/src/aac/libFDK/include/qmf_pcm.h
Line  | Count  | Source  | 
1  |  | /* -----------------------------------------------------------------------------  | 
2  |  | Software License for The Fraunhofer FDK AAC Codec Library for Android  | 
3  |  |  | 
4  |  | © Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten  | 
5  |  | Forschung e.V. All rights reserved.  | 
6  |  |  | 
7  |  |  1.    INTRODUCTION  | 
8  |  | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software | 
9  |  | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding | 
10  |  | scheme for digital audio. This FDK AAC Codec software is intended to be used on  | 
11  |  | a wide variety of Android devices.  | 
12  |  |  | 
13  |  | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient  | 
14  |  | general perceptual audio codecs. AAC-ELD is considered the best-performing  | 
15  |  | full-bandwidth communications codec by independent studies and is widely  | 
16  |  | deployed. AAC has been standardized by ISO and IEC as part of the MPEG  | 
17  |  | specifications.  | 
18  |  |  | 
19  |  | Patent licenses for necessary patent claims for the FDK AAC Codec (including  | 
20  |  | those of Fraunhofer) may be obtained through Via Licensing  | 
21  |  | (www.vialicensing.com) or through the respective patent owners individually for  | 
22  |  | the purpose of encoding or decoding bit streams in products that are compliant  | 
23  |  | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of  | 
24  |  | Android devices already license these patent claims through Via Licensing or  | 
25  |  | directly from the patent owners, and therefore FDK AAC Codec software may  | 
26  |  | already be covered under those patent licenses when it is used for those  | 
27  |  | licensed purposes only.  | 
28  |  |  | 
29  |  | Commercially-licensed AAC software libraries, including floating-point versions  | 
30  |  | with enhanced sound quality, are also available from Fraunhofer. Users are  | 
31  |  | encouraged to check the Fraunhofer website for additional applications  | 
32  |  | information and documentation.  | 
33  |  |  | 
34  |  | 2.    COPYRIGHT LICENSE  | 
35  |  |  | 
36  |  | Redistribution and use in source and binary forms, with or without modification,  | 
37  |  | are permitted without payment of copyright license fees provided that you  | 
38  |  | satisfy the following conditions:  | 
39  |  |  | 
40  |  | You must retain the complete text of this software license in redistributions of  | 
41  |  | the FDK AAC Codec or your modifications thereto in source code form.  | 
42  |  |  | 
43  |  | You must retain the complete text of this software license in the documentation  | 
44  |  | and/or other materials provided with redistributions of the FDK AAC Codec or  | 
45  |  | your modifications thereto in binary form. You must make available free of  | 
46  |  | charge copies of the complete source code of the FDK AAC Codec and your  | 
47  |  | modifications thereto to recipients of copies in binary form.  | 
48  |  |  | 
49  |  | The name of Fraunhofer may not be used to endorse or promote products derived  | 
50  |  | from this library without prior written permission.  | 
51  |  |  | 
52  |  | You may not charge copyright license fees for anyone to use, copy or distribute  | 
53  |  | the FDK AAC Codec software or your modifications thereto.  | 
54  |  |  | 
55  |  | Your modified versions of the FDK AAC Codec must carry prominent notices stating  | 
56  |  | that you changed the software and the date of any change. For modified versions  | 
57  |  | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"  | 
58  |  | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK  | 
59  |  | AAC Codec Library for Android."  | 
60  |  |  | 
61  |  | 3.    NO PATENT LICENSE  | 
62  |  |  | 
63  |  | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without  | 
64  |  | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.  | 
65  |  | Fraunhofer provides no warranty of patent non-infringement with respect to this  | 
66  |  | software.  | 
67  |  |  | 
68  |  | You may use this FDK AAC Codec software or modifications thereto only for  | 
69  |  | purposes that are authorized by appropriate patent licenses.  | 
70  |  |  | 
71  |  | 4.    DISCLAIMER  | 
72  |  |  | 
73  |  | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright  | 
74  |  | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,  | 
75  |  | including but not limited to the implied warranties of merchantability and  | 
76  |  | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR  | 
77  |  | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,  | 
78  |  | or consequential damages, including but not limited to procurement of substitute  | 
79  |  | goods or services; loss of use, data, or profits, or business interruption,  | 
80  |  | however caused and on any theory of liability, whether in contract, strict  | 
81  |  | liability, or tort (including negligence), arising in any way out of the use of  | 
82  |  | this software, even if advised of the possibility of such damage.  | 
83  |  |  | 
84  |  | 5.    CONTACT INFORMATION  | 
85  |  |  | 
86  |  | Fraunhofer Institute for Integrated Circuits IIS  | 
87  |  | Attention: Audio and Multimedia Departments - FDK AAC LL  | 
88  |  | Am Wolfsmantel 33  | 
89  |  | 91058 Erlangen, Germany  | 
90  |  |  | 
91  |  | www.iis.fraunhofer.de/amm  | 
92  |  | amm-info@iis.fraunhofer.de  | 
93  |  | ----------------------------------------------------------------------------- */  | 
94  |  |  | 
95  |  | /******************* Library for basic calculation routines ********************  | 
96  |  |  | 
97  |  |    Author(s):   Markus Lohwasser, Josef Hoepfl, Manuel Jander  | 
98  |  |  | 
99  |  |    Description: QMF filterbank  | 
100  |  |  | 
101  |  | *******************************************************************************/  | 
102  |  |  | 
103  |  | #ifndef QMF_PCM_H  | 
104  |  | #define QMF_PCM_H  | 
105  |  |  | 
106  |  | /*  | 
107  |  |    All Synthesis functions dependent on datatype INT_PCM_QMFOUT  | 
108  |  |    Should only be included by qmf.cpp, but not compiled separately, please  | 
109  |  |    exclude compilation from project, if done otherwise. Is optional included  | 
110  |  |    twice to duplicate all functions with two different pre-definitions, as:  | 
111  |  |         #define INT_PCM_QMFOUT LONG  | 
112  |  |     and ...  | 
113  |  |         #define INT_PCM_QMFOUT SHORT  | 
114  |  |     needed to run QMF synthesis in both 16bit and 32bit sample output format.  | 
115  |  | */  | 
116  |  |  | 
117  |  | #define QSSCALE (0)  | 
118  | 0  | #define FX_DBL2FX_QSS(x) (x)  | 
119  | 0  | #define FX_QSS2FX_DBL(x) (x)  | 
120  |  |  | 
121  |  | /*!  | 
122  |  |   \brief Perform Synthesis Prototype Filtering on a single slot of input data.  | 
123  |  |  | 
124  |  |   The filter takes 2 * qmf->no_channels of input data and  | 
125  |  |   generates qmf->no_channels time domain output samples.  | 
126  |  | */  | 
127  |  | /* static */  | 
128  |  | #ifndef FUNCTION_qmfSynPrototypeFirSlot  | 
129  |  | void qmfSynPrototypeFirSlot(  | 
130  |  | #else  | 
131  |  | void qmfSynPrototypeFirSlot_fallback(  | 
132  |  | #endif  | 
133  |  |     HANDLE_QMF_FILTER_BANK qmf,  | 
134  |  |     FIXP_DBL *RESTRICT realSlot,      /*!< Input: Pointer to real Slot */  | 
135  |  |     FIXP_DBL *RESTRICT imagSlot,      /*!< Input: Pointer to imag Slot */  | 
136  |  |     INT_PCM_QMFOUT *RESTRICT timeOut, /*!< Time domain data */  | 
137  | 0  |     int stride) { | 
138  | 0  |   FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;  | 
139  | 0  |   int no_channels = qmf->no_channels;  | 
140  | 0  |   const FIXP_PFT *p_Filter = qmf->p_filter;  | 
141  | 0  |   int p_stride = qmf->p_stride;  | 
142  | 0  |   int j;  | 
143  | 0  |   FIXP_QSS *RESTRICT sta = FilterStates;  | 
144  | 0  |   const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;  | 
145  | 0  |   int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -  | 
146  | 0  |               qmf->outGain_e;  | 
147  |  | 
  | 
148  | 0  |   p_flt =  | 
149  | 0  |       p_Filter + p_stride * QMF_NO_POLY; /*                     5th of 330 */  | 
150  | 0  |   p_fltm = p_Filter + (qmf->FilterSize / 2) -  | 
151  | 0  |            p_stride * QMF_NO_POLY; /* 5 + (320 - 2*5) = 315th of 330 */  | 
152  |  | 
  | 
153  | 0  |   FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);  | 
154  |  | 
  | 
155  | 0  |   FIXP_DBL rnd_val = 0;  | 
156  |  | 
  | 
157  | 0  |   if (scale > 0) { | 
158  | 0  |     if (scale < (DFRACT_BITS - 1))  | 
159  | 0  |       rnd_val = FIXP_DBL(1 << (scale - 1));  | 
160  | 0  |     else  | 
161  | 0  |       scale = (DFRACT_BITS - 1);  | 
162  | 0  |   } else { | 
163  | 0  |     scale = fMax(scale, -(DFRACT_BITS - 1));  | 
164  | 0  |   }  | 
165  |  | 
  | 
166  | 0  |   for (j = no_channels - 1; j >= 0; j--) { | 
167  | 0  |     FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */  | 
168  | 0  |     FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */  | 
169  | 0  |     { | 
170  | 0  |       INT_PCM_QMFOUT tmp;  | 
171  | 0  |       FIXP_DBL Are = fMultAddDiv2(FX_QSS2FX_DBL(sta[0]), p_fltm[0], real);  | 
172  |  |  | 
173  |  |       /* This PCM formatting performs:  | 
174  |  |          - multiplication with 16-bit gain, if not -1.0f  | 
175  |  |          - rounding, if shift right is applied  | 
176  |  |          - apply shift left (or right) with saturation to 32 (or 16) bits  | 
177  |  |          - store output with --stride in 32 (or 16) bit format  | 
178  |  |       */  | 
179  | 0  |       if (gain != (FIXP_SGL)(-32768)) /* -1.0f */  | 
180  | 0  |       { | 
181  | 0  |         Are = fMult(Are, gain);  | 
182  | 0  |       }  | 
183  | 0  |       if (scale >= 0) { | 
184  | 0  |         FDK_ASSERT(  | 
185  | 0  |             Are <=  | 
186  | 0  |             (Are + rnd_val)); /* Round-addition must not overflow, might be  | 
187  |  |                                  equal for rnd_val=0 */  | 
188  | 0  |         tmp = (INT_PCM_QMFOUT)(  | 
189  | 0  |             SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));  | 
190  | 0  |       } else { | 
191  | 0  |         tmp = (INT_PCM_QMFOUT)(  | 
192  | 0  |             SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));  | 
193  | 0  |       }  | 
194  |  |  | 
195  | 0  |       { timeOut[(j)*stride] = tmp; } | 
196  | 0  |     }  | 
197  |  |  | 
198  | 0  |     sta[0] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[1]), p_flt[4], imag));  | 
199  | 0  |     sta[1] =  | 
200  | 0  |         FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[2]), p_fltm[1], real));  | 
201  | 0  |     sta[2] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[3]), p_flt[3], imag));  | 
202  | 0  |     sta[3] =  | 
203  | 0  |         FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[4]), p_fltm[2], real));  | 
204  | 0  |     sta[4] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[5]), p_flt[2], imag));  | 
205  | 0  |     sta[5] =  | 
206  | 0  |         FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[6]), p_fltm[3], real));  | 
207  | 0  |     sta[6] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[7]), p_flt[1], imag));  | 
208  | 0  |     sta[7] =  | 
209  | 0  |         FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[8]), p_fltm[4], real));  | 
210  | 0  |     sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));  | 
211  | 0  |     p_flt += (p_stride * QMF_NO_POLY);  | 
212  | 0  |     p_fltm -= (p_stride * QMF_NO_POLY);  | 
213  | 0  |     sta += 9;  // = (2*QMF_NO_POLY-1);  | 
214  | 0  |   }  | 
215  | 0  | } Unexecuted instantiation: qmfSynPrototypeFirSlot(QMF_FILTER_BANK*, int*, int*, short*, int) Unexecuted instantiation: qmfSynPrototypeFirSlot(QMF_FILTER_BANK*, int*, int*, int*, int)  | 
216  |  |  | 
217  |  | #ifndef FUNCTION_qmfSynPrototypeFirSlot_NonSymmetric  | 
218  |  | /*!  | 
219  |  |   \brief Perform Synthesis Prototype Filtering on a single slot of input data.  | 
220  |  |  | 
221  |  |   The filter takes 2 * qmf->no_channels of input data and  | 
222  |  |   generates qmf->no_channels time domain output samples.  | 
223  |  | */  | 
224  |  | static void qmfSynPrototypeFirSlot_NonSymmetric(  | 
225  |  |     HANDLE_QMF_FILTER_BANK qmf,  | 
226  |  |     FIXP_DBL *RESTRICT realSlot,      /*!< Input: Pointer to real Slot */  | 
227  |  |     FIXP_DBL *RESTRICT imagSlot,      /*!< Input: Pointer to imag Slot */  | 
228  |  |     INT_PCM_QMFOUT *RESTRICT timeOut, /*!< Time domain data */  | 
229  | 0  |     int stride) { | 
230  | 0  |   FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;  | 
231  | 0  |   int no_channels = qmf->no_channels;  | 
232  | 0  |   const FIXP_PFT *p_Filter = qmf->p_filter;  | 
233  | 0  |   int p_stride = qmf->p_stride;  | 
234  | 0  |   int j;  | 
235  | 0  |   FIXP_QSS *RESTRICT sta = FilterStates;  | 
236  | 0  |   const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;  | 
237  | 0  |   int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -  | 
238  | 0  |               qmf->outGain_e;  | 
239  |  | 
  | 
240  | 0  |   p_flt = p_Filter; /*!< Pointer to first half of filter coefficients */  | 
241  | 0  |   p_fltm =  | 
242  | 0  |       &p_flt[qmf->FilterSize / 2]; /* at index 320, overall 640 coefficients */  | 
243  |  | 
  | 
244  | 0  |   FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);  | 
245  |  | 
  | 
246  | 0  |   FIXP_DBL rnd_val = (FIXP_DBL)0;  | 
247  |  | 
  | 
248  | 0  |   if (scale > 0) { | 
249  | 0  |     if (scale < (DFRACT_BITS - 1))  | 
250  | 0  |       rnd_val = FIXP_DBL(1 << (scale - 1));  | 
251  | 0  |     else  | 
252  | 0  |       scale = (DFRACT_BITS - 1);  | 
253  | 0  |   } else { | 
254  | 0  |     scale = fMax(scale, -(DFRACT_BITS - 1));  | 
255  | 0  |   }  | 
256  |  | 
  | 
257  | 0  |   for (j = no_channels - 1; j >= 0; j--) { | 
258  | 0  |     FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */  | 
259  | 0  |     FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */  | 
260  | 0  |     { | 
261  | 0  |       INT_PCM_QMFOUT tmp;  | 
262  | 0  |       FIXP_DBL Are = sta[0] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[4], real));  | 
263  |  |  | 
264  |  |       /* This PCM formatting performs:  | 
265  |  |          - multiplication with 16-bit gain, if not -1.0f  | 
266  |  |          - rounding, if shift right is applied  | 
267  |  |          - apply shift left (or right) with saturation to 32 (or 16) bits  | 
268  |  |          - store output with --stride in 32 (or 16) bit format  | 
269  |  |       */  | 
270  | 0  |       if (gain != (FIXP_SGL)(-32768)) /* -1.0f */  | 
271  | 0  |       { | 
272  | 0  |         Are = fMult(Are, gain);  | 
273  | 0  |       }  | 
274  | 0  |       if (scale > 0) { | 
275  | 0  |         FDK_ASSERT(Are <  | 
276  | 0  |                    (Are + rnd_val)); /* Round-addition must not overflow */  | 
277  | 0  |         tmp = (INT_PCM_QMFOUT)(  | 
278  | 0  |             SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));  | 
279  | 0  |       } else { | 
280  | 0  |         tmp = (INT_PCM_QMFOUT)(  | 
281  | 0  |             SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));  | 
282  | 0  |       }  | 
283  | 0  |       timeOut[j * stride] = tmp;  | 
284  | 0  |     }  | 
285  |  |  | 
286  | 0  |     sta[0] = sta[1] + FX_DBL2FX_QSS(fMultDiv2(p_flt[4], imag));  | 
287  | 0  |     sta[1] = sta[2] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[3], real));  | 
288  | 0  |     sta[2] = sta[3] + FX_DBL2FX_QSS(fMultDiv2(p_flt[3], imag));  | 
289  |  | 
  | 
290  | 0  |     sta[3] = sta[4] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[2], real));  | 
291  | 0  |     sta[4] = sta[5] + FX_DBL2FX_QSS(fMultDiv2(p_flt[2], imag));  | 
292  | 0  |     sta[5] = sta[6] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[1], real));  | 
293  | 0  |     sta[6] = sta[7] + FX_DBL2FX_QSS(fMultDiv2(p_flt[1], imag));  | 
294  |  | 
  | 
295  | 0  |     sta[7] = sta[8] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[0], real));  | 
296  | 0  |     sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));  | 
297  |  | 
  | 
298  | 0  |     p_flt += (p_stride * QMF_NO_POLY);  | 
299  | 0  |     p_fltm += (p_stride * QMF_NO_POLY);  | 
300  | 0  |     sta += 9;  // = (2*QMF_NO_POLY-1);  | 
301  | 0  |   }  | 
302  | 0  | } Unexecuted instantiation: qmf.cpp:qmfSynPrototypeFirSlot_NonSymmetric(QMF_FILTER_BANK*, int*, int*, short*, int) Unexecuted instantiation: qmf.cpp:qmfSynPrototypeFirSlot_NonSymmetric(QMF_FILTER_BANK*, int*, int*, int*, int)  | 
303  |  | #endif /* FUNCTION_qmfSynPrototypeFirSlot_NonSymmetric */  | 
304  |  |  | 
305  |  | void qmfSynthesisFilteringSlot(HANDLE_QMF_FILTER_BANK synQmf,  | 
306  |  |                                const FIXP_DBL *realSlot,  | 
307  |  |                                const FIXP_DBL *imagSlot,  | 
308  |  |                                const int scaleFactorLowBand,  | 
309  |  |                                const int scaleFactorHighBand,  | 
310  |  |                                INT_PCM_QMFOUT *timeOut, const int stride,  | 
311  | 0  |                                FIXP_DBL *pWorkBuffer) { | 
312  | 0  |   if (!(synQmf->flags & QMF_FLAG_LP))  | 
313  | 0  |     qmfInverseModulationHQ(synQmf, realSlot, imagSlot, scaleFactorLowBand,  | 
314  | 0  |                            scaleFactorHighBand, pWorkBuffer);  | 
315  | 0  |   else { | 
316  | 0  |     if (synQmf->flags & QMF_FLAG_CLDFB) { | 
317  | 0  |       qmfInverseModulationLP_odd(synQmf, realSlot, scaleFactorLowBand,  | 
318  | 0  |                                  scaleFactorHighBand, pWorkBuffer);  | 
319  | 0  |     } else { | 
320  | 0  |       qmfInverseModulationLP_even(synQmf, realSlot, scaleFactorLowBand,  | 
321  | 0  |                                   scaleFactorHighBand, pWorkBuffer);  | 
322  | 0  |     }  | 
323  | 0  |   }  | 
324  |  | 
  | 
325  | 0  |   if (synQmf->flags & QMF_FLAG_NONSYMMETRIC) { | 
326  | 0  |     qmfSynPrototypeFirSlot_NonSymmetric(synQmf, pWorkBuffer,  | 
327  | 0  |                                         pWorkBuffer + synQmf->no_channels,  | 
328  | 0  |                                         timeOut, stride);  | 
329  | 0  |   } else { | 
330  | 0  |     qmfSynPrototypeFirSlot(synQmf, pWorkBuffer,  | 
331  | 0  |                            pWorkBuffer + synQmf->no_channels, timeOut, stride);  | 
332  | 0  |   }  | 
333  | 0  | } Unexecuted instantiation: qmfSynthesisFilteringSlot(QMF_FILTER_BANK*, int const*, int const*, int, int, short*, int, int*) Unexecuted instantiation: qmfSynthesisFilteringSlot(QMF_FILTER_BANK*, int const*, int const*, int, int, int*, int, int*)  | 
334  |  |  | 
335  |  | /*!  | 
336  |  |  *  | 
337  |  |  * \brief Perform complex-valued subband synthesis of the  | 
338  |  |  *        low band and the high band and store the  | 
339  |  |  *        time domain data in timeOut  | 
340  |  |  *  | 
341  |  |  * First step: Calculate the proper scaling factor of current  | 
342  |  |  * spectral data in qmfReal/qmfImag, old spectral data in the overlap  | 
343  |  |  * range and filter states.  | 
344  |  |  *  | 
345  |  |  * Second step: Perform Frequency-to-Time mapping with inverse  | 
346  |  |  * Modulation slot-wise.  | 
347  |  |  *  | 
348  |  |  * Third step: Perform FIR-filter slot-wise. To save space for filter  | 
349  |  |  * states, the MAC operations are executed directly on the filter states  | 
350  |  |  * instead of accumulating several products in the accumulator. The  | 
351  |  |  * buffer shift at the end of the function should be replaced by a  | 
352  |  |  * modulo operation, which is available on some DSPs.  | 
353  |  |  *  | 
354  |  |  * Last step: Copy the upper part of the spectral data to the overlap buffer.  | 
355  |  |  *  | 
356  |  |  * The qmf coefficient table is symmetric. The symmetry is exploited by  | 
357  |  |  * shrinking the coefficient table to half the size. The addressing mode  | 
358  |  |  * takes care of the symmetries.  If the #define #QMFTABLE_FULL is set,  | 
359  |  |  * coefficient addressing works on the full table size. The code will be  | 
360  |  |  * slightly faster and slightly more compact.  | 
361  |  |  *  | 
362  |  |  * Workbuffer requirement: 2 x sizeof(**QmfBufferReal) * synQmf->no_channels  | 
363  |  |  * The workbuffer must be aligned  | 
364  |  |  */  | 
365  |  | void qmfSynthesisFiltering(  | 
366  |  |     HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */  | 
367  |  |     FIXP_DBL **QmfBufferReal,      /*!< Low and High band, real */  | 
368  |  |     FIXP_DBL **QmfBufferImag,      /*!< Low and High band, imag */  | 
369  |  |     const QMF_SCALE_FACTOR *scaleFactor,  | 
370  |  |     const INT ov_len,        /*!< split Slot of overlap and actual slots */  | 
371  |  |     INT_PCM_QMFOUT *timeOut, /*!< Pointer to output */  | 
372  |  |     const INT stride,        /*!< stride factor of output */  | 
373  |  |     FIXP_DBL *pWorkBuffer    /*!< pointer to temporal working buffer */  | 
374  | 0  | ) { | 
375  | 0  |   int i;  | 
376  | 0  |   int L = synQmf->no_channels;  | 
377  | 0  |   int scaleFactorHighBand;  | 
378  | 0  |   int scaleFactorLowBand_ov, scaleFactorLowBand_no_ov;  | 
379  |  | 
  | 
380  | 0  |   FDK_ASSERT(synQmf->no_channels >= synQmf->lsb);  | 
381  | 0  |   FDK_ASSERT(synQmf->no_channels >= synQmf->usb);  | 
382  |  |  | 
383  |  |   /* adapt scaling */  | 
384  | 0  |   scaleFactorHighBand = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -  | 
385  | 0  |                         scaleFactor->hb_scale - synQmf->filterScale;  | 
386  | 0  |   scaleFactorLowBand_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -  | 
387  | 0  |                           scaleFactor->ov_lb_scale - synQmf->filterScale;  | 
388  | 0  |   scaleFactorLowBand_no_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -  | 
389  | 0  |                              scaleFactor->lb_scale - synQmf->filterScale;  | 
390  |  | 
  | 
391  | 0  |   for (i = 0; i < synQmf->no_col; i++) /* ----- no_col loop ----- */  | 
392  | 0  |   { | 
393  | 0  |     const FIXP_DBL *QmfBufferImagSlot = NULL;  | 
394  |  | 
  | 
395  | 0  |     int scaleFactorLowBand =  | 
396  | 0  |         (i < ov_len) ? scaleFactorLowBand_ov : scaleFactorLowBand_no_ov;  | 
397  |  | 
  | 
398  | 0  |     if (!(synQmf->flags & QMF_FLAG_LP)) QmfBufferImagSlot = QmfBufferImag[i];  | 
399  |  | 
  | 
400  | 0  |     qmfSynthesisFilteringSlot(synQmf, QmfBufferReal[i], QmfBufferImagSlot,  | 
401  | 0  |                               scaleFactorLowBand, scaleFactorHighBand,  | 
402  | 0  |                               timeOut + (i * L * stride), stride, pWorkBuffer);  | 
403  | 0  |   } /* no_col loop  i  */  | 
404  | 0  | } Unexecuted instantiation: qmfSynthesisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR const*, int, short*, int, int*) Unexecuted instantiation: qmfSynthesisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR const*, int, int*, int, int*)  | 
405  |  |  | 
406  |  | /*!  | 
407  |  |  *  | 
408  |  |  * \brief Create QMF filter bank instance  | 
409  |  |  *  | 
410  |  |  *  | 
411  |  |  * \return 0 if successful  | 
412  |  |  *  | 
413  |  |  */  | 
414  |  | int qmfInitAnalysisFilterBank(  | 
415  |  |     HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Returns handle */  | 
416  |  |     FIXP_QAS *pFilterStates,      /*!< Handle to filter states */  | 
417  |  |     int noCols,                   /*!< Number of timeslots per frame */  | 
418  |  |     int lsb,                      /*!< lower end of QMF */  | 
419  |  |     int usb,                      /*!< upper end of QMF */  | 
420  |  |     int no_channels,              /*!< Number of channels (bands) */  | 
421  |  |     int flags)                    /*!< Low Power flag */  | 
422  | 0  | { | 
423  | 0  |   int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,  | 
424  | 0  |                               no_channels, flags, 0);  | 
425  | 0  |   if (!(flags & QMF_FLAG_KEEP_STATES) && (h_Qmf->FilterStates != NULL)) { | 
426  | 0  |     FDKmemclear(h_Qmf->FilterStates,  | 
427  | 0  |                 (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QAS));  | 
428  | 0  |   }  | 
429  |  | 
  | 
430  | 0  |   FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);  | 
431  |  |  | 
432  | 0  |   return err;  | 
433  | 0  | } Unexecuted instantiation: qmfInitAnalysisFilterBank(QMF_FILTER_BANK*, short*, int, int, int, int, int) Unexecuted instantiation: qmfInitAnalysisFilterBank(QMF_FILTER_BANK*, int*, int, int, int, int, int)  | 
434  |  |  | 
435  |  | #ifndef FUNCTION_qmfAnaPrototypeFirSlot  | 
436  |  | /*!  | 
437  |  |   \brief Perform Analysis Prototype Filtering on a single slot of input data.  | 
438  |  | */  | 
439  |  | static void qmfAnaPrototypeFirSlot(  | 
440  |  |     FIXP_DBL *analysisBuffer,  | 
441  |  |     INT no_channels, /*!< Number channels of analysis filter */  | 
442  |  |     const FIXP_PFT *p_filter, INT p_stride, /*!< Stride of analysis filter    */  | 
443  | 0  |     FIXP_QAS *RESTRICT pFilterStates) { | 
444  | 0  |   INT k;  | 
445  |  | 
  | 
446  | 0  |   FIXP_DBL accu;  | 
447  | 0  |   const FIXP_PFT *RESTRICT p_flt = p_filter;  | 
448  | 0  |   FIXP_DBL *RESTRICT pData_0 = analysisBuffer + 2 * no_channels - 1;  | 
449  | 0  |   FIXP_DBL *RESTRICT pData_1 = analysisBuffer;  | 
450  |  | 
  | 
451  | 0  |   FIXP_QAS *RESTRICT sta_0 = (FIXP_QAS *)pFilterStates;  | 
452  | 0  |   FIXP_QAS *RESTRICT sta_1 =  | 
453  | 0  |       (FIXP_QAS *)pFilterStates + (2 * QMF_NO_POLY * no_channels) - 1;  | 
454  | 0  |   INT pfltStep = QMF_NO_POLY * (p_stride);  | 
455  | 0  |   INT staStep1 = no_channels << 1;  | 
456  | 0  |   INT staStep2 = (no_channels << 3) - 1; /* Rewind one less */  | 
457  |  |  | 
458  |  |   /* FIR filters 127..64 0..63 */  | 
459  | 0  |   for (k = 0; k < no_channels; k++) { | 
460  | 0  |     accu = fMultDiv2(p_flt[0], *sta_1);  | 
461  | 0  |     sta_1 -= staStep1;  | 
462  | 0  |     accu += fMultDiv2(p_flt[1], *sta_1);  | 
463  | 0  |     sta_1 -= staStep1;  | 
464  | 0  |     accu += fMultDiv2(p_flt[2], *sta_1);  | 
465  | 0  |     sta_1 -= staStep1;  | 
466  | 0  |     accu += fMultDiv2(p_flt[3], *sta_1);  | 
467  | 0  |     sta_1 -= staStep1;  | 
468  | 0  |     accu += fMultDiv2(p_flt[4], *sta_1);  | 
469  | 0  |     *pData_1++ = (accu << 1);  | 
470  | 0  |     sta_1 += staStep2;  | 
471  |  | 
  | 
472  | 0  |     p_flt += pfltStep;  | 
473  | 0  |     accu = fMultDiv2(p_flt[0], *sta_0);  | 
474  | 0  |     sta_0 += staStep1;  | 
475  | 0  |     accu += fMultDiv2(p_flt[1], *sta_0);  | 
476  | 0  |     sta_0 += staStep1;  | 
477  | 0  |     accu += fMultDiv2(p_flt[2], *sta_0);  | 
478  | 0  |     sta_0 += staStep1;  | 
479  | 0  |     accu += fMultDiv2(p_flt[3], *sta_0);  | 
480  | 0  |     sta_0 += staStep1;  | 
481  | 0  |     accu += fMultDiv2(p_flt[4], *sta_0);  | 
482  | 0  |     *pData_0-- = (accu << 1);  | 
483  | 0  |     sta_0 -= staStep2;  | 
484  | 0  |   }  | 
485  | 0  | } Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot(int*, int, short const*, int, short*) Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot(int*, int, short const*, int, int*)  | 
486  |  | #endif /* !defined(FUNCTION_qmfAnaPrototypeFirSlot) */  | 
487  |  |  | 
488  |  | #ifndef FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric  | 
489  |  | /*!  | 
490  |  |   \brief Perform Analysis Prototype Filtering on a single slot of input data.  | 
491  |  | */  | 
492  |  | static void qmfAnaPrototypeFirSlot_NonSymmetric(  | 
493  |  |     FIXP_DBL *analysisBuffer,  | 
494  |  |     int no_channels, /*!< Number channels of analysis filter */  | 
495  |  |     const FIXP_PFT *p_filter, int p_stride, /*!< Stride of analysis filter    */  | 
496  | 0  |     FIXP_QAS *RESTRICT pFilterStates) { | 
497  | 0  |   const FIXP_PFT *RESTRICT p_flt = p_filter;  | 
498  | 0  |   int p, k;  | 
499  |  | 
  | 
500  | 0  |   for (k = 0; k < 2 * no_channels; k++) { | 
501  | 0  |     FIXP_DBL accu = (FIXP_DBL)0;  | 
502  |  | 
  | 
503  | 0  |     p_flt += QMF_NO_POLY * (p_stride - 1);  | 
504  |  |  | 
505  |  |     /*  | 
506  |  |       Perform FIR-Filter  | 
507  |  |     */  | 
508  | 0  |     for (p = 0; p < QMF_NO_POLY; p++) { | 
509  | 0  |       accu += fMultDiv2(*p_flt++, pFilterStates[2 * no_channels * p]);  | 
510  | 0  |     }  | 
511  | 0  |     analysisBuffer[2 * no_channels - 1 - k] = (accu << 1);  | 
512  | 0  |     pFilterStates++;  | 
513  | 0  |   }  | 
514  | 0  | } Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot_NonSymmetric(int*, int, short const*, int, short*) Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot_NonSymmetric(int*, int, short const*, int, int*)  | 
515  |  | #endif /* FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric */  | 
516  |  |  | 
517  |  | /*  | 
518  |  |  * \brief Perform one QMF slot analysis of the time domain data of timeIn  | 
519  |  |  *        with specified stride and stores the real part of the subband  | 
520  |  |  *        samples in rSubband, and the imaginary part in iSubband  | 
521  |  |  *  | 
522  |  |  *        Note: anaQmf->lsb can be greater than anaQmf->no_channels in case  | 
523  |  |  *        of implicit resampling (USAC with reduced 3/4 core frame length).  | 
524  |  |  */  | 
525  |  | void qmfAnalysisFilteringSlot(  | 
526  |  |     HANDLE_QMF_FILTER_BANK anaQmf,        /*!< Handle of Qmf Synthesis Bank  */  | 
527  |  |     FIXP_DBL *qmfReal,                    /*!< Low and High band, real */  | 
528  |  |     FIXP_DBL *qmfImag,                    /*!< Low and High band, imag */  | 
529  |  |     const INT_PCM_QMFIN *RESTRICT timeIn, /*!< Pointer to input */  | 
530  |  |     const int stride,                     /*!< stride factor of input */  | 
531  |  |     FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */  | 
532  | 0  | ) { | 
533  | 0  |   int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);  | 
534  |  |   /*  | 
535  |  |     Feed time signal into oldest anaQmf->no_channels states  | 
536  |  |   */  | 
537  | 0  |   { | 
538  | 0  |     FIXP_QAS *FilterStatesAnaTmp = ((FIXP_QAS *)anaQmf->FilterStates) + offset;  | 
539  |  |  | 
540  |  |     /* Feed and scale actual time in slot */  | 
541  | 0  |     for (int i = anaQmf->no_channels >> 1; i != 0; i--) { | 
542  |  |       /* Place INT_PCM value left aligned in scaledTimeIn */  | 
543  | 0  |       *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;  | 
544  | 0  |       timeIn += stride;  | 
545  | 0  |       *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;  | 
546  | 0  |       timeIn += stride;  | 
547  | 0  |     }  | 
548  | 0  |   }  | 
549  |  | 
  | 
550  | 0  |   if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) { | 
551  | 0  |     qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,  | 
552  | 0  |                                         anaQmf->p_filter, anaQmf->p_stride,  | 
553  | 0  |                                         (FIXP_QAS *)anaQmf->FilterStates);  | 
554  | 0  |   } else { | 
555  | 0  |     qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,  | 
556  | 0  |                            anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);  | 
557  | 0  |   }  | 
558  |  | 
  | 
559  | 0  |   if (anaQmf->flags & QMF_FLAG_LP) { | 
560  | 0  |     if (anaQmf->flags & QMF_FLAG_CLDFB)  | 
561  | 0  |       qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);  | 
562  | 0  |     else  | 
563  | 0  |       qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);  | 
564  |  | 
  | 
565  | 0  |   } else { | 
566  | 0  |     qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);  | 
567  | 0  |   }  | 
568  |  |   /*  | 
569  |  |     Shift filter states  | 
570  |  |  | 
571  |  |     Should be realized with modulo addressing on a DSP instead of a true buffer  | 
572  |  |     shift  | 
573  |  |   */  | 
574  | 0  |   FDKmemmove(anaQmf->FilterStates,  | 
575  | 0  |              (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,  | 
576  | 0  |              offset * sizeof(FIXP_QAS));  | 
577  | 0  | } Unexecuted instantiation: qmfAnalysisFilteringSlot(QMF_FILTER_BANK*, int*, int*, short const*, int, int*) Unexecuted instantiation: qmfAnalysisFilteringSlot(QMF_FILTER_BANK*, int*, int*, int const*, int, int*)  | 
578  |  |  | 
579  |  | /*!  | 
580  |  |  *  | 
581  |  |  * \brief Perform complex-valued subband filtering of the time domain  | 
582  |  |  *        data of timeIn and stores the real part of the subband  | 
583  |  |  *        samples in rAnalysis, and the imaginary part in iAnalysis  | 
584  |  |  * The qmf coefficient table is symmetric. The symmetry is expoited by  | 
585  |  |  * shrinking the coefficient table to half the size. The addressing mode  | 
586  |  |  * takes care of the symmetries.  | 
587  |  |  *  | 
588  |  |  *  | 
589  |  |  * \sa PolyphaseFiltering  | 
590  |  |  */  | 
591  |  | void qmfAnalysisFiltering(  | 
592  |  |     HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */  | 
593  |  |     FIXP_DBL **qmfReal,            /*!< Pointer to real subband slots */  | 
594  |  |     FIXP_DBL **qmfImag,            /*!< Pointer to imag subband slots */  | 
595  |  |     QMF_SCALE_FACTOR *scaleFactor,  | 
596  |  |     const INT_PCM_QMFIN *timeIn, /*!< Time signal */  | 
597  |  |     const int timeIn_e, const int stride,  | 
598  |  |     FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */  | 
599  | 0  | ) { | 
600  | 0  |   int i;  | 
601  | 0  |   int no_channels = anaQmf->no_channels;  | 
602  |  | 
  | 
603  | 0  |   scaleFactor->lb_scale =  | 
604  | 0  |       -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;  | 
605  | 0  |   scaleFactor->lb_scale -= anaQmf->filterScale;  | 
606  |  | 
  | 
607  | 0  |   for (i = 0; i < anaQmf->no_col; i++) { | 
608  | 0  |     FIXP_DBL *qmfImagSlot = NULL;  | 
609  |  | 
  | 
610  | 0  |     if (!(anaQmf->flags & QMF_FLAG_LP)) { | 
611  | 0  |       qmfImagSlot = qmfImag[i];  | 
612  | 0  |     }  | 
613  |  | 
  | 
614  | 0  |     qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,  | 
615  | 0  |                              pWorkBuffer);  | 
616  |  | 
  | 
617  | 0  |     timeIn += no_channels * stride;  | 
618  |  | 
  | 
619  | 0  |   } /* no_col loop  i  */  | 
620  | 0  | } Unexecuted instantiation: qmfAnalysisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR*, short const*, int, int, int*) Unexecuted instantiation: qmfAnalysisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR*, int const*, int, int, int*)  | 
621  |  | #endif /* QMF_PCM_H */  |