therefore all scalefactors decoded in
594
forward and backward direction are summed up seperately. The set with the lower
595
sum will be used. The strategy must be applied to scalefactors, intensity data
596
and noise energy seperately.
597
-----------------------------------------------------------------------------------------------
598
  output:        Concealed scalefactor, noise energy and intensity data
599
-----------------------------------------------------------------------------------------------
600
  return:        -
601
--------------------------------------------------------------------------------------------
602
*/
603
604
3.66k
void StatisticalEstimation(CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
605
3.66k
  CErRvlcInfo *pRvlc =
606
3.66k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
607
3.66k
  int band, bnds, group;
608
3.66k
  int sumIsFwd, sumIsBwd;   /* sum of intensity data forward/backward */
609
3.66k
  int sumNrgFwd, sumNrgBwd; /* sum of noise energy data forward/backward */
610
3.66k
  int sumScfFwd, sumScfBwd; /* sum of scalefactor data forward/backward */
611
3.66k
  int useIsFwd, useNrgFwd, useScfFwd; /* the flags signals the elements which
612
                                         are used for the final result */
613
614
3.66k
  sumIsFwd = sumIsBwd = sumNrgFwd = sumNrgBwd = sumScfFwd = sumScfBwd = 0;
615
3.66k
  useIsFwd = useNrgFwd = useScfFwd = 0;
616
617
  /* calculate sum of each group (scf,nrg,is) of forward and backward direction
618
   */
619
7.89k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
620
27.4k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
621
23.2k
      bnds = 16 * group + band;
622
23.2k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
623
9.26k
        case ZERO_HCB:
624
9.26k
          break;
625
626
398
        case INTENSITY_HCB:
627
1.36k
        case INTENSITY_HCB2:
628
1.36k
          sumIsFwd +=
629
1.36k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
630
1.36k
          sumIsBwd +=
631
1.36k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
632
1.36k
          break;
633
634
1.04k
        case NOISE_HCB:
635
1.04k
          sumNrgFwd +=
636
1.04k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
637
1.04k
          sumNrgBwd +=
638
1.04k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
639
1.04k
          break;
640
641
11.5k
        default:
642
11.5k
          sumScfFwd +=
643
11.5k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
644
11.5k
          sumScfBwd +=
645
11.5k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
646
11.5k
          break;
647
23.2k
      }
648
23.2k
    }
649
4.23k
  }
650
651
  /* find for each group (scf,nrg,is) the correct direction */
652
3.66k
  if (sumIsFwd < sumIsBwd) useIsFwd = 1;
653
654
3.66k
  if (sumNrgFwd < sumNrgBwd) useNrgFwd = 1;
655
656
3.66k
  if (sumScfFwd < sumScfBwd) useScfFwd = 1;
657
658
  /* conceal each group (scf,nrg,is) */
659
7.89k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
660
27.4k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
661
23.2k
      bnds = 16 * group + band;
662
23.2k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
663
9.26k
        case ZERO_HCB:
664
9.26k
          break;
665
666
398
        case INTENSITY_HCB:
667
1.36k
        case INTENSITY_HCB2:
668
1.36k
          if (useIsFwd)
669
398
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
670
398
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
671
971
          else
672
971
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
673
971
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
674
1.36k
          break;
675
676
1.04k
        case NOISE_HCB:
677
1.04k
          if (useNrgFwd)
678
340
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
679
340
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
680
709
          else
681
709
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
682
709
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
683
1.04k
          break;
684
685
11.5k
        default:
686
11.5k
          if (useScfFwd)
687
5.10k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
688
5.10k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
689
6.43k
          else
690
6.43k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
691
6.43k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
692
11.5k
          break;
693
23.2k
      }
694
23.2k
    }
695
4.23k
  }
696
3.66k
}
697
698
/*---------------------------------------------------------------------------------------------
699
  description:   Approach by means of predictive interpolation
700
                 This approach by means of predictive estimation is generally
701
performed when the error cannot be isolated between 'conceal_min' and
702
'conceal_max', the 'sf_concealment' flag is set and the previous frame has the
703
same block type as the current frame. Check for each scalefactorband if the same
704
type of data (scalefactor, internsity data, noise energies) is transmitted. If
705
so use the scalefactor (intensity data, noise energy) in the current frame.
706
Otherwise set the scalefactor (intensity data, noise energy) for this
707
scalefactorband to zero.
708
-----------------------------------------------------------------------------------------------
709
  output:        Concealed scalefactor, noise energy and intensity data
710
-----------------------------------------------------------------------------------------------
711
  return:        -
712
--------------------------------------------------------------------------------------------
713
*/
714
715
void PredictiveInterpolation(
716
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
717
7.57k
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
718
7.57k
  CErRvlcInfo *pRvlc =
719
7.57k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
720
7.57k
  int band, bnds, group;
721
7.57k
  SHORT commonMin;
722
723
15.3k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
724
35.5k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
725
27.7k
      bnds = 16 * group + band;
726
27.7k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
727
111
        case ZERO_HCB:
728
111
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
729
111
          break;
730
731
113
        case INTENSITY_HCB:
732
14.4k
        case INTENSITY_HCB2:
733
14.4k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
734
14.4k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
735
14.4k
              (pAacDecoderStaticChannelInfo->concealmentInfo
736
14.4k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
737
13.3k
            commonMin = fMin(
738
13.3k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
739
13.3k
                pAacDecoderChannelInfo->pComData->overlay.aac
740
13.3k
                    .aRvlcScfBwd[bnds]);
741
13.3k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
742
13.3k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
743
13.3k
                                    .aRvlcPreviousScaleFactor[bnds]);
744
13.3k
          } else {
745
1.17k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
746
1.17k
          }
747
14.4k
          break;
748
749
1.23k
        case NOISE_HCB:
750
1.23k
          if (pAacDecoderStaticChannelInfo->concealmentInfo
751
1.23k
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
752
627
            commonMin = fMin(
753
627
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
754
627
                pAacDecoderChannelInfo->pComData->overlay.aac
755
627
                    .aRvlcScfBwd[bnds]);
756
627
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
757
627
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
758
627
                                    .aRvlcPreviousScaleFactor[bnds]);
759
627
          } else {
760
606
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
761
606
          }
762
1.23k
          break;
763
764
11.8k
        default:
765
11.8k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
766
11.8k
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
767
10.6k
              (pAacDecoderStaticChannelInfo->concealmentInfo
768
10.6k
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
769
10.1k
              (pAacDecoderStaticChannelInfo->concealmentInfo
770
10.1k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
771
10.0k
              (pAacDecoderStaticChannelInfo->concealmentInfo
772
10.0k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
773
10.0k
            commonMin = fMin(
774
10.0k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
775
10.0k
                pAacDecoderChannelInfo->pComData->overlay.aac
776
10.0k
                    .aRvlcScfBwd[bnds]);
777
10.0k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
778
10.0k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
779
10.0k
                                    .aRvlcPreviousScaleFactor[bnds]);
780
10.0k
          } else {
781
1.86k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
782
1.86k
          }
783
11.8k
          break;
784
27.7k
      }
785
27.7k
    }
786
7.79k
  }
787
7.57k
}