Coverage Report

Created: 2025-10-28 06:42

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libFDK/src/fft_rad2.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):   M. Lohwasser, M. Gayer
98
99
   Description:
100
101
*******************************************************************************/
102
103
#include "fft_rad2.h"
104
105
#include "scramble.h"
106
107
#define __FFT_RAD2_CPP__
108
109
#if defined(__arm__)
110
#include "arm/fft_rad2_arm.cpp"
111
112
#elif defined(__GNUC__) && defined(__mips__) && defined(__mips_dsp)
113
#include "mips/fft_rad2_mips.cpp"
114
115
#endif
116
117
/*****************************************************************************
118
119
    functionname: dit_fft (analysis)
120
    description:  dit-tukey-algorithm
121
                  scrambles data at entry
122
                  i.e. loop is made with scrambled data
123
    returns:
124
    input:
125
    output:
126
127
*****************************************************************************/
128
129
#ifndef FUNCTION_dit_fft
130
131
void dit_fft(FIXP_DBL *x, const INT ldn, const FIXP_STP *trigdata,
132
0
             const INT trigDataSize) {
133
0
  const INT n = 1 << ldn;
134
0
  INT trigstep, i, ldm;
135
136
0
  C_ALLOC_ALIGNED_CHECK(x);
137
138
0
  scramble(x, n);
139
  /*
140
   * 1+2 stage radix 4
141
   */
142
143
0
  for (i = 0; i < n * 2; i += 8) {
144
0
    FIXP_DBL a00, a10, a20, a30;
145
0
    a00 = (x[i + 0] + x[i + 2]) >> 1; /* Re A + Re B */
146
0
    a10 = (x[i + 4] + x[i + 6]) >> 1; /* Re C + Re D */
147
0
    a20 = (x[i + 1] + x[i + 3]) >> 1; /* Im A + Im B */
148
0
    a30 = (x[i + 5] + x[i + 7]) >> 1; /* Im C + Im D */
149
150
0
    x[i + 0] = a00 + a10; /* Re A' = Re A + Re B + Re C + Re D */
151
0
    x[i + 4] = a00 - a10; /* Re C' = Re A + Re B - Re C - Re D */
152
0
    x[i + 1] = a20 + a30; /* Im A' = Im A + Im B + Im C + Im D */
153
0
    x[i + 5] = a20 - a30; /* Im C' = Im A + Im B - Im C - Im D */
154
155
0
    a00 = a00 - x[i + 2]; /* Re A - Re B */
156
0
    a10 = a10 - x[i + 6]; /* Re C - Re D */
157
0
    a20 = a20 - x[i + 3]; /* Im A - Im B */
158
0
    a30 = a30 - x[i + 7]; /* Im C - Im D */
159
160
0
    x[i + 2] = a00 + a30; /* Re B' = Re A - Re B + Im C - Im D */
161
0
    x[i + 6] = a00 - a30; /* Re D' = Re A - Re B - Im C + Im D */
162
0
    x[i + 3] = a20 - a10; /* Im B' = Im A - Im B - Re C + Re D */
163
0
    x[i + 7] = a20 + a10; /* Im D' = Im A - Im B + Re C - Re D */
164
0
  }
165
166
0
  for (ldm = 3; ldm <= ldn; ++ldm) {
167
0
    INT m = (1 << ldm);
168
0
    INT mh = (m >> 1);
169
0
    INT j, r;
170
171
0
    trigstep = ((trigDataSize << 2) >> ldm);
172
173
0
    FDK_ASSERT(trigstep > 0);
174
175
    /* Do first iteration with c=1.0 and s=0.0 separately to avoid loosing to
176
       much precision. Beware: The impact on the overal FFT precision is rather
177
       large. */
178
0
    { /* block 1 */
179
180
0
      j = 0;
181
182
0
      for (r = 0; r < n; r += m) {
183
0
        INT t1 = (r + j) << 1;
184
0
        INT t2 = t1 + (mh << 1);
185
0
        FIXP_DBL vr, vi, ur, ui;
186
187
        // cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], (FIXP_SGL)1.0, (FIXP_SGL)0.0);
188
0
        vi = x[t2 + 1] >> 1;
189
0
        vr = x[t2] >> 1;
190
191
0
        ur = x[t1] >> 1;
192
0
        ui = x[t1 + 1] >> 1;
193
194
0
        x[t1] = ur + vr;
195
0
        x[t1 + 1] = ui + vi;
196
197
0
        x[t2] = ur - vr;
198
0
        x[t2 + 1] = ui - vi;
199
200
0
        t1 += mh;
201
0
        t2 = t1 + (mh << 1);
202
203
        // cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], (FIXP_SGL)1.0, (FIXP_SGL)0.0);
204
0
        vr = x[t2 + 1] >> 1;
205
0
        vi = x[t2] >> 1;
206
207
0
        ur = x[t1] >> 1;
208
0
        ui = x[t1 + 1] >> 1;
209
210
0
        x[t1] = ur + vr;
211
0
        x[t1 + 1] = ui - vi;
212
213
0
        x[t2] = ur - vr;
214
0
        x[t2 + 1] = ui + vi;
215
0
      }
216
217
0
    } /* end of  block 1 */
218
219
0
    for (j = 1; j < mh / 4; ++j) {
220
0
      FIXP_STP cs;
221
222
0
      cs = trigdata[j * trigstep];
223
224
0
      for (r = 0; r < n; r += m) {
225
0
        INT t1 = (r + j) << 1;
226
0
        INT t2 = t1 + (mh << 1);
227
0
        FIXP_DBL vr, vi, ur, ui;
228
229
0
        cplxMultDiv2(&vi, &vr, x[t2 + 1], x[t2], cs);
230
231
0
        ur = x[t1] >> 1;
232
0
        ui = x[t1 + 1] >> 1;
233
234
0
        x[t1] = ur + vr;
235
0
        x[t1 + 1] = ui + vi;
236
237
0
        x[t2] = ur - vr;
238
0
        x[t2 + 1] = ui - vi;
239
240
0
        t1 += mh;
241
0
        t2 = t1 + (mh << 1);
242
243
0
        cplxMultDiv2(&vr, &vi, x[t2 + 1], x[t2], cs);
244
245
0
        ur = x[t1] >> 1;
246
0
        ui = x[t1 + 1] >> 1;
247
248
0
        x[t1] = ur + vr;
249
0
        x[t1 + 1] = ui - vi;
250
251
0
        x[t2] = ur - vr;
252
0
        x[t2 + 1] = ui + vi;
253
254
        /* Same as above but for t1,t2 with j>mh/4 and thus cs swapped */
255
0
        t1 = (r + mh / 2 - j) << 1;
256
0
        t2 = t1 + (mh << 1);
257
258
0
        cplxMultDiv2(&vi, &vr, x[t2], x[t2 + 1], cs);
259
260
0
        ur = x[t1] >> 1;
261
0
        ui = x[t1 + 1] >> 1;
262
263
0
        x[t1] = ur + vr;
264
0
        x[t1 + 1] = ui - vi;
265
266
0
        x[t2] = ur - vr;
267
0
        x[t2 + 1] = ui + vi;
268
269
0
        t1 += mh;
270
0
        t2 = t1 + (mh << 1);
271
272
0
        cplxMultDiv2(&vr, &vi, x[t2], x[t2 + 1], cs);
273
274
0
        ur = x[t1] >> 1;
275
0
        ui = x[t1 + 1] >> 1;
276
277
0
        x[t1] = ur - vr;
278
0
        x[t1 + 1] = ui - vi;
279
280
0
        x[t2] = ur + vr;
281
0
        x[t2 + 1] = ui + vi;
282
0
      }
283
0
    }
284
285
0
    { /* block 2 */
286
0
      j = mh / 4;
287
288
0
      for (r = 0; r < n; r += m) {
289
0
        INT t1 = (r + j) << 1;
290
0
        INT t2 = t1 + (mh << 1);
291
0
        FIXP_DBL vr, vi, ur, ui;
292
293
0
        cplxMultDiv2(&vi, &vr, x[t2 + 1], x[t2], STC(0x5a82799a),
294
0
                     STC(0x5a82799a));
295
296
0
        ur = x[t1] >> 1;
297
0
        ui = x[t1 + 1] >> 1;
298
299
0
        x[t1] = ur + vr;
300
0
        x[t1 + 1] = ui + vi;
301
302
0
        x[t2] = ur - vr;
303
0
        x[t2 + 1] = ui - vi;
304
305
0
        t1 += mh;
306
0
        t2 = t1 + (mh << 1);
307
308
0
        cplxMultDiv2(&vr, &vi, x[t2 + 1], x[t2], STC(0x5a82799a),
309
0
                     STC(0x5a82799a));
310
311
0
        ur = x[t1] >> 1;
312
0
        ui = x[t1 + 1] >> 1;
313
314
0
        x[t1] = ur + vr;
315
0
        x[t1 + 1] = ui - vi;
316
317
0
        x[t2] = ur - vr;
318
0
        x[t2 + 1] = ui + vi;
319
0
      }
320
0
    } /* end of block 2 */
321
0
  }
322
0
}
323
324
#endif