Coverage Report

Created: 2025-12-31 06:47

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libSBRdec/src/env_dec.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** SBR decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  envelope decoding
106
  This module provides envelope decoding and error concealment algorithms. The
107
  main entry point is decodeSbrData().
108
109
  \sa decodeSbrData(),\ref documentationOverview
110
*/
111
112
#include "env_dec.h"
113
114
#include "env_extr.h"
115
#include "transcendent.h"
116
117
#include "genericStds.h"
118
119
static void decodeEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
120
                           HANDLE_SBR_FRAME_DATA h_sbr_data,
121
                           HANDLE_SBR_PREV_FRAME_DATA h_prev_data,
122
                           HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel);
123
static void sbr_envelope_unmapping(HANDLE_SBR_HEADER_DATA hHeaderData,
124
                                   HANDLE_SBR_FRAME_DATA h_data_left,
125
                                   HANDLE_SBR_FRAME_DATA h_data_right);
126
static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
127
                                   int ampResolution);
128
static void deltaToLinearPcmEnvelopeDecoding(
129
    HANDLE_SBR_HEADER_DATA hHeaderData, HANDLE_SBR_FRAME_DATA h_sbr_data,
130
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
131
static void decodeNoiseFloorlevels(HANDLE_SBR_HEADER_DATA hHeaderData,
132
                                   HANDLE_SBR_FRAME_DATA h_sbr_data,
133
                                   HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
134
static void timeCompensateFirstEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
135
                                        HANDLE_SBR_FRAME_DATA h_sbr_data,
136
                                        HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
137
static int checkEnvelopeData(HANDLE_SBR_HEADER_DATA hHeaderData,
138
                             HANDLE_SBR_FRAME_DATA h_sbr_data,
139
                             HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
140
141
45.3k
#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT)
142
154k
#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT)
143
144
113k
#define DECAY (1 << ENV_EXP_FRACT)
145
146
#if ENV_EXP_FRACT
147
#define DECAY_COUPLING \
148
  (1 << (ENV_EXP_FRACT - 1)) /*!< corresponds to a value of 0.5 */
149
#else
150
#define DECAY_COUPLING \
151
17.4k
  1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */
152
#endif
153
154
/*!
155
  \brief  Convert table index
156
*/
157
static int indexLow2High(int offset, /*!< mapping factor */
158
                         int index,  /*!< index to scalefactor band */
159
                         int res)    /*!< frequency resolution */
160
1.92M
{
161
1.92M
  if (res == 0) {
162
63.1k
    if (offset >= 0) {
163
63.1k
      if (index < offset)
164
8.30k
        return (index);
165
54.8k
      else
166
54.8k
        return (2 * index - offset);
167
63.1k
    } else {
168
0
      offset = -offset;
169
0
      if (index < offset)
170
0
        return (2 * index + index);
171
0
      else
172
0
        return (2 * index + offset);
173
0
    }
174
63.1k
  } else
175
1.85M
    return (index);
176
1.92M
}
177
178
/*!
179
  \brief  Update previous envelope value for delta-coding
180
181
  The current envelope values needs to be stored for delta-coding
182
  in the next frame.  The stored envelope is always represented with
183
  the high frequency resolution.  If the current envelope uses the
184
  low frequency resolution, the energy value will be mapped to the
185
  corresponding high-res bands.
186
*/
187
static void mapLowResEnergyVal(
188
    FIXP_SGL currVal,   /*!< current energy value */
189
    FIXP_SGL *prevData, /*!< pointer to previous data vector */
190
    int offset,         /*!< mapping factor */
191
    int index,          /*!< index to scalefactor band */
192
    int res)            /*!< frequeny resolution */
193
3.44M
{
194
3.44M
  if (res == 0) {
195
846k
    if (offset >= 0) {
196
846k
      if (index < offset)
197
46.5k
        prevData[index] = currVal;
198
799k
      else {
199
799k
        prevData[2 * index - offset] = currVal;
200
799k
        prevData[2 * index + 1 - offset] = currVal;
201
799k
      }
202
846k
    } else {
203
0
      offset = -offset;
204
0
      if (index < offset) {
205
0
        prevData[3 * index] = currVal;
206
0
        prevData[3 * index + 1] = currVal;
207
0
        prevData[3 * index + 2] = currVal;
208
0
      } else {
209
0
        prevData[2 * index + offset] = currVal;
210
0
        prevData[2 * index + 1 + offset] = currVal;
211
0
      }
212
0
    }
213
846k
  } else
214
2.59M
    prevData[index] = currVal;
215
3.44M
}
216
217
/*!
218
  \brief    Convert raw envelope and noisefloor data to energy levels
219
220
  This function is being called by sbrDecoder_ParseElement() and provides two
221
  important algorithms:
222
223
  First the function decodes envelopes and noise floor levels as described in
224
  requantizeEnvelopeData() and sbr_envelope_unmapping(). The function also
225
  implements concealment algorithms in case there are errors within the sbr
226
  data. For both operations fractional arithmetic is used. Therefore you might
227
  encounter different output values on your target system compared to the
228
  reference implementation.
229
*/
230
void decodeSbrData(
231
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
232
    HANDLE_SBR_FRAME_DATA
233
        h_data_left, /*!< pointer to left channel frame data */
234
    HANDLE_SBR_PREV_FRAME_DATA
235
        h_prev_data_left, /*!< pointer to left channel previous frame data */
236
    HANDLE_SBR_FRAME_DATA
237
        h_data_right, /*!< pointer to right channel frame data */
238
    HANDLE_SBR_PREV_FRAME_DATA
239
        h_prev_data_right) /*!< pointer to right channel previous frame data */
240
278k
{
241
278k
  FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
242
278k
  int errLeft;
243
244
  /* Save previous energy values to be able to reuse them later for concealment.
245
   */
246
278k
  FDKmemcpy(tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev,
247
278k
            MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
248
249
278k
  if (hHeaderData->frameErrorFlag || hHeaderData->bs_info.pvc_mode == 0) {
250
148k
    decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
251
148k
                   h_prev_data_right);
252
148k
  } else {
253
129k
    FDK_ASSERT(h_data_right == NULL);
254
129k
  }
255
278k
  decodeNoiseFloorlevels(hHeaderData, h_data_left, h_prev_data_left);
256
257
278k
  if (h_data_right != NULL) {
258
96.6k
    errLeft = hHeaderData->frameErrorFlag;
259
96.6k
    decodeEnvelope(hHeaderData, h_data_right, h_prev_data_right,
260
96.6k
                   h_prev_data_left);
261
96.6k
    decodeNoiseFloorlevels(hHeaderData, h_data_right, h_prev_data_right);
262
263
96.6k
    if (!errLeft && hHeaderData->frameErrorFlag) {
264
      /* If an error occurs in the right channel where the left channel seemed
265
         ok, we apply concealment also on the left channel. This ensures that
266
         the coupling modes of both channels match and that we have the same
267
         number of envelopes in coupling mode. However, as the left channel has
268
         already been processed before, the resulting energy levels are not the
269
         same as if the left channel had been concealed during the first call of
270
         decodeEnvelope().
271
      */
272
      /* Restore previous energy values for concealment, because the values have
273
         been overwritten by the first call of decodeEnvelope(). */
274
9.75k
      FDKmemcpy(h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev,
275
9.75k
                MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
276
      /* Do concealment */
277
9.75k
      decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
278
9.75k
                     h_prev_data_right);
279
9.75k
    }
280
281
96.6k
    if (h_data_left->coupling) {
282
29.5k
      sbr_envelope_unmapping(hHeaderData, h_data_left, h_data_right);
283
29.5k
    }
284
96.6k
  }
285
286
  /* Display the data for debugging: */
287
278k
}
288
289
/*!
290
  \brief   Convert from coupled channels to independent L/R data
291
*/
292
static void sbr_envelope_unmapping(
293
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
294
    HANDLE_SBR_FRAME_DATA h_data_left,  /*!< pointer to left channel */
295
    HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */
296
29.5k
{
297
29.5k
  int i;
298
29.5k
  FIXP_SGL tempL_m, tempR_m, tempRplus1_m, newL_m, newR_m;
299
29.5k
  SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e;
300
301
  /* 1. Unmap (already dequantized) coupled envelope energies */
302
303
375k
  for (i = 0; i < h_data_left->nScaleFactors; i++) {
304
346k
    tempR_m = (FIXP_SGL)((LONG)h_data_right->iEnvelope[i] & MASK_M);
305
346k
    tempR_e = (SCHAR)((LONG)h_data_right->iEnvelope[i] & MASK_E);
306
307
346k
    tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE /
308
                                         h_data_right->nChannels) */
309
346k
    tempL_m = (FIXP_SGL)((LONG)h_data_left->iEnvelope[i] & MASK_M);
310
346k
    tempL_e = (SCHAR)((LONG)h_data_left->iEnvelope[i] & MASK_E);
311
312
346k
    tempL_e -= NRG_EXP_OFFSET;
313
314
    /* Calculate tempRight+1 */
315
346k
    FDK_add_MantExp(tempR_m, tempR_e, FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
316
346k
                    &tempRplus1_m, &tempRplus1_e);
317
318
346k
    FDK_divide_MantExp(tempL_m, tempL_e + 1, /*  2 * tempLeft */
319
346k
                       tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
320
321
346k
    if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
322
1.51k
      newR_m >>= 1;
323
1.51k
      newR_e += 1;
324
1.51k
    }
325
326
346k
    newL_m = FX_DBL2FX_SGL(fMult(tempR_m, newR_m));
327
346k
    newL_e = tempR_e + newR_e;
328
329
346k
    h_data_right->iEnvelope[i] =
330
346k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
331
346k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E);
332
346k
    h_data_left->iEnvelope[i] =
333
346k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
334
346k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E);
335
346k
  }
336
337
  /* 2. Dequantize and unmap coupled noise floor levels */
338
339
119k
  for (i = 0; i < hHeaderData->freqBandData.nNfb *
340
119k
                      h_data_left->frameInfo.nNoiseEnvelopes;
341
90.4k
       i++) {
342
90.4k
    tempL_e = (SCHAR)(6 - (LONG)h_data_left->sbrNoiseFloorLevel[i]);
343
90.4k
    tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] -
344
90.4k
                      12) /*SBR_ENERGY_PAN_OFFSET*/;
345
346
    /* Calculate tempR+1 */
347
90.4k
    FDK_add_MantExp(FL2FXCONST_SGL(0.5f), 1 + tempR_e, /* tempR */
348
90.4k
                    FL2FXCONST_SGL(0.5f), 1,           /*  1.0  */
349
90.4k
                    &tempRplus1_m, &tempRplus1_e);
350
351
    /* Calculate 2*tempLeft/(tempR+1) */
352
90.4k
    FDK_divide_MantExp(FL2FXCONST_SGL(0.5f), tempL_e + 2, /*  2 * tempLeft */
353
90.4k
                       tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
354
355
    /* if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
356
      newR_m >>= 1;
357
      newR_e += 1;
358
    } */
359
360
    /* L = tempR * R */
361
90.4k
    newL_m = newR_m;
362
90.4k
    newL_e = newR_e + tempR_e;
363
90.4k
    h_data_right->sbrNoiseFloorLevel[i] =
364
90.4k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
365
90.4k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E);
366
90.4k
    h_data_left->sbrNoiseFloorLevel[i] =
367
90.4k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
368
90.4k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E);
369
90.4k
  }
370
29.5k
}
371
372
/*!
373
  \brief    Simple alternative to the real SBR concealment
374
375
  If the real frameInfo is not available due to a frame loss, a replacement will
376
  be constructed with 1 envelope spanning the whole frame (FIX-FIX).
377
  The delta-coded energies are set to negative values, resulting in a fade-down.
378
  In case of coupling, the balance-channel will move towards the center.
379
*/
380
static void leanSbrConcealment(
381
    HANDLE_SBR_HEADER_DATA hHeaderData,    /*!< Static control data */
382
    HANDLE_SBR_FRAME_DATA h_sbr_data,      /*!< pointer to current data */
383
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
384
130k
) {
385
130k
  FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */
386
130k
  FIXP_SGL step;   /* speed of fade */
387
130k
  int i;
388
389
130k
  int currentStartPos =
390
130k
      fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
391
130k
  int currentStopPos = hHeaderData->numberTimeSlots;
392
393
  /* Use some settings of the previous frame */
394
130k
  h_sbr_data->ampResolutionCurrentFrame = h_prev_data->ampRes;
395
130k
  h_sbr_data->coupling = h_prev_data->coupling;
396
785k
  for (i = 0; i < MAX_INVF_BANDS; i++)
397
654k
    h_sbr_data->sbr_invf_mode[i] = h_prev_data->sbr_invf_mode[i];
398
399
  /* Generate concealing control data */
400
401
130k
  h_sbr_data->frameInfo.nEnvelopes = 1;
402
130k
  h_sbr_data->frameInfo.borders[0] = currentStartPos;
403
130k
  h_sbr_data->frameInfo.borders[1] = currentStopPos;
404
130k
  h_sbr_data->frameInfo.freqRes[0] = 1;
405
130k
  h_sbr_data->frameInfo.tranEnv = -1; /* no transient */
406
130k
  h_sbr_data->frameInfo.nNoiseEnvelopes = 1;
407
130k
  h_sbr_data->frameInfo.bordersNoise[0] = currentStartPos;
408
130k
  h_sbr_data->frameInfo.bordersNoise[1] = currentStopPos;
409
410
130k
  h_sbr_data->nScaleFactors = hHeaderData->freqBandData.nSfb[1];
411
412
  /* Generate fake envelope data */
413
414
130k
  h_sbr_data->domain_vec[0] = 1;
415
416
130k
  if (h_sbr_data->coupling == COUPLING_BAL) {
417
17.4k
    target = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
418
17.4k
    step = (FIXP_SGL)DECAY_COUPLING;
419
113k
  } else {
420
113k
    target = FL2FXCONST_SGL(0.0f);
421
113k
    step = (FIXP_SGL)DECAY;
422
113k
  }
423
130k
  if (hHeaderData->bs_info.ampResolution == 0) {
424
65.6k
    target <<= 1;
425
65.6k
    step <<= 1;
426
65.6k
  }
427
428
1.51M
  for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
429
1.38M
    if (h_prev_data->sfb_nrg_prev[i] > target)
430
729k
      h_sbr_data->iEnvelope[i] = -step;
431
656k
    else
432
656k
      h_sbr_data->iEnvelope[i] = step;
433
1.38M
  }
434
435
  /* Noisefloor levels are always cleared ... */
436
437
130k
  h_sbr_data->domain_vec_noise[0] = 1;
438
130k
  FDKmemclear(h_sbr_data->sbrNoiseFloorLevel,
439
130k
              sizeof(h_sbr_data->sbrNoiseFloorLevel));
440
441
  /* ... and so are the sines */
442
130k
  FDKmemclear(h_sbr_data->addHarmonics,
443
130k
              sizeof(ULONG) * ADD_HARMONICS_FLAGS_SIZE);
444
130k
}
445
446
/*!
447
  \brief   Build reference energies and noise levels from bitstream elements
448
*/
449
static void decodeEnvelope(
450
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
451
    HANDLE_SBR_FRAME_DATA h_sbr_data,   /*!< pointer to current data */
452
    HANDLE_SBR_PREV_FRAME_DATA
453
        h_prev_data, /*!< pointer to data of last frame */
454
    HANDLE_SBR_PREV_FRAME_DATA
455
        otherChannel /*!< other channel's last frame data */
456
285k
) {
457
285k
  int i;
458
285k
  int fFrameError = hHeaderData->frameErrorFlag;
459
285k
  FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
460
461
285k
  if (!fFrameError) {
462
    /*
463
      To avoid distortions after bad frames, set the error flag if delta coding
464
      in time occurs. However, SBR can take a little longer to come up again.
465
    */
466
173k
    if (h_prev_data->frameErrorFlag) {
467
73.1k
      if (h_sbr_data->domain_vec[0] != 0) {
468
8.25k
        fFrameError = 1;
469
8.25k
      }
470
100k
    } else {
471
      /* Check that the previous stop position and the current start position
472
         match. (Could be done in checkFrameInfo(), but the previous frame data
473
         is not available there) */
474
100k
      if (h_sbr_data->frameInfo.borders[0] !=
475
100k
          h_prev_data->stopPos - hHeaderData->numberTimeSlots) {
476
        /* Both the previous as well as the current frame are flagged to be ok,
477
         * but they do not match! */
478
11.0k
        if (h_sbr_data->domain_vec[0] == 1) {
479
          /* Prefer concealment over delta-time coding between the mismatching
480
           * frames */
481
105
          fFrameError = 1;
482
10.9k
        } else {
483
          /* Close the gap in time by triggering timeCompensateFirstEnvelope()
484
           */
485
10.9k
          fFrameError = 1;
486
10.9k
        }
487
11.0k
      }
488
100k
    }
489
173k
  }
490
491
285k
  if (fFrameError) /* Error is detected */
492
130k
  {
493
130k
    leanSbrConcealment(hHeaderData, h_sbr_data, h_prev_data);
494
495
    /* decode the envelope data to linear PCM */
496
130k
    deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
497
130k
  } else /*Do a temporary dummy decoding and check that the envelope values are
498
            within limits */
499
154k
  {
500
154k
    if (h_prev_data->frameErrorFlag) {
501
64.9k
      timeCompensateFirstEnvelope(hHeaderData, h_sbr_data, h_prev_data);
502
64.9k
      if (h_sbr_data->coupling != h_prev_data->coupling) {
503
        /*
504
          Coupling mode has changed during concealment.
505
           The stored energy levels need to be converted.
506
         */
507
165k
        for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
508
          /* Former Level-Channel will be used for both channels */
509
155k
          if (h_prev_data->coupling == COUPLING_BAL) {
510
11.6k
            h_prev_data->sfb_nrg_prev[i] =
511
11.6k
                (otherChannel != NULL) ? otherChannel->sfb_nrg_prev[i]
512
11.6k
                                       : (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
513
11.6k
          }
514
          /* Former L/R will be combined as the new Level-Channel */
515
143k
          else if (h_sbr_data->coupling == COUPLING_LEVEL &&
516
24.5k
                   otherChannel != NULL) {
517
24.5k
            h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] +
518
24.5k
                                            otherChannel->sfb_nrg_prev[i]) >>
519
24.5k
                                           1;
520
119k
          } else if (h_sbr_data->coupling == COUPLING_BAL) {
521
16.2k
            h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
522
16.2k
          }
523
155k
        }
524
9.79k
      }
525
64.9k
    }
526
154k
    FDKmemcpy(tempSfbNrgPrev, h_prev_data->sfb_nrg_prev,
527
154k
              MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
528
529
154k
    deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
530
531
154k
    fFrameError = checkEnvelopeData(hHeaderData, h_sbr_data, h_prev_data);
532
533
154k
    if (fFrameError) {
534
29.9k
      hHeaderData->frameErrorFlag = 1;
535
29.9k
      FDKmemcpy(h_prev_data->sfb_nrg_prev, tempSfbNrgPrev,
536
29.9k
                MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
537
29.9k
      decodeEnvelope(hHeaderData, h_sbr_data, h_prev_data, otherChannel);
538
29.9k
      return;
539
29.9k
    }
540
154k
  }
541
542
255k
  requantizeEnvelopeData(h_sbr_data, h_sbr_data->ampResolutionCurrentFrame);
543
544
255k
  hHeaderData->frameErrorFlag = fFrameError;
545
255k
}
546
547
/*!
548
  \brief   Verify that envelope energies are within the allowed range
549
  \return  0 if all is fine, 1 if an envelope value was too high
550
*/
551
static int checkEnvelopeData(
552
    HANDLE_SBR_HEADER_DATA hHeaderData,    /*!< Static control data */
553
    HANDLE_SBR_FRAME_DATA h_sbr_data,      /*!< pointer to current data */
554
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
555
154k
) {
556
154k
  FIXP_SGL *iEnvelope = h_sbr_data->iEnvelope;
557
154k
  FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
558
154k
  int i = 0, errorFlag = 0;
559
154k
  FIXP_SGL sbr_max_energy = (h_sbr_data->ampResolutionCurrentFrame == 1)
560
154k
                                ? SBR_MAX_ENERGY
561
154k
                                : (SBR_MAX_ENERGY << 1);
562
563
  /*
564
    Range check for current energies
565
  */
566
2.21M
  for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
567
2.05M
    if (iEnvelope[i] > sbr_max_energy) {
568
113k
      errorFlag = 1;
569
113k
    }
570
2.05M
    if (iEnvelope[i] < FL2FXCONST_SGL(0.0f)) {
571
89.3k
      errorFlag = 1;
572
      /* iEnvelope[i] = FL2FXCONST_SGL(0.0f); */
573
89.3k
    }
574
2.05M
  }
575
576
  /*
577
    Range check for previous energies
578
  */
579
2.02M
  for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
580
1.86M
    sfb_nrg_prev[i] = fixMax(sfb_nrg_prev[i], FL2FXCONST_SGL(0.0f));
581
1.86M
    sfb_nrg_prev[i] = fixMin(sfb_nrg_prev[i], sbr_max_energy);
582
1.86M
  }
583
584
154k
  return (errorFlag);
585
154k
}
586
587
/*!
588
  \brief   Verify that the noise levels are within the allowed range
589
590
  The function is equivalent to checkEnvelopeData().
591
  When the noise-levels are being decoded, it is already too late for
592
  concealment. Therefore the noise levels are simply limited here.
593
*/
594
static void limitNoiseLevels(
595
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
596
    HANDLE_SBR_FRAME_DATA h_sbr_data)   /*!< pointer to current data */
597
374k
{
598
374k
  int i;
599
374k
  int nNfb = hHeaderData->freqBandData.nNfb;
600
601
/*
602
  Set range limits. The exact values depend on the coupling mode.
603
  However this limitation is primarily intended to avoid unlimited
604
  accumulation of the delta-coded noise levels.
605
*/
606
374k
#define lowerLimit \
607
374k
  ((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */
608
374k
#define upperLimit \
609
374k
  ((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */
610
611
  /*
612
    Range check for current noise levels
613
  */
614
1.67M
  for (i = 0; i < h_sbr_data->frameInfo.nNoiseEnvelopes * nNfb; i++) {
615
1.29M
    h_sbr_data->sbrNoiseFloorLevel[i] =
616
1.29M
        fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit);
617
1.29M
    h_sbr_data->sbrNoiseFloorLevel[i] =
618
1.29M
        fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit);
619
1.29M
  }
620
374k
}
621
622
/*!
623
  \brief   Compensate for the wrong timing that might occur after a frame error.
624
*/
625
static void timeCompensateFirstEnvelope(
626
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
627
    HANDLE_SBR_FRAME_DATA h_sbr_data,   /*!< pointer to actual data */
628
    HANDLE_SBR_PREV_FRAME_DATA
629
        h_prev_data) /*!< pointer to data of last frame */
630
64.9k
{
631
64.9k
  int i, nScalefactors;
632
64.9k
  FRAME_INFO *pFrameInfo = &h_sbr_data->frameInfo;
633
64.9k
  UCHAR *nSfb = hHeaderData->freqBandData.nSfb;
634
64.9k
  int estimatedStartPos =
635
64.9k
      fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
636
64.9k
  int refLen, newLen, shift;
637
64.9k
  FIXP_SGL deltaExp;
638
639
  /* Original length of first envelope according to bitstream */
640
64.9k
  refLen = pFrameInfo->borders[1] - pFrameInfo->borders[0];
641
  /* Corrected length of first envelope (concealing can make the first envelope
642
   * longer) */
643
64.9k
  newLen = pFrameInfo->borders[1] - estimatedStartPos;
644
645
64.9k
  if (newLen <= 0) {
646
    /* An envelope length of <= 0 would not work, so we don't use it.
647
       May occur if the previous frame was flagged bad due to a mismatch
648
       of the old and new frame infos. */
649
32
    newLen = refLen;
650
32
    estimatedStartPos = pFrameInfo->borders[0];
651
32
  }
652
653
64.9k
  deltaExp = FDK_getNumOctavesDiv8(newLen, refLen);
654
655
  /* Shift by -3 to rescale ld-table, ampRes-1 to enable coarser steps */
656
64.9k
  shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 +
657
64.9k
           h_sbr_data->ampResolutionCurrentFrame - 3);
658
64.9k
  deltaExp = deltaExp >> shift;
659
64.9k
  pFrameInfo->borders[0] = estimatedStartPos;
660
64.9k
  pFrameInfo->bordersNoise[0] = estimatedStartPos;
661
662
64.9k
  if (h_sbr_data->coupling != COUPLING_BAL) {
663
54.5k
    nScalefactors = (pFrameInfo->freqRes[0]) ? nSfb[1] : nSfb[0];
664
665
492k
    for (i = 0; i < nScalefactors; i++)
666
437k
      h_sbr_data->iEnvelope[i] = h_sbr_data->iEnvelope[i] + deltaExp;
667
54.5k
  }
668
64.9k
}
669
670
/*!
671
  \brief   Convert each envelope value from logarithmic to linear domain
672
673
  Energy levels are transmitted in powers of 2, i.e. only the exponent
674
  is extracted from the bitstream.
675
  Therefore, normally only integer exponents can occur. However during
676
  fading (in case of a corrupt bitstream), a fractional part can also
677
  occur. The data in the array iEnvelope is shifted left by ENV_EXP_FRACT
678
  compared to an integer representation so that numbers smaller than 1
679
  can be represented.
680
681
  This function calculates a mantissa corresponding to the fractional
682
  part of the exponent for each reference energy. The array iEnvelope
683
  is converted in place to save memory. Input and output data must
684
  be interpreted differently, as shown in the below figure:
685
686
  \image html  EnvelopeData.png
687
688
  The data is then used in calculateSbrEnvelope().
689
*/
690
static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
691
255k
                                   int ampResolution) {
692
255k
  int i;
693
255k
  FIXP_SGL mantissa;
694
255k
  int ampShift = 1 - ampResolution;
695
255k
  int exponent;
696
697
  /* In case that ENV_EXP_FRACT is changed to something else but 0 or 8,
698
     the initialization of this array has to be adapted!
699
  */
700
#if ENV_EXP_FRACT
701
  static const FIXP_SGL pow2[ENV_EXP_FRACT] = {
702
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */
703
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */
704
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))),
705
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))),
706
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))),
707
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))),
708
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))),
709
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */
710
  };
711
712
  int bit, mask;
713
#endif
714
715
3.18M
  for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
716
2.93M
    exponent = (LONG)h_sbr_data->iEnvelope[i];
717
718
#if ENV_EXP_FRACT
719
720
    exponent = exponent >> ampShift;
721
    mantissa = 0.5f;
722
723
    /* Amplify mantissa according to the fractional part of the
724
       exponent (result will be between 0.500000 and 0.999999)
725
    */
726
    mask = 1; /* begin with lowest bit of exponent */
727
728
    for (bit = ENV_EXP_FRACT - 1; bit >= 0; bit--) {
729
      if (exponent & mask) {
730
        /* The current bit of the exponent is set,
731
           multiply mantissa with the corresponding factor: */
732
        mantissa = (FIXP_SGL)((mantissa * pow2[bit]) << 1);
733
      }
734
      /* Advance to next bit */
735
      mask = mask << 1;
736
    }
737
738
    /* Make integer part of exponent right aligned */
739
    exponent = exponent >> ENV_EXP_FRACT;
740
741
#else
742
    /* In case of the high amplitude resolution, 1 bit of the exponent gets lost
743
       by the shift. This will be compensated by a mantissa of 0.5*sqrt(2)
744
       instead of 0.5 if that bit is 1. */
745
2.93M
    mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f)
746
2.93M
                                     : FL2FXCONST_SGL(0.5f);
747
2.93M
    exponent = exponent >> ampShift;
748
2.93M
#endif
749
750
    /*
751
      Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by
752
      1). Multiply by L=nChannels=64 by increasing exponent by another 6.
753
      => Increase exponent by 7
754
    */
755
2.93M
    exponent += 7 + NRG_EXP_OFFSET;
756
757
    /* Combine mantissa and exponent and write back the result */
758
2.93M
    h_sbr_data->iEnvelope[i] =
759
2.93M
        ((FIXP_SGL)((SHORT)(FIXP_SGL)mantissa & MASK_M)) +
760
2.93M
        (FIXP_SGL)((SHORT)(FIXP_SGL)exponent & MASK_E);
761
2.93M
  }
762
255k
}
763
764
/*!
765
  \brief   Build new reference energies from old ones and delta coded data
766
*/
767
static void deltaToLinearPcmEnvelopeDecoding(
768
    HANDLE_SBR_HEADER_DATA hHeaderData,     /*!< Static control data */
769
    HANDLE_SBR_FRAME_DATA h_sbr_data,       /*!< pointer to current data */
770
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
771
285k
{
772
285k
  int i, domain, no_of_bands, band, freqRes;
773
774
285k
  FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
775
285k
  FIXP_SGL *ptr_nrg = h_sbr_data->iEnvelope;
776
777
285k
  int offset =
778
285k
      2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1];
779
780
663k
  for (i = 0; i < h_sbr_data->frameInfo.nEnvelopes; i++) {
781
378k
    domain = h_sbr_data->domain_vec[i];
782
378k
    freqRes = h_sbr_data->frameInfo.freqRes[i];
783
784
378k
    FDK_ASSERT(freqRes >= 0 && freqRes <= 1);
785
786
378k
    no_of_bands = hHeaderData->freqBandData.nSfb[freqRes];
787
788
378k
    FDK_ASSERT(no_of_bands < (64));
789
790
378k
    if (domain == 0) {
791
199k
      mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, 0, freqRes);
792
199k
      ptr_nrg++;
793
1.52M
      for (band = 1; band < no_of_bands; band++) {
794
1.32M
        *ptr_nrg = *ptr_nrg + *(ptr_nrg - 1);
795
1.32M
        mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
796
1.32M
        ptr_nrg++;
797
1.32M
      }
798
199k
    } else {
799
2.10M
      for (band = 0; band < no_of_bands; band++) {
800
1.92M
        *ptr_nrg =
801
1.92M
            *ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)];
802
1.92M
        mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
803
1.92M
        ptr_nrg++;
804
1.92M
      }
805
179k
    }
806
378k
  }
807
285k
}
808
809
/*!
810
  \brief   Build new noise levels from old ones and delta coded data
811
*/
812
static void decodeNoiseFloorlevels(
813
    HANDLE_SBR_HEADER_DATA hHeaderData,     /*!< Static control data */
814
    HANDLE_SBR_FRAME_DATA h_sbr_data,       /*!< pointer to current data */
815
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
816
374k
{
817
374k
  int i;
818
374k
  int nNfb = hHeaderData->freqBandData.nNfb;
819
374k
  int nNoiseFloorEnvelopes = h_sbr_data->frameInfo.nNoiseEnvelopes;
820
821
  /* Decode first noise envelope */
822
823
374k
  if (h_sbr_data->domain_vec_noise[0] == 0) {
824
247k
    FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[0];
825
652k
    for (i = 1; i < nNfb; i++) {
826
405k
      noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
827
405k
      h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
828
405k
    }
829
247k
  } else {
830
383k
    for (i = 0; i < nNfb; i++) {
831
255k
      h_sbr_data->sbrNoiseFloorLevel[i] += h_prev_data->prevNoiseLevel[i];
832
255k
    }
833
127k
  }
834
835
  /* If present, decode the second noise envelope
836
     Note:  nNoiseFloorEnvelopes can only be 1 or 2 */
837
838
374k
  if (nNoiseFloorEnvelopes > 1) {
839
155k
    if (h_sbr_data->domain_vec_noise[1] == 0) {
840
51.7k
      FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[nNfb];
841
178k
      for (i = nNfb + 1; i < 2 * nNfb; i++) {
842
126k
        noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
843
126k
        h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
844
126k
      }
845
103k
    } else {
846
312k
      for (i = 0; i < nNfb; i++) {
847
208k
        h_sbr_data->sbrNoiseFloorLevel[i + nNfb] +=
848
208k
            h_sbr_data->sbrNoiseFloorLevel[i];
849
208k
      }
850
103k
    }
851
155k
  }
852
853
374k
  limitNoiseLevels(hHeaderData, h_sbr_data);
854
855
  /* Update prevNoiseLevel with the last noise envelope */
856
1.28M
  for (i = 0; i < nNfb; i++)
857
908k
    h_prev_data->prevNoiseLevel[i] =
858
908k
        h_sbr_data->sbrNoiseFloorLevel[i + nNfb * (nNoiseFloorEnvelopes - 1)];
859
860
  /* Requantize the noise floor levels in COUPLING_OFF-mode */
861
374k
  if (!h_sbr_data->coupling) {
862
314k
    int nf_e;
863
864
1.42M
    for (i = 0; i < nNoiseFloorEnvelopes * nNfb; i++) {
865
1.10M
      nf_e = 6 - (LONG)h_sbr_data->sbrNoiseFloorLevel[i] + 1 + NOISE_EXP_OFFSET;
866
      /* +1 to compensate for a mantissa of 0.5 instead of 1.0 */
867
868
1.10M
      h_sbr_data->sbrNoiseFloorLevel[i] =
869
1.10M
          (FIXP_SGL)(((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */
870
1.10M
                     (nf_e & MASK_E));              /* exponent */
871
1.10M
    }
872
314k
  }
873
374k
}