/src/aac/libAACdec/src/stereo.cpp
Line | Count | Source |
1 | | /* ----------------------------------------------------------------------------- |
2 | | Software License for The Fraunhofer FDK AAC Codec Library for Android |
3 | | |
4 | | © Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten |
5 | | Forschung e.V. All rights reserved. |
6 | | |
7 | | 1. INTRODUCTION |
8 | | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
9 | | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
10 | | scheme for digital audio. This FDK AAC Codec software is intended to be used on |
11 | | a wide variety of Android devices. |
12 | | |
13 | | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
14 | | general perceptual audio codecs. AAC-ELD is considered the best-performing |
15 | | full-bandwidth communications codec by independent studies and is widely |
16 | | deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
17 | | specifications. |
18 | | |
19 | | Patent licenses for necessary patent claims for the FDK AAC Codec (including |
20 | | those of Fraunhofer) may be obtained through Via Licensing |
21 | | (www.vialicensing.com) or through the respective patent owners individually for |
22 | | the purpose of encoding or decoding bit streams in products that are compliant |
23 | | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
24 | | Android devices already license these patent claims through Via Licensing or |
25 | | directly from the patent owners, and therefore FDK AAC Codec software may |
26 | | already be covered under those patent licenses when it is used for those |
27 | | licensed purposes only. |
28 | | |
29 | | Commercially-licensed AAC software libraries, including floating-point versions |
30 | | with enhanced sound quality, are also available from Fraunhofer. Users are |
31 | | encouraged to check the Fraunhofer website for additional applications |
32 | | information and documentation. |
33 | | |
34 | | 2. COPYRIGHT LICENSE |
35 | | |
36 | | Redistribution and use in source and binary forms, with or without modification, |
37 | | are permitted without payment of copyright license fees provided that you |
38 | | satisfy the following conditions: |
39 | | |
40 | | You must retain the complete text of this software license in redistributions of |
41 | | the FDK AAC Codec or your modifications thereto in source code form. |
42 | | |
43 | | You must retain the complete text of this software license in the documentation |
44 | | and/or other materials provided with redistributions of the FDK AAC Codec or |
45 | | your modifications thereto in binary form. You must make available free of |
46 | | charge copies of the complete source code of the FDK AAC Codec and your |
47 | | modifications thereto to recipients of copies in binary form. |
48 | | |
49 | | The name of Fraunhofer may not be used to endorse or promote products derived |
50 | | from this library without prior written permission. |
51 | | |
52 | | You may not charge copyright license fees for anyone to use, copy or distribute |
53 | | the FDK AAC Codec software or your modifications thereto. |
54 | | |
55 | | Your modified versions of the FDK AAC Codec must carry prominent notices stating |
56 | | that you changed the software and the date of any change. For modified versions |
57 | | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
58 | | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
59 | | AAC Codec Library for Android." |
60 | | |
61 | | 3. NO PATENT LICENSE |
62 | | |
63 | | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
64 | | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
65 | | Fraunhofer provides no warranty of patent non-infringement with respect to this |
66 | | software. |
67 | | |
68 | | You may use this FDK AAC Codec software or modifications thereto only for |
69 | | purposes that are authorized by appropriate patent licenses. |
70 | | |
71 | | 4. DISCLAIMER |
72 | | |
73 | | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
74 | | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
75 | | including but not limited to the implied warranties of merchantability and |
76 | | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
77 | | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
78 | | or consequential damages, including but not limited to procurement of substitute |
79 | | goods or services; loss of use, data, or profits, or business interruption, |
80 | | however caused and on any theory of liability, whether in contract, strict |
81 | | liability, or tort (including negligence), arising in any way out of the use of |
82 | | this software, even if advised of the possibility of such damage. |
83 | | |
84 | | 5. CONTACT INFORMATION |
85 | | |
86 | | Fraunhofer Institute for Integrated Circuits IIS |
87 | | Attention: Audio and Multimedia Departments - FDK AAC LL |
88 | | Am Wolfsmantel 33 |
89 | | 91058 Erlangen, Germany |
90 | | |
91 | | www.iis.fraunhofer.de/amm |
92 | | amm-info@iis.fraunhofer.de |
93 | | ----------------------------------------------------------------------------- */ |
94 | | |
95 | | /**************************** AAC decoder library ****************************** |
96 | | |
97 | | Author(s): Josef Hoepfl |
98 | | |
99 | | Description: joint stereo processing |
100 | | |
101 | | *******************************************************************************/ |
102 | | |
103 | | #include "stereo.h" |
104 | | |
105 | | #include "aac_rom.h" |
106 | | #include "FDK_bitstream.h" |
107 | | #include "channelinfo.h" |
108 | | #include "FDK_audio.h" |
109 | | |
110 | | enum { L = 0, R = 1 }; |
111 | | |
112 | | #include "block.h" |
113 | | |
114 | | int CJointStereo_Read(HANDLE_FDK_BITSTREAM bs, |
115 | | CJointStereoData *pJointStereoData, |
116 | | const int windowGroups, |
117 | | const int scaleFactorBandsTransmitted, |
118 | | const int max_sfb_ste_clear, |
119 | | CJointStereoPersistentData *pJointStereoPersistentData, |
120 | | CCplxPredictionData *cplxPredictionData, |
121 | | int cplxPredictionActiv, int scaleFactorBandsTotal, |
122 | 0 | int windowSequence, const UINT flags) { |
123 | 0 | int group, band; |
124 | |
|
125 | 0 | pJointStereoData->MsMaskPresent = (UCHAR)FDKreadBits(bs, 2); |
126 | |
|
127 | 0 | FDKmemclear(pJointStereoData->MsUsed, |
128 | 0 | scaleFactorBandsTransmitted * sizeof(UCHAR)); |
129 | |
|
130 | 0 | pJointStereoData->cplx_pred_flag = 0; |
131 | 0 | if (cplxPredictionActiv) { |
132 | 0 | cplxPredictionData->pred_dir = 0; |
133 | 0 | cplxPredictionData->complex_coef = 0; |
134 | 0 | cplxPredictionData->use_prev_frame = 0; |
135 | 0 | cplxPredictionData->igf_pred_dir = 0; |
136 | 0 | } |
137 | |
|
138 | 0 | switch (pJointStereoData->MsMaskPresent) { |
139 | 0 | case 0: /* no M/S */ |
140 | | /* all flags are already cleared */ |
141 | 0 | break; |
142 | | |
143 | 0 | case 1: /* read ms_used */ |
144 | 0 | for (group = 0; group < windowGroups; group++) { |
145 | 0 | for (band = 0; band < scaleFactorBandsTransmitted; band++) { |
146 | 0 | pJointStereoData->MsUsed[band] |= (FDKreadBits(bs, 1) << group); |
147 | 0 | } |
148 | 0 | } |
149 | 0 | break; |
150 | | |
151 | 0 | case 2: /* full spectrum M/S */ |
152 | 0 | for (band = 0; band < scaleFactorBandsTransmitted; band++) { |
153 | 0 | pJointStereoData->MsUsed[band] = 255; /* set all flags to 1 */ |
154 | 0 | } |
155 | 0 | break; |
156 | | |
157 | 0 | case 3: |
158 | | /* M/S coding is disabled, complex stereo prediction is enabled */ |
159 | 0 | if (flags & (AC_USAC | AC_RSVD50 | AC_RSV603DA)) { |
160 | 0 | if (cplxPredictionActiv) { /* 'if (stereoConfigIndex == 0)' */ |
161 | |
|
162 | 0 | pJointStereoData->cplx_pred_flag = 1; |
163 | | |
164 | | /* cplx_pred_data() cp. ISO/IEC FDIS 23003-3:2011(E) Table 26 */ |
165 | 0 | int cplx_pred_all = 0; /* local use only */ |
166 | 0 | cplx_pred_all = FDKreadBits(bs, 1); |
167 | |
|
168 | 0 | if (cplx_pred_all) { |
169 | 0 | for (group = 0; group < windowGroups; group++) { |
170 | 0 | UCHAR groupmask = ((UCHAR)1 << group); |
171 | 0 | for (band = 0; band < scaleFactorBandsTransmitted; band++) { |
172 | 0 | pJointStereoData->MsUsed[band] |= groupmask; |
173 | 0 | } |
174 | 0 | } |
175 | 0 | } else { |
176 | 0 | for (group = 0; group < windowGroups; group++) { |
177 | 0 | for (band = 0; band < scaleFactorBandsTransmitted; |
178 | 0 | band += SFB_PER_PRED_BAND) { |
179 | 0 | pJointStereoData->MsUsed[band] |= (FDKreadBits(bs, 1) << group); |
180 | 0 | if ((band + 1) < scaleFactorBandsTotal) { |
181 | 0 | pJointStereoData->MsUsed[band + 1] |= |
182 | 0 | (pJointStereoData->MsUsed[band] & ((UCHAR)1 << group)); |
183 | 0 | } |
184 | 0 | } |
185 | 0 | } |
186 | 0 | } |
187 | 0 | } else { |
188 | 0 | return -1; |
189 | 0 | } |
190 | 0 | } |
191 | 0 | break; |
192 | 0 | } |
193 | | |
194 | 0 | if (cplxPredictionActiv) { |
195 | | /* If all sfb are MS-ed then no complex prediction */ |
196 | 0 | if (pJointStereoData->MsMaskPresent == 3) { |
197 | 0 | if (pJointStereoData->cplx_pred_flag) { |
198 | 0 | int delta_code_time = 0; |
199 | | |
200 | | /* set pointer to Huffman codebooks */ |
201 | 0 | const CodeBookDescription *hcb = &AACcodeBookDescriptionTable[BOOKSCL]; |
202 | | /* set predictors to zero in case of a transition from long to short |
203 | | * window sequences and vice versa */ |
204 | 0 | if (((windowSequence == BLOCK_SHORT) && |
205 | 0 | (pJointStereoPersistentData->winSeqPrev != BLOCK_SHORT)) || |
206 | 0 | ((pJointStereoPersistentData->winSeqPrev == BLOCK_SHORT) && |
207 | 0 | (windowSequence != BLOCK_SHORT))) { |
208 | 0 | FDKmemclear(pJointStereoPersistentData->alpha_q_re_prev, |
209 | 0 | JointStereoMaximumGroups * JointStereoMaximumBands * |
210 | 0 | sizeof(SHORT)); |
211 | 0 | FDKmemclear(pJointStereoPersistentData->alpha_q_im_prev, |
212 | 0 | JointStereoMaximumGroups * JointStereoMaximumBands * |
213 | 0 | sizeof(SHORT)); |
214 | 0 | } |
215 | 0 | { |
216 | 0 | FDKmemclear(cplxPredictionData->alpha_q_re, |
217 | 0 | JointStereoMaximumGroups * JointStereoMaximumBands * |
218 | 0 | sizeof(SHORT)); |
219 | 0 | FDKmemclear(cplxPredictionData->alpha_q_im, |
220 | 0 | JointStereoMaximumGroups * JointStereoMaximumBands * |
221 | 0 | sizeof(SHORT)); |
222 | 0 | } |
223 | | |
224 | | /* 0 = mid->side prediction, 1 = side->mid prediction */ |
225 | 0 | cplxPredictionData->pred_dir = FDKreadBits(bs, 1); |
226 | 0 | cplxPredictionData->complex_coef = FDKreadBits(bs, 1); |
227 | |
|
228 | 0 | if (cplxPredictionData->complex_coef) { |
229 | 0 | if (flags & AC_INDEP) { |
230 | 0 | cplxPredictionData->use_prev_frame = 0; |
231 | 0 | } else { |
232 | 0 | cplxPredictionData->use_prev_frame = FDKreadBits(bs, 1); |
233 | 0 | } |
234 | 0 | } |
235 | |
|
236 | 0 | if (flags & AC_INDEP) { |
237 | 0 | delta_code_time = 0; |
238 | 0 | } else { |
239 | 0 | delta_code_time = FDKreadBits(bs, 1); |
240 | 0 | } |
241 | |
|
242 | 0 | { |
243 | 0 | int last_alpha_q_re = 0, last_alpha_q_im = 0; |
244 | |
|
245 | 0 | for (group = 0; group < windowGroups; group++) { |
246 | 0 | for (band = 0; band < scaleFactorBandsTransmitted; |
247 | 0 | band += SFB_PER_PRED_BAND) { |
248 | 0 | if (delta_code_time == 1) { |
249 | 0 | if (group > 0) { |
250 | 0 | last_alpha_q_re = |
251 | 0 | cplxPredictionData->alpha_q_re[group - 1][band]; |
252 | 0 | last_alpha_q_im = |
253 | 0 | cplxPredictionData->alpha_q_im[group - 1][band]; |
254 | 0 | } else if ((windowSequence == BLOCK_SHORT) && |
255 | 0 | (pJointStereoPersistentData->winSeqPrev == |
256 | 0 | BLOCK_SHORT)) { |
257 | | /* Included for error-robustness */ |
258 | 0 | if (pJointStereoPersistentData->winGroupsPrev == 0) return -1; |
259 | | |
260 | 0 | last_alpha_q_re = |
261 | 0 | pJointStereoPersistentData->alpha_q_re_prev |
262 | 0 | [pJointStereoPersistentData->winGroupsPrev - 1][band]; |
263 | 0 | last_alpha_q_im = |
264 | 0 | pJointStereoPersistentData->alpha_q_im_prev |
265 | 0 | [pJointStereoPersistentData->winGroupsPrev - 1][band]; |
266 | 0 | } else { |
267 | 0 | last_alpha_q_re = |
268 | 0 | pJointStereoPersistentData->alpha_q_re_prev[group][band]; |
269 | 0 | last_alpha_q_im = |
270 | 0 | pJointStereoPersistentData->alpha_q_im_prev[group][band]; |
271 | 0 | } |
272 | |
|
273 | 0 | } else { |
274 | 0 | if (band > 0) { |
275 | 0 | last_alpha_q_re = |
276 | 0 | cplxPredictionData->alpha_q_re[group][band - 1]; |
277 | 0 | last_alpha_q_im = |
278 | 0 | cplxPredictionData->alpha_q_im[group][band - 1]; |
279 | 0 | } else { |
280 | 0 | last_alpha_q_re = 0; |
281 | 0 | last_alpha_q_im = 0; |
282 | 0 | } |
283 | |
|
284 | 0 | } /* if (delta_code_time == 1) */ |
285 | | |
286 | 0 | if (pJointStereoData->MsUsed[band] & ((UCHAR)1 << group)) { |
287 | 0 | int dpcm_alpha_re, dpcm_alpha_im; |
288 | |
|
289 | 0 | dpcm_alpha_re = CBlock_DecodeHuffmanWord(bs, hcb); |
290 | 0 | dpcm_alpha_re -= 60; |
291 | 0 | dpcm_alpha_re *= -1; |
292 | |
|
293 | 0 | cplxPredictionData->alpha_q_re[group][band] = |
294 | 0 | dpcm_alpha_re + last_alpha_q_re; |
295 | |
|
296 | 0 | if (cplxPredictionData->complex_coef) { |
297 | 0 | dpcm_alpha_im = CBlock_DecodeHuffmanWord(bs, hcb); |
298 | 0 | dpcm_alpha_im -= 60; |
299 | 0 | dpcm_alpha_im *= -1; |
300 | |
|
301 | 0 | cplxPredictionData->alpha_q_im[group][band] = |
302 | 0 | dpcm_alpha_im + last_alpha_q_im; |
303 | 0 | } else { |
304 | 0 | cplxPredictionData->alpha_q_im[group][band] = 0; |
305 | 0 | } |
306 | |
|
307 | 0 | } else { |
308 | 0 | cplxPredictionData->alpha_q_re[group][band] = 0; |
309 | 0 | cplxPredictionData->alpha_q_im[group][band] = 0; |
310 | 0 | } /* if (pJointStereoData->MsUsed[band] & ((UCHAR)1 << group)) */ |
311 | |
|
312 | 0 | if ((band + 1) < |
313 | 0 | scaleFactorBandsTransmitted) { /* <= this should be the |
314 | | correct way (cp. |
315 | | ISO_IEC_FDIS_23003-0(E) */ |
316 | | /* 7.7.2.3.2 Decoding of prediction coefficients) */ |
317 | 0 | cplxPredictionData->alpha_q_re[group][band + 1] = |
318 | 0 | cplxPredictionData->alpha_q_re[group][band]; |
319 | 0 | cplxPredictionData->alpha_q_im[group][band + 1] = |
320 | 0 | cplxPredictionData->alpha_q_im[group][band]; |
321 | 0 | } /* if ((band+1)<scaleFactorBandsTotal) */ |
322 | |
|
323 | 0 | pJointStereoPersistentData->alpha_q_re_prev[group][band] = |
324 | 0 | cplxPredictionData->alpha_q_re[group][band]; |
325 | 0 | pJointStereoPersistentData->alpha_q_im_prev[group][band] = |
326 | 0 | cplxPredictionData->alpha_q_im[group][band]; |
327 | 0 | } |
328 | | |
329 | 0 | for (band = scaleFactorBandsTransmitted; band < max_sfb_ste_clear; |
330 | 0 | band++) { |
331 | 0 | cplxPredictionData->alpha_q_re[group][band] = 0; |
332 | 0 | cplxPredictionData->alpha_q_im[group][band] = 0; |
333 | 0 | pJointStereoPersistentData->alpha_q_re_prev[group][band] = 0; |
334 | 0 | pJointStereoPersistentData->alpha_q_im_prev[group][band] = 0; |
335 | 0 | } |
336 | 0 | } |
337 | 0 | } |
338 | 0 | } |
339 | 0 | } else { |
340 | 0 | for (group = 0; group < windowGroups; group++) { |
341 | 0 | for (band = 0; band < max_sfb_ste_clear; band++) { |
342 | 0 | pJointStereoPersistentData->alpha_q_re_prev[group][band] = 0; |
343 | 0 | pJointStereoPersistentData->alpha_q_im_prev[group][band] = 0; |
344 | 0 | } |
345 | 0 | } |
346 | 0 | } |
347 | | |
348 | 0 | pJointStereoPersistentData->winGroupsPrev = windowGroups; |
349 | 0 | } |
350 | | |
351 | 0 | return 0; |
352 | 0 | } |
353 | | |
354 | | static void CJointStereo_filterAndAdd( |
355 | | FIXP_DBL *in, int len, int windowLen, const FIXP_FILT *coeff, FIXP_DBL *out, |
356 | | UCHAR isCurrent /* output values with even index get a |
357 | | positve addon (=1) or a negative addon |
358 | | (=0) */ |
359 | 0 | ) { |
360 | 0 | int i, j; |
361 | |
|
362 | 0 | int indices_1[] = {2, 1, 0, 1, 2, 3}; |
363 | 0 | int indices_2[] = {1, 0, 0, 2, 3, 4}; |
364 | 0 | int indices_3[] = {0, 0, 1, 3, 4, 5}; |
365 | |
|
366 | 0 | int subtr_1[] = {6, 5, 4, 2, 1, 1}; |
367 | 0 | int subtr_2[] = {5, 4, 3, 1, 1, 2}; |
368 | 0 | int subtr_3[] = {4, 3, 2, 1, 2, 3}; |
369 | |
|
370 | 0 | if (isCurrent == 1) { |
371 | | /* exploit the symmetry of the table: coeff[6] = - coeff[0], |
372 | | coeff[5] = - coeff[1], |
373 | | coeff[4] = - coeff[2], |
374 | | coeff[3] = 0 |
375 | | */ |
376 | |
|
377 | 0 | for (i = 0; i < 3; i++) { |
378 | 0 | out[0] -= (FIXP_DBL)fMultDiv2(coeff[i], in[indices_1[i]]) >> SR_FNA_OUT; |
379 | 0 | out[0] += |
380 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[indices_1[5 - i]]) >> SR_FNA_OUT; |
381 | 0 | } |
382 | |
|
383 | 0 | for (i = 0; i < 3; i++) { |
384 | 0 | out[1] -= (FIXP_DBL)fMultDiv2(coeff[i], in[indices_2[i]]) >> SR_FNA_OUT; |
385 | 0 | out[1] += |
386 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[indices_2[5 - i]]) >> SR_FNA_OUT; |
387 | 0 | } |
388 | |
|
389 | 0 | for (i = 0; i < 3; i++) { |
390 | 0 | out[2] -= (FIXP_DBL)fMultDiv2(coeff[i], in[indices_3[i]]) >> SR_FNA_OUT; |
391 | 0 | out[2] += |
392 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[indices_3[5 - i]]) >> SR_FNA_OUT; |
393 | 0 | } |
394 | |
|
395 | 0 | for (j = 3; j < (len - 3); j++) { |
396 | 0 | for (i = 0; i < 3; i++) { |
397 | 0 | out[j] -= (FIXP_DBL)fMultDiv2(coeff[i], in[j - 3 + i]) >> SR_FNA_OUT; |
398 | 0 | out[j] += (FIXP_DBL)fMultDiv2(coeff[i], in[j + 3 - i]) >> SR_FNA_OUT; |
399 | 0 | } |
400 | 0 | } |
401 | |
|
402 | 0 | for (i = 0; i < 3; i++) { |
403 | 0 | out[len - 3] -= |
404 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_1[i]]) >> SR_FNA_OUT; |
405 | 0 | out[len - 3] += |
406 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_1[5 - i]]) >> SR_FNA_OUT; |
407 | 0 | } |
408 | |
|
409 | 0 | for (i = 0; i < 3; i++) { |
410 | 0 | out[len - 2] -= |
411 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_2[i]]) >> SR_FNA_OUT; |
412 | 0 | out[len - 2] += |
413 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_2[5 - i]]) >> SR_FNA_OUT; |
414 | 0 | } |
415 | |
|
416 | 0 | for (i = 0; i < 3; i++) { |
417 | 0 | out[len - 1] -= |
418 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_3[i]]) >> SR_FNA_OUT; |
419 | 0 | out[len - 1] += |
420 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_3[5 - i]]) >> SR_FNA_OUT; |
421 | 0 | } |
422 | |
|
423 | 0 | } else { |
424 | | /* exploit the symmetry of the table: coeff[6] = coeff[0], |
425 | | coeff[5] = coeff[1], |
426 | | coeff[4] = coeff[2] |
427 | | */ |
428 | |
|
429 | 0 | for (i = 0; i < 3; i++) { |
430 | 0 | out[0] -= (FIXP_DBL)fMultDiv2(coeff[i], in[indices_1[i]] >> SR_FNA_OUT); |
431 | 0 | out[0] -= |
432 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[indices_1[5 - i]] >> SR_FNA_OUT); |
433 | 0 | } |
434 | 0 | out[0] -= (FIXP_DBL)fMultDiv2(coeff[3], in[0] >> SR_FNA_OUT); |
435 | |
|
436 | 0 | for (i = 0; i < 3; i++) { |
437 | 0 | out[1] += (FIXP_DBL)fMultDiv2(coeff[i], in[indices_2[i]] >> SR_FNA_OUT); |
438 | 0 | out[1] += |
439 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[indices_2[5 - i]] >> SR_FNA_OUT); |
440 | 0 | } |
441 | 0 | out[1] += (FIXP_DBL)fMultDiv2(coeff[3], in[1] >> SR_FNA_OUT); |
442 | |
|
443 | 0 | for (i = 0; i < 3; i++) { |
444 | 0 | out[2] -= (FIXP_DBL)fMultDiv2(coeff[i], in[indices_3[i]] >> SR_FNA_OUT); |
445 | 0 | out[2] -= |
446 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[indices_3[5 - i]] >> SR_FNA_OUT); |
447 | 0 | } |
448 | 0 | out[2] -= (FIXP_DBL)fMultDiv2(coeff[3], in[2] >> SR_FNA_OUT); |
449 | |
|
450 | 0 | for (j = 3; j < (len - 4); j++) { |
451 | 0 | for (i = 0; i < 3; i++) { |
452 | 0 | out[j] += (FIXP_DBL)fMultDiv2(coeff[i], in[j - 3 + i] >> SR_FNA_OUT); |
453 | 0 | out[j] += (FIXP_DBL)fMultDiv2(coeff[i], in[j + 3 - i] >> SR_FNA_OUT); |
454 | 0 | } |
455 | 0 | out[j] += (FIXP_DBL)fMultDiv2(coeff[3], in[j] >> SR_FNA_OUT); |
456 | |
|
457 | 0 | j++; |
458 | |
|
459 | 0 | for (i = 0; i < 3; i++) { |
460 | 0 | out[j] -= (FIXP_DBL)fMultDiv2(coeff[i], in[j - 3 + i] >> SR_FNA_OUT); |
461 | 0 | out[j] -= (FIXP_DBL)fMultDiv2(coeff[i], in[j + 3 - i] >> SR_FNA_OUT); |
462 | 0 | } |
463 | 0 | out[j] -= (FIXP_DBL)fMultDiv2(coeff[3], in[j] >> SR_FNA_OUT); |
464 | 0 | } |
465 | |
|
466 | 0 | for (i = 0; i < 3; i++) { |
467 | 0 | out[len - 3] += |
468 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_1[i]] >> SR_FNA_OUT); |
469 | 0 | out[len - 3] += |
470 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_1[5 - i]] >> SR_FNA_OUT); |
471 | 0 | } |
472 | 0 | out[len - 3] += (FIXP_DBL)fMultDiv2(coeff[3], in[len - 3] >> SR_FNA_OUT); |
473 | |
|
474 | 0 | for (i = 0; i < 3; i++) { |
475 | 0 | out[len - 2] -= |
476 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_2[i]] >> SR_FNA_OUT); |
477 | 0 | out[len - 2] -= |
478 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_2[5 - i]] >> SR_FNA_OUT); |
479 | 0 | } |
480 | 0 | out[len - 2] -= (FIXP_DBL)fMultDiv2(coeff[3], in[len - 2] >> SR_FNA_OUT); |
481 | |
|
482 | 0 | for (i = 0; i < 3; i++) { |
483 | 0 | out[len - 1] += |
484 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_3[i]] >> SR_FNA_OUT); |
485 | 0 | out[len - 1] += |
486 | 0 | (FIXP_DBL)fMultDiv2(coeff[i], in[len - subtr_3[5 - i]] >> SR_FNA_OUT); |
487 | 0 | } |
488 | 0 | out[len - 1] += (FIXP_DBL)fMultDiv2(coeff[3], in[len - 1] >> SR_FNA_OUT); |
489 | 0 | } |
490 | 0 | } |
491 | | |
492 | | static inline void CJointStereo_GenerateMSOutput(FIXP_DBL *pSpecLCurrBand, |
493 | | FIXP_DBL *pSpecRCurrBand, |
494 | | UINT leftScale, |
495 | | UINT rightScale, |
496 | 0 | UINT nSfbBands) { |
497 | 0 | unsigned int i; |
498 | |
|
499 | 0 | FIXP_DBL leftCoefficient0; |
500 | 0 | FIXP_DBL leftCoefficient1; |
501 | 0 | FIXP_DBL leftCoefficient2; |
502 | 0 | FIXP_DBL leftCoefficient3; |
503 | |
|
504 | 0 | FIXP_DBL rightCoefficient0; |
505 | 0 | FIXP_DBL rightCoefficient1; |
506 | 0 | FIXP_DBL rightCoefficient2; |
507 | 0 | FIXP_DBL rightCoefficient3; |
508 | |
|
509 | 0 | for (i = nSfbBands; i > 0; i -= 4) { |
510 | 0 | leftCoefficient0 = pSpecLCurrBand[i - 4]; |
511 | 0 | leftCoefficient1 = pSpecLCurrBand[i - 3]; |
512 | 0 | leftCoefficient2 = pSpecLCurrBand[i - 2]; |
513 | 0 | leftCoefficient3 = pSpecLCurrBand[i - 1]; |
514 | |
|
515 | 0 | rightCoefficient0 = pSpecRCurrBand[i - 4]; |
516 | 0 | rightCoefficient1 = pSpecRCurrBand[i - 3]; |
517 | 0 | rightCoefficient2 = pSpecRCurrBand[i - 2]; |
518 | 0 | rightCoefficient3 = pSpecRCurrBand[i - 1]; |
519 | | |
520 | | /* MS output generation */ |
521 | 0 | leftCoefficient0 >>= leftScale; |
522 | 0 | leftCoefficient1 >>= leftScale; |
523 | 0 | leftCoefficient2 >>= leftScale; |
524 | 0 | leftCoefficient3 >>= leftScale; |
525 | |
|
526 | 0 | rightCoefficient0 >>= rightScale; |
527 | 0 | rightCoefficient1 >>= rightScale; |
528 | 0 | rightCoefficient2 >>= rightScale; |
529 | 0 | rightCoefficient3 >>= rightScale; |
530 | |
|
531 | 0 | pSpecLCurrBand[i - 4] = leftCoefficient0 + rightCoefficient0; |
532 | 0 | pSpecLCurrBand[i - 3] = leftCoefficient1 + rightCoefficient1; |
533 | 0 | pSpecLCurrBand[i - 2] = leftCoefficient2 + rightCoefficient2; |
534 | 0 | pSpecLCurrBand[i - 1] = leftCoefficient3 + rightCoefficient3; |
535 | |
|
536 | 0 | pSpecRCurrBand[i - 4] = leftCoefficient0 - rightCoefficient0; |
537 | 0 | pSpecRCurrBand[i - 3] = leftCoefficient1 - rightCoefficient1; |
538 | 0 | pSpecRCurrBand[i - 2] = leftCoefficient2 - rightCoefficient2; |
539 | 0 | pSpecRCurrBand[i - 1] = leftCoefficient3 - rightCoefficient3; |
540 | 0 | } |
541 | 0 | } |
542 | | |
543 | | void CJointStereo_ApplyMS( |
544 | | CAacDecoderChannelInfo *pAacDecoderChannelInfo[2], |
545 | | CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo[2], |
546 | | FIXP_DBL *spectrumL, FIXP_DBL *spectrumR, SHORT *SFBleftScale, |
547 | | SHORT *SFBrightScale, SHORT *specScaleL, SHORT *specScaleR, |
548 | | const SHORT *pScaleFactorBandOffsets, const UCHAR *pWindowGroupLength, |
549 | | const int windowGroups, const int max_sfb_ste_outside, |
550 | | const int scaleFactorBandsTransmittedL, |
551 | | const int scaleFactorBandsTransmittedR, FIXP_DBL *store_dmx_re_prev, |
552 | 0 | SHORT *store_dmx_re_prev_e, const int mainband_flag) { |
553 | 0 | int window, group, band; |
554 | 0 | UCHAR groupMask; |
555 | 0 | CJointStereoData *pJointStereoData = |
556 | 0 | &pAacDecoderChannelInfo[L]->pComData->jointStereoData; |
557 | 0 | CCplxPredictionData *cplxPredictionData = |
558 | 0 | pAacDecoderChannelInfo[L]->pComStaticData->cplxPredictionData; |
559 | |
|
560 | 0 | int max_sfb_ste = |
561 | 0 | fMax(scaleFactorBandsTransmittedL, scaleFactorBandsTransmittedR); |
562 | 0 | int min_sfb_ste = |
563 | 0 | fMin(scaleFactorBandsTransmittedL, scaleFactorBandsTransmittedR); |
564 | 0 | int scaleFactorBandsTransmitted = min_sfb_ste; |
565 | |
|
566 | 0 | if (pJointStereoData->cplx_pred_flag) { |
567 | 0 | int windowLen, groupwin, frameMaxScale; |
568 | 0 | CJointStereoPersistentData *pJointStereoPersistentData = |
569 | 0 | &pAacDecoderStaticChannelInfo[L] |
570 | 0 | ->pCpeStaticData->jointStereoPersistentData; |
571 | 0 | FIXP_DBL *const staticSpectralCoeffsL = |
572 | 0 | pAacDecoderStaticChannelInfo[L] |
573 | 0 | ->pCpeStaticData->jointStereoPersistentData.spectralCoeffs[L]; |
574 | 0 | FIXP_DBL *const staticSpectralCoeffsR = |
575 | 0 | pAacDecoderStaticChannelInfo[L] |
576 | 0 | ->pCpeStaticData->jointStereoPersistentData.spectralCoeffs[R]; |
577 | 0 | SHORT *const staticSpecScaleL = |
578 | 0 | pAacDecoderStaticChannelInfo[L] |
579 | 0 | ->pCpeStaticData->jointStereoPersistentData.specScale[L]; |
580 | 0 | SHORT *const staticSpecScaleR = |
581 | 0 | pAacDecoderStaticChannelInfo[L] |
582 | 0 | ->pCpeStaticData->jointStereoPersistentData.specScale[R]; |
583 | |
|
584 | 0 | FIXP_DBL *dmx_re = |
585 | 0 | pAacDecoderStaticChannelInfo[L] |
586 | 0 | ->pCpeStaticData->jointStereoPersistentData.scratchBuffer; |
587 | 0 | FIXP_DBL *dmx_re_prev = |
588 | 0 | pAacDecoderStaticChannelInfo[L] |
589 | 0 | ->pCpeStaticData->jointStereoPersistentData.scratchBuffer + |
590 | 0 | 1024; |
591 | | |
592 | | /* When MS is applied over the main band this value gets computed. Otherwise |
593 | | * (for the tiles) it uses the assigned value */ |
594 | 0 | SHORT dmx_re_prev_e = *store_dmx_re_prev_e; |
595 | |
|
596 | 0 | const FIXP_FILT *pCoeff; |
597 | 0 | const FIXP_FILT *pCoeffPrev; |
598 | 0 | int coeffPointerOffset; |
599 | |
|
600 | 0 | int previousShape = (int)pJointStereoPersistentData->winShapePrev; |
601 | 0 | int currentShape = (int)pAacDecoderChannelInfo[L]->icsInfo.WindowShape; |
602 | | |
603 | | /* complex stereo prediction */ |
604 | | |
605 | | /* 0. preparations */ |
606 | | |
607 | | /* 0.0. get scratch buffer for downmix MDST */ |
608 | 0 | C_AALLOC_SCRATCH_START(dmx_im, FIXP_DBL, 1024); |
609 | | |
610 | | /* 0.1. window lengths */ |
611 | | |
612 | | /* get length of short window for current configuration */ |
613 | 0 | windowLen = |
614 | 0 | pAacDecoderChannelInfo[L]->granuleLength; /* framelength 768 => 96, |
615 | | framelength 1024 => 128 */ |
616 | | |
617 | | /* if this is no short-block set length for long-block */ |
618 | 0 | if (pAacDecoderChannelInfo[L]->icsInfo.WindowSequence != BLOCK_SHORT) { |
619 | 0 | windowLen *= 8; |
620 | 0 | } |
621 | | |
622 | | /* 0.2. set pointer to filter-coefficients for MDST excitation including |
623 | | * previous frame portions */ |
624 | | /* cp. ISO/IEC FDIS 23003-3:2011(E) table 125 */ |
625 | | |
626 | | /* set pointer to default-position */ |
627 | 0 | pCoeffPrev = mdst_filt_coef_prev[previousShape]; |
628 | |
|
629 | 0 | if (cplxPredictionData->complex_coef == 1) { |
630 | 0 | switch (pAacDecoderChannelInfo[L] |
631 | 0 | ->icsInfo.WindowSequence) { /* current window sequence */ |
632 | 0 | case BLOCK_SHORT: |
633 | 0 | case BLOCK_LONG: |
634 | 0 | pCoeffPrev = mdst_filt_coef_prev[previousShape]; |
635 | 0 | break; |
636 | | |
637 | 0 | case BLOCK_START: |
638 | 0 | if ((pJointStereoPersistentData->winSeqPrev == BLOCK_SHORT) || |
639 | 0 | (pJointStereoPersistentData->winSeqPrev == BLOCK_START)) { |
640 | | /* a stop-start-sequence can only follow on an eight-short-sequence |
641 | | * or a start-sequence */ |
642 | 0 | pCoeffPrev = mdst_filt_coef_prev[2 + previousShape]; |
643 | 0 | } else { |
644 | 0 | pCoeffPrev = mdst_filt_coef_prev[previousShape]; |
645 | 0 | } |
646 | 0 | break; |
647 | | |
648 | 0 | case BLOCK_STOP: |
649 | 0 | pCoeffPrev = mdst_filt_coef_prev[2 + previousShape]; |
650 | 0 | break; |
651 | | |
652 | 0 | default: |
653 | 0 | pCoeffPrev = mdst_filt_coef_prev[previousShape]; |
654 | 0 | break; |
655 | 0 | } |
656 | 0 | } |
657 | | |
658 | | /* 0.3. set pointer to filter-coefficients for MDST excitation */ |
659 | | |
660 | | /* define offset of pointer to filter-coefficients for MDST exitation |
661 | | * employing only the current frame */ |
662 | 0 | if ((previousShape == SHAPE_SINE) && (currentShape == SHAPE_SINE)) { |
663 | 0 | coeffPointerOffset = 0; |
664 | 0 | } else if ((previousShape == SHAPE_SINE) && (currentShape == SHAPE_KBD)) { |
665 | 0 | coeffPointerOffset = 2; |
666 | 0 | } else if ((previousShape == SHAPE_KBD) && (currentShape == SHAPE_KBD)) { |
667 | 0 | coeffPointerOffset = 1; |
668 | 0 | } else /* if ( (previousShape == SHAPE_KBD) && (currentShape == SHAPE_SINE) |
669 | | ) */ |
670 | 0 | { |
671 | 0 | coeffPointerOffset = 3; |
672 | 0 | } |
673 | | |
674 | | /* set pointer to filter-coefficient table cp. ISO/IEC FDIS 23003-3:2011(E) |
675 | | * table 124 */ |
676 | 0 | switch (pAacDecoderChannelInfo[L] |
677 | 0 | ->icsInfo.WindowSequence) { /* current window sequence */ |
678 | 0 | case BLOCK_SHORT: |
679 | 0 | case BLOCK_LONG: |
680 | 0 | pCoeff = mdst_filt_coef_curr[coeffPointerOffset]; |
681 | 0 | break; |
682 | | |
683 | 0 | case BLOCK_START: |
684 | 0 | if ((pJointStereoPersistentData->winSeqPrev == BLOCK_SHORT) || |
685 | 0 | (pJointStereoPersistentData->winSeqPrev == BLOCK_START)) { |
686 | | /* a stop-start-sequence can only follow on an eight-short-sequence or |
687 | | * a start-sequence */ |
688 | 0 | pCoeff = mdst_filt_coef_curr[12 + coeffPointerOffset]; |
689 | 0 | } else { |
690 | 0 | pCoeff = mdst_filt_coef_curr[4 + coeffPointerOffset]; |
691 | 0 | } |
692 | 0 | break; |
693 | | |
694 | 0 | case BLOCK_STOP: |
695 | 0 | pCoeff = mdst_filt_coef_curr[8 + coeffPointerOffset]; |
696 | 0 | break; |
697 | | |
698 | 0 | default: |
699 | 0 | pCoeff = mdst_filt_coef_curr[coeffPointerOffset]; |
700 | 0 | } |
701 | | |
702 | | /* 0.4. find maximum common (l/r) band-scaling-factor for whole sequence |
703 | | * (all windows) */ |
704 | 0 | frameMaxScale = 0; |
705 | 0 | for (window = 0, group = 0; group < windowGroups; group++) { |
706 | 0 | for (groupwin = 0; groupwin < pWindowGroupLength[group]; |
707 | 0 | groupwin++, window++) { |
708 | 0 | SHORT *leftScale = &SFBleftScale[window * 16]; |
709 | 0 | SHORT *rightScale = &SFBrightScale[window * 16]; |
710 | 0 | int windowMaxScale = 0; |
711 | | |
712 | | /* find maximum scaling factor of all bands in this window */ |
713 | 0 | for (band = 0; band < min_sfb_ste; band++) { |
714 | 0 | int lScale = leftScale[band]; |
715 | 0 | int rScale = rightScale[band]; |
716 | 0 | int commonScale = ((lScale > rScale) ? lScale : rScale); |
717 | 0 | windowMaxScale = |
718 | 0 | (windowMaxScale < commonScale) ? commonScale : windowMaxScale; |
719 | 0 | } |
720 | 0 | if (scaleFactorBandsTransmittedL > |
721 | 0 | min_sfb_ste) { /* i.e. scaleFactorBandsTransmittedL == max_sfb_ste |
722 | | */ |
723 | 0 | for (; band < max_sfb_ste; band++) { |
724 | 0 | int lScale = leftScale[band]; |
725 | 0 | windowMaxScale = |
726 | 0 | (windowMaxScale < lScale) ? lScale : windowMaxScale; |
727 | 0 | } |
728 | 0 | } else { |
729 | 0 | if (scaleFactorBandsTransmittedR > |
730 | 0 | min_sfb_ste) { /* i.e. scaleFactorBandsTransmittedR == max_sfb_ste |
731 | | */ |
732 | 0 | for (; band < max_sfb_ste; band++) { |
733 | 0 | int rScale = rightScale[band]; |
734 | 0 | windowMaxScale = |
735 | 0 | (windowMaxScale < rScale) ? rScale : windowMaxScale; |
736 | 0 | } |
737 | 0 | } |
738 | 0 | } |
739 | | |
740 | | /* find maximum common SF of all windows */ |
741 | 0 | frameMaxScale = |
742 | 0 | (frameMaxScale < windowMaxScale) ? windowMaxScale : frameMaxScale; |
743 | 0 | } |
744 | 0 | } |
745 | | |
746 | | /* add some headroom for overflow protection during filter and add operation |
747 | | */ |
748 | 0 | frameMaxScale += 2; |
749 | | |
750 | | /* process on window-basis (i.e. iterate over all groups and corresponding |
751 | | * windows) */ |
752 | 0 | for (window = 0, group = 0; group < windowGroups; group++) { |
753 | 0 | groupMask = 1 << group; |
754 | |
|
755 | 0 | for (groupwin = 0; groupwin < pWindowGroupLength[group]; |
756 | 0 | groupwin++, window++) { |
757 | | /* initialize the MDST with zeros */ |
758 | 0 | FDKmemclear(&dmx_im[windowLen * window], windowLen * sizeof(FIXP_DBL)); |
759 | | |
760 | | /* 1. calculate the previous downmix MDCT. We do this once just for the |
761 | | * Main band. */ |
762 | 0 | if (cplxPredictionData->complex_coef == 1) { |
763 | 0 | if ((cplxPredictionData->use_prev_frame == 1) && (mainband_flag)) { |
764 | | /* if this is a long-block or the first window of a short-block |
765 | | calculate the downmix MDCT of the previous frame. |
766 | | use_prev_frame is assumed not to change during a frame! |
767 | | */ |
768 | | |
769 | | /* first determine shiftfactors to scale left and right channel */ |
770 | 0 | if ((pAacDecoderChannelInfo[L]->icsInfo.WindowSequence != |
771 | 0 | BLOCK_SHORT) || |
772 | 0 | (window == 0)) { |
773 | 0 | int index_offset = 0; |
774 | 0 | int srLeftChan = 0; |
775 | 0 | int srRightChan = 0; |
776 | 0 | if (pAacDecoderChannelInfo[L]->icsInfo.WindowSequence == |
777 | 0 | BLOCK_SHORT) { |
778 | | /* use the last window of the previous frame for MDCT |
779 | | * calculation if this is a short-block. */ |
780 | 0 | index_offset = windowLen * 7; |
781 | 0 | if (staticSpecScaleL[7] > staticSpecScaleR[7]) { |
782 | 0 | srRightChan = staticSpecScaleL[7] - staticSpecScaleR[7]; |
783 | 0 | dmx_re_prev_e = staticSpecScaleL[7]; |
784 | 0 | } else { |
785 | 0 | srLeftChan = staticSpecScaleR[7] - staticSpecScaleL[7]; |
786 | 0 | dmx_re_prev_e = staticSpecScaleR[7]; |
787 | 0 | } |
788 | 0 | } else { |
789 | 0 | if (staticSpecScaleL[0] > staticSpecScaleR[0]) { |
790 | 0 | srRightChan = staticSpecScaleL[0] - staticSpecScaleR[0]; |
791 | 0 | dmx_re_prev_e = staticSpecScaleL[0]; |
792 | 0 | } else { |
793 | 0 | srLeftChan = staticSpecScaleR[0] - staticSpecScaleL[0]; |
794 | 0 | dmx_re_prev_e = staticSpecScaleR[0]; |
795 | 0 | } |
796 | 0 | } |
797 | | |
798 | | /* now scale channels and determine downmix MDCT of previous frame |
799 | | */ |
800 | 0 | if (pAacDecoderStaticChannelInfo[L] |
801 | 0 | ->pCpeStaticData->jointStereoPersistentData |
802 | 0 | .clearSpectralCoeffs == 1) { |
803 | 0 | FDKmemclear(dmx_re_prev, windowLen * sizeof(FIXP_DBL)); |
804 | 0 | dmx_re_prev_e = 0; |
805 | 0 | } else { |
806 | 0 | if (cplxPredictionData->pred_dir == 0) { |
807 | 0 | for (int i = 0; i < windowLen; i++) { |
808 | 0 | dmx_re_prev[i] = |
809 | 0 | ((staticSpectralCoeffsL[index_offset + i] >> |
810 | 0 | fMin(DFRACT_BITS - 1, srLeftChan + 1)) + |
811 | 0 | (staticSpectralCoeffsR[index_offset + i] >> |
812 | 0 | fMin(DFRACT_BITS - 1, srRightChan + 1))); |
813 | 0 | } |
814 | 0 | } else { |
815 | 0 | for (int i = 0; i < windowLen; i++) { |
816 | 0 | dmx_re_prev[i] = |
817 | 0 | ((staticSpectralCoeffsL[index_offset + i] >> |
818 | 0 | fMin(DFRACT_BITS - 1, srLeftChan + 1)) - |
819 | 0 | (staticSpectralCoeffsR[index_offset + i] >> |
820 | 0 | fMin(DFRACT_BITS - 1, srRightChan + 1))); |
821 | 0 | } |
822 | 0 | } |
823 | 0 | } |
824 | | |
825 | | /* In case that we use INF we have to preserve the state of the |
826 | | "dmx_re_prev" (original or computed). This is necessary because we |
827 | | have to apply MS over the separate IGF tiles. */ |
828 | 0 | FDKmemcpy(store_dmx_re_prev, &dmx_re_prev[0], |
829 | 0 | windowLen * sizeof(FIXP_DBL)); |
830 | | |
831 | | /* Particular exponent of the computed/original "dmx_re_prev" must |
832 | | * be kept for the tile MS calculations if necessary.*/ |
833 | 0 | *store_dmx_re_prev_e = dmx_re_prev_e; |
834 | |
|
835 | 0 | } /* if ( (pAacDecoderChannelInfo[L]->icsInfo.WindowSequence != |
836 | | BLOCK_SHORT) || (window == 0) ) */ |
837 | |
|
838 | 0 | } /* if ( pJointStereoData->use_prev_frame == 1 ) */ |
839 | |
|
840 | 0 | } /* if ( pJointStereoData->complex_coef == 1 ) */ |
841 | | |
842 | | /* 2. calculate downmix MDCT of current frame */ |
843 | | |
844 | | /* set pointer to scale-factor-bands of current window */ |
845 | 0 | SHORT *leftScale = &SFBleftScale[window * 16]; |
846 | 0 | SHORT *rightScale = &SFBrightScale[window * 16]; |
847 | |
|
848 | 0 | specScaleL[window] = specScaleR[window] = frameMaxScale; |
849 | | |
850 | | /* adapt scaling-factors to previous frame */ |
851 | 0 | if (cplxPredictionData->use_prev_frame == 1) { |
852 | 0 | if (window == 0) { |
853 | 0 | if (dmx_re_prev_e < frameMaxScale) { |
854 | 0 | if (mainband_flag == 0) { |
855 | 0 | scaleValues( |
856 | 0 | dmx_re_prev, store_dmx_re_prev, windowLen, |
857 | 0 | -fMin(DFRACT_BITS - 1, (frameMaxScale - dmx_re_prev_e))); |
858 | 0 | } else { |
859 | 0 | scaleValues( |
860 | 0 | dmx_re_prev, windowLen, |
861 | 0 | -fMin(DFRACT_BITS - 1, (frameMaxScale - dmx_re_prev_e))); |
862 | 0 | } |
863 | 0 | } else { |
864 | 0 | if (mainband_flag == 0) { |
865 | 0 | FDKmemcpy(dmx_re_prev, store_dmx_re_prev, |
866 | 0 | windowLen * sizeof(FIXP_DBL)); |
867 | 0 | } |
868 | 0 | specScaleL[0] = dmx_re_prev_e; |
869 | 0 | specScaleR[0] = dmx_re_prev_e; |
870 | 0 | } |
871 | 0 | } else { /* window != 0 */ |
872 | 0 | FDK_ASSERT(pAacDecoderChannelInfo[L]->icsInfo.WindowSequence == |
873 | 0 | BLOCK_SHORT); |
874 | 0 | if (specScaleL[window - 1] < frameMaxScale) { |
875 | 0 | scaleValues(&dmx_re[windowLen * (window - 1)], windowLen, |
876 | 0 | -fMin(DFRACT_BITS - 1, |
877 | 0 | (frameMaxScale - specScaleL[window - 1]))); |
878 | 0 | } else { |
879 | 0 | specScaleL[window] = specScaleL[window - 1]; |
880 | 0 | specScaleR[window] = specScaleR[window - 1]; |
881 | 0 | } |
882 | 0 | } |
883 | 0 | } /* if ( pJointStereoData->use_prev_frame == 1 ) */ |
884 | | |
885 | | /* scaling factors of both channels ought to be equal now */ |
886 | 0 | FDK_ASSERT(specScaleL[window] == specScaleR[window]); |
887 | | |
888 | | /* rescale signal and calculate downmix MDCT */ |
889 | 0 | for (band = 0; band < max_sfb_ste; band++) { |
890 | | /* first adapt scaling of current band to scaling of current window => |
891 | | * shift signal right */ |
892 | 0 | int lScale = leftScale[band]; |
893 | 0 | int rScale = rightScale[band]; |
894 | |
|
895 | 0 | lScale = fMin(DFRACT_BITS - 1, specScaleL[window] - lScale); |
896 | 0 | rScale = fMin(DFRACT_BITS - 1, |
897 | 0 | specScaleL[window] - rScale); /* L or R doesn't |
898 | | matter, |
899 | | specScales are |
900 | | equal at this |
901 | | point */ |
902 | | |
903 | | /* Write back to sfb scale to cover the case when max_sfb_ste < |
904 | | * max_sfb */ |
905 | 0 | leftScale[band] = rightScale[band] = specScaleL[window]; |
906 | |
|
907 | 0 | for (int i = pScaleFactorBandOffsets[band]; |
908 | 0 | i < pScaleFactorBandOffsets[band + 1]; i++) { |
909 | 0 | spectrumL[windowLen * window + i] >>= lScale; |
910 | 0 | spectrumR[windowLen * window + i] >>= rScale; |
911 | 0 | } |
912 | | |
913 | | /* now calculate downmix MDCT */ |
914 | 0 | if (pJointStereoData->MsUsed[band] & groupMask) { |
915 | 0 | for (int i = pScaleFactorBandOffsets[band]; |
916 | 0 | i < pScaleFactorBandOffsets[band + 1]; i++) { |
917 | 0 | dmx_re[windowLen * window + i] = |
918 | 0 | spectrumL[windowLen * window + i]; |
919 | 0 | } |
920 | 0 | } else { |
921 | 0 | if (cplxPredictionData->pred_dir == 0) { |
922 | 0 | for (int i = pScaleFactorBandOffsets[band]; |
923 | 0 | i < pScaleFactorBandOffsets[band + 1]; i++) { |
924 | 0 | dmx_re[windowLen * window + i] = |
925 | 0 | (spectrumL[windowLen * window + i] + |
926 | 0 | spectrumR[windowLen * window + i]) >> |
927 | 0 | 1; |
928 | 0 | } |
929 | 0 | } else { |
930 | 0 | for (int i = pScaleFactorBandOffsets[band]; |
931 | 0 | i < pScaleFactorBandOffsets[band + 1]; i++) { |
932 | 0 | dmx_re[windowLen * window + i] = |
933 | 0 | (spectrumL[windowLen * window + i] - |
934 | 0 | spectrumR[windowLen * window + i]) >> |
935 | 0 | 1; |
936 | 0 | } |
937 | 0 | } |
938 | 0 | } |
939 | |
|
940 | 0 | } /* for ( band=0; band<max_sfb_ste; band++ ) */ |
941 | | /* Clean until the end */ |
942 | 0 | for (int i = pScaleFactorBandOffsets[max_sfb_ste_outside]; |
943 | 0 | i < windowLen; i++) { |
944 | 0 | dmx_re[windowLen * window + i] = (FIXP_DBL)0; |
945 | 0 | } |
946 | | |
947 | | /* 3. calculate MDST-portion corresponding to the current frame. */ |
948 | 0 | if (cplxPredictionData->complex_coef == 1) { |
949 | 0 | { |
950 | | /* 3.1 move pointer in filter-coefficient table in case of short |
951 | | * window sequence */ |
952 | | /* (other coefficients are utilized for the last 7 short |
953 | | * windows) */ |
954 | 0 | if ((pAacDecoderChannelInfo[L]->icsInfo.WindowSequence == |
955 | 0 | BLOCK_SHORT) && |
956 | 0 | (window != 0)) { |
957 | 0 | pCoeff = mdst_filt_coef_curr[currentShape]; |
958 | 0 | pCoeffPrev = mdst_filt_coef_prev[currentShape]; |
959 | 0 | } |
960 | | |
961 | | /* The length of the filter processing must be extended because of |
962 | | * filter boundary problems */ |
963 | 0 | int extended_band = fMin( |
964 | 0 | pScaleFactorBandOffsets[max_sfb_ste_outside] + 7, windowLen); |
965 | | |
966 | | /* 3.2. estimate downmix MDST from current frame downmix MDCT */ |
967 | 0 | if ((pAacDecoderChannelInfo[L]->icsInfo.WindowSequence == |
968 | 0 | BLOCK_SHORT) && |
969 | 0 | (window != 0)) { |
970 | 0 | CJointStereo_filterAndAdd(&dmx_re[windowLen * window], |
971 | 0 | extended_band, windowLen, pCoeff, |
972 | 0 | &dmx_im[windowLen * window], 1); |
973 | |
|
974 | 0 | CJointStereo_filterAndAdd(&dmx_re[windowLen * (window - 1)], |
975 | 0 | extended_band, windowLen, pCoeffPrev, |
976 | 0 | &dmx_im[windowLen * window], 0); |
977 | 0 | } else { |
978 | 0 | CJointStereo_filterAndAdd(dmx_re, extended_band, windowLen, |
979 | 0 | pCoeff, dmx_im, 1); |
980 | |
|
981 | 0 | if (cplxPredictionData->use_prev_frame == 1) { |
982 | 0 | CJointStereo_filterAndAdd(dmx_re_prev, extended_band, windowLen, |
983 | 0 | pCoeffPrev, |
984 | 0 | &dmx_im[windowLen * window], 0); |
985 | 0 | } |
986 | 0 | } |
987 | |
|
988 | 0 | } /* if(pAacDecoderChannelInfo[L]->transform_splitting_active) */ |
989 | 0 | } /* if ( pJointStereoData->complex_coef == 1 ) */ |
990 | | |
991 | | /* 4. upmix process */ |
992 | 0 | LONG pred_dir = cplxPredictionData->pred_dir ? -1 : 1; |
993 | | /* 0.1 in Q-3.34 */ |
994 | 0 | const FIXP_DBL pointOne = 0x66666666; /* 0.8 */ |
995 | | /* Shift value for the downmix */ |
996 | 0 | const INT shift_dmx = SF_FNA_COEFFS + 1; |
997 | |
|
998 | 0 | for (band = 0; band < max_sfb_ste_outside; band++) { |
999 | 0 | if (pJointStereoData->MsUsed[band] & groupMask) { |
1000 | 0 | FIXP_SGL tempRe = |
1001 | 0 | (FIXP_SGL)cplxPredictionData->alpha_q_re[group][band]; |
1002 | 0 | FIXP_SGL tempIm = |
1003 | 0 | (FIXP_SGL)cplxPredictionData->alpha_q_im[group][band]; |
1004 | | |
1005 | | /* Find the minimum common headroom for alpha_re and alpha_im */ |
1006 | 0 | int alpha_re_headroom = CountLeadingBits((INT)tempRe) - 16; |
1007 | 0 | if (tempRe == (FIXP_SGL)0) alpha_re_headroom = 15; |
1008 | 0 | int alpha_im_headroom = CountLeadingBits((INT)tempIm) - 16; |
1009 | 0 | if (tempIm == (FIXP_SGL)0) alpha_im_headroom = 15; |
1010 | 0 | int val = fMin(alpha_re_headroom, alpha_im_headroom); |
1011 | | |
1012 | | /* Multiply alpha by 0.1 with maximum precision */ |
1013 | 0 | FDK_ASSERT(val >= 0); |
1014 | 0 | FIXP_DBL alpha_re_tmp = fMult((FIXP_SGL)(tempRe << val), pointOne); |
1015 | 0 | FIXP_DBL alpha_im_tmp = fMult((FIXP_SGL)(tempIm << val), pointOne); |
1016 | | |
1017 | | /* Calculate alpha exponent */ |
1018 | | /* (Q-3.34 * Q15.0) shifted left by "val" */ |
1019 | 0 | int alpha_re_exp = -3 + 15 - val; |
1020 | |
|
1021 | 0 | int help3_shift = alpha_re_exp + 1; |
1022 | |
|
1023 | 0 | FIXP_DBL *p2CoeffL = &( |
1024 | 0 | spectrumL[windowLen * window + pScaleFactorBandOffsets[band]]); |
1025 | 0 | FIXP_DBL *p2CoeffR = &( |
1026 | 0 | spectrumR[windowLen * window + pScaleFactorBandOffsets[band]]); |
1027 | 0 | FIXP_DBL *p2dmxIm = |
1028 | 0 | &(dmx_im[windowLen * window + pScaleFactorBandOffsets[band]]); |
1029 | 0 | FIXP_DBL *p2dmxRe = |
1030 | 0 | &(dmx_re[windowLen * window + pScaleFactorBandOffsets[band]]); |
1031 | |
|
1032 | 0 | for (int i = pScaleFactorBandOffsets[band]; |
1033 | 0 | i < pScaleFactorBandOffsets[band + 1]; i++) { |
1034 | | /* Calculating helper term: |
1035 | | side = specR[i] - alpha_re[i] * dmx_re[i] - alpha_im[i] * |
1036 | | dmx_im[i]; |
1037 | | |
1038 | | Here "dmx_re" may be the same as "specL" or alternatively keep |
1039 | | the downmix. "dmx_re" and "specL" are two different pointers |
1040 | | pointing to separate arrays, which may or may not contain the |
1041 | | same data (with different scaling). |
1042 | | |
1043 | | specL[i] = + (specL[i] + side); |
1044 | | specR[i] = -/+ (specL[i] - side); |
1045 | | */ |
1046 | 0 | FIXP_DBL side, left, right; |
1047 | |
|
1048 | 0 | side = fMultAddDiv2(fMultDiv2(alpha_re_tmp, *p2dmxRe++), |
1049 | 0 | alpha_im_tmp, (*p2dmxIm++) << shift_dmx); |
1050 | 0 | side = ((*p2CoeffR) >> 2) - |
1051 | 0 | (FIXP_DBL)SATURATE_SHIFT(side, -(help3_shift - 2), |
1052 | 0 | DFRACT_BITS - 2); |
1053 | |
|
1054 | 0 | left = ((*p2CoeffL) >> 2) + side; |
1055 | 0 | right = ((*p2CoeffL) >> 2) - side; |
1056 | 0 | right = (FIXP_DBL)((LONG)right * pred_dir); |
1057 | |
|
1058 | 0 | *p2CoeffL++ = SATURATE_LEFT_SHIFT_ALT(left, 2, DFRACT_BITS); |
1059 | 0 | *p2CoeffR++ = SATURATE_LEFT_SHIFT_ALT(right, 2, DFRACT_BITS); |
1060 | 0 | } |
1061 | 0 | } |
1062 | |
|
1063 | 0 | } /* for ( band=0; band < max_sfb_ste; band++ ) */ |
1064 | 0 | } /* for ( groupwin=0; groupwin<pWindowGroupLength[group]; groupwin++, |
1065 | | window++ ) */ |
1066 | |
|
1067 | 0 | } /* for ( window = 0, group = 0; group < windowGroups; group++ ) */ |
1068 | | |
1069 | | /* free scratch buffer */ |
1070 | 0 | C_AALLOC_SCRATCH_END(dmx_im, FIXP_DBL, 1024); |
1071 | |
|
1072 | 0 | } else { |
1073 | | /* MS stereo */ |
1074 | |
|
1075 | 0 | for (window = 0, group = 0; group < windowGroups; group++) { |
1076 | 0 | groupMask = 1 << group; |
1077 | |
|
1078 | 0 | for (int groupwin = 0; groupwin < pWindowGroupLength[group]; |
1079 | 0 | groupwin++, window++) { |
1080 | 0 | FIXP_DBL *leftSpectrum, *rightSpectrum; |
1081 | 0 | SHORT *leftScale = &SFBleftScale[window * 16]; |
1082 | 0 | SHORT *rightScale = &SFBrightScale[window * 16]; |
1083 | |
|
1084 | 0 | leftSpectrum = |
1085 | 0 | SPEC(spectrumL, window, pAacDecoderChannelInfo[L]->granuleLength); |
1086 | 0 | rightSpectrum = |
1087 | 0 | SPEC(spectrumR, window, pAacDecoderChannelInfo[R]->granuleLength); |
1088 | |
|
1089 | 0 | for (band = 0; band < max_sfb_ste_outside; band++) { |
1090 | 0 | if (pJointStereoData->MsUsed[band] & groupMask) { |
1091 | 0 | int lScale = leftScale[band]; |
1092 | 0 | int rScale = rightScale[band]; |
1093 | 0 | int commonScale = lScale > rScale ? lScale : rScale; |
1094 | 0 | unsigned int offsetCurrBand, offsetNextBand; |
1095 | | |
1096 | | /* ISO/IEC 14496-3 Chapter 4.6.8.1.1 : |
1097 | | M/S joint channel coding can only be used if common_window is 1. |
1098 | | */ |
1099 | 0 | FDK_ASSERT(GetWindowSequence(&pAacDecoderChannelInfo[L]->icsInfo) == |
1100 | 0 | GetWindowSequence(&pAacDecoderChannelInfo[R]->icsInfo)); |
1101 | 0 | FDK_ASSERT(GetWindowShape(&pAacDecoderChannelInfo[L]->icsInfo) == |
1102 | 0 | GetWindowShape(&pAacDecoderChannelInfo[R]->icsInfo)); |
1103 | | |
1104 | 0 | commonScale++; |
1105 | 0 | leftScale[band] = commonScale; |
1106 | 0 | rightScale[band] = commonScale; |
1107 | |
|
1108 | 0 | lScale = fMin(DFRACT_BITS - 1, commonScale - lScale); |
1109 | 0 | rScale = fMin(DFRACT_BITS - 1, commonScale - rScale); |
1110 | |
|
1111 | 0 | FDK_ASSERT(lScale >= 0 && rScale >= 0); |
1112 | | |
1113 | 0 | offsetCurrBand = pScaleFactorBandOffsets[band]; |
1114 | 0 | offsetNextBand = pScaleFactorBandOffsets[band + 1]; |
1115 | |
|
1116 | 0 | CJointStereo_GenerateMSOutput(&(leftSpectrum[offsetCurrBand]), |
1117 | 0 | &(rightSpectrum[offsetCurrBand]), |
1118 | 0 | lScale, rScale, |
1119 | 0 | offsetNextBand - offsetCurrBand); |
1120 | 0 | } |
1121 | 0 | } |
1122 | 0 | if (scaleFactorBandsTransmittedL > scaleFactorBandsTransmitted) { |
1123 | 0 | for (; band < scaleFactorBandsTransmittedL; band++) { |
1124 | 0 | if (pJointStereoData->MsUsed[band] & groupMask) { |
1125 | 0 | rightScale[band] = leftScale[band]; |
1126 | |
|
1127 | 0 | for (int index = pScaleFactorBandOffsets[band]; |
1128 | 0 | index < pScaleFactorBandOffsets[band + 1]; index++) { |
1129 | 0 | FIXP_DBL leftCoefficient = leftSpectrum[index]; |
1130 | | /* FIXP_DBL rightCoefficient = (FIXP_DBL)0; */ |
1131 | 0 | rightSpectrum[index] = leftCoefficient; |
1132 | 0 | } |
1133 | 0 | } |
1134 | 0 | } |
1135 | 0 | } else if (scaleFactorBandsTransmittedR > scaleFactorBandsTransmitted) { |
1136 | 0 | for (; band < scaleFactorBandsTransmittedR; band++) { |
1137 | 0 | if (pJointStereoData->MsUsed[band] & groupMask) { |
1138 | 0 | leftScale[band] = rightScale[band]; |
1139 | |
|
1140 | 0 | for (int index = pScaleFactorBandOffsets[band]; |
1141 | 0 | index < pScaleFactorBandOffsets[band + 1]; index++) { |
1142 | | /* FIXP_DBL leftCoefficient = (FIXP_DBL)0; */ |
1143 | 0 | FIXP_DBL rightCoefficient = rightSpectrum[index]; |
1144 | |
|
1145 | 0 | leftSpectrum[index] = rightCoefficient; |
1146 | 0 | rightSpectrum[index] = -rightCoefficient; |
1147 | 0 | } |
1148 | 0 | } |
1149 | 0 | } |
1150 | 0 | } |
1151 | 0 | } |
1152 | 0 | } |
1153 | | |
1154 | | /* Reset MsUsed flags if no explicit signalling was transmitted. Necessary |
1155 | | for intensity coding. PNS correlation signalling was mapped before |
1156 | | calling CJointStereo_ApplyMS(). */ |
1157 | 0 | if (pJointStereoData->MsMaskPresent == 2) { |
1158 | 0 | FDKmemclear(pJointStereoData->MsUsed, |
1159 | 0 | JointStereoMaximumBands * sizeof(UCHAR)); |
1160 | 0 | } |
1161 | 0 | } |
1162 | 0 | } |
1163 | | |
1164 | | void CJointStereo_ApplyIS(CAacDecoderChannelInfo *pAacDecoderChannelInfo[2], |
1165 | | const SHORT *pScaleFactorBandOffsets, |
1166 | | const UCHAR *pWindowGroupLength, |
1167 | | const int windowGroups, |
1168 | 0 | const int scaleFactorBandsTransmitted) { |
1169 | 0 | CJointStereoData *pJointStereoData = |
1170 | 0 | &pAacDecoderChannelInfo[L]->pComData->jointStereoData; |
1171 | |
|
1172 | 0 | for (int window = 0, group = 0; group < windowGroups; group++) { |
1173 | 0 | UCHAR *CodeBook; |
1174 | 0 | SHORT *ScaleFactor; |
1175 | 0 | UCHAR groupMask = 1 << group; |
1176 | |
|
1177 | 0 | CodeBook = &pAacDecoderChannelInfo[R]->pDynData->aCodeBook[group * 16]; |
1178 | 0 | ScaleFactor = |
1179 | 0 | &pAacDecoderChannelInfo[R]->pDynData->aScaleFactor[group * 16]; |
1180 | |
|
1181 | 0 | for (int groupwin = 0; groupwin < pWindowGroupLength[group]; |
1182 | 0 | groupwin++, window++) { |
1183 | 0 | FIXP_DBL *leftSpectrum, *rightSpectrum; |
1184 | 0 | SHORT *leftScale = |
1185 | 0 | &pAacDecoderChannelInfo[L]->pDynData->aSfbScale[window * 16]; |
1186 | 0 | SHORT *rightScale = |
1187 | 0 | &pAacDecoderChannelInfo[R]->pDynData->aSfbScale[window * 16]; |
1188 | 0 | int band; |
1189 | |
|
1190 | 0 | leftSpectrum = SPEC(pAacDecoderChannelInfo[L]->pSpectralCoefficient, |
1191 | 0 | window, pAacDecoderChannelInfo[L]->granuleLength); |
1192 | 0 | rightSpectrum = SPEC(pAacDecoderChannelInfo[R]->pSpectralCoefficient, |
1193 | 0 | window, pAacDecoderChannelInfo[R]->granuleLength); |
1194 | |
|
1195 | 0 | for (band = 0; band < scaleFactorBandsTransmitted; band++) { |
1196 | 0 | if ((CodeBook[band] == INTENSITY_HCB) || |
1197 | 0 | (CodeBook[band] == INTENSITY_HCB2)) { |
1198 | 0 | int bandScale = -(ScaleFactor[band] + 100); |
1199 | |
|
1200 | 0 | int msb = bandScale >> 2; |
1201 | 0 | int lsb = bandScale & 0x03; |
1202 | | |
1203 | | /* exponent of MantissaTable[lsb][0] is 1, thus msb+1 below. */ |
1204 | 0 | FIXP_DBL scale = MantissaTable[lsb][0]; |
1205 | | |
1206 | | /* ISO/IEC 14496-3 Chapter 4.6.8.2.3 : |
1207 | | The use of intensity stereo coding is signaled by the use of the |
1208 | | pseudo codebooks INTENSITY_HCB and INTENSITY_HCB2 (15 and 14) only |
1209 | | in the right channel of a channel_pair_element() having a common |
1210 | | ics_info() (common_window == 1). */ |
1211 | 0 | FDK_ASSERT(GetWindowSequence(&pAacDecoderChannelInfo[L]->icsInfo) == |
1212 | 0 | GetWindowSequence(&pAacDecoderChannelInfo[R]->icsInfo)); |
1213 | 0 | FDK_ASSERT(GetWindowShape(&pAacDecoderChannelInfo[L]->icsInfo) == |
1214 | 0 | GetWindowShape(&pAacDecoderChannelInfo[R]->icsInfo)); |
1215 | | |
1216 | 0 | rightScale[band] = leftScale[band] + msb + 1; |
1217 | |
|
1218 | 0 | if (pJointStereoData->MsUsed[band] & groupMask) { |
1219 | 0 | if (CodeBook[band] == INTENSITY_HCB) /* _NOT_ in-phase */ |
1220 | 0 | { |
1221 | 0 | scale = -scale; |
1222 | 0 | } |
1223 | 0 | } else { |
1224 | 0 | if (CodeBook[band] == INTENSITY_HCB2) /* out-of-phase */ |
1225 | 0 | { |
1226 | 0 | scale = -scale; |
1227 | 0 | } |
1228 | 0 | } |
1229 | |
|
1230 | 0 | for (int index = pScaleFactorBandOffsets[band]; |
1231 | 0 | index < pScaleFactorBandOffsets[band + 1]; index++) { |
1232 | 0 | rightSpectrum[index] = fMult(leftSpectrum[index], scale); |
1233 | 0 | } |
1234 | 0 | } |
1235 | 0 | } |
1236 | 0 | } |
1237 | 0 | } |
1238 | 0 | } |