Coverage Report

Created: 2026-02-14 06:49

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libFDK/include/qmf_pcm.h
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):   Markus Lohwasser, Josef Hoepfl, Manuel Jander
98
99
   Description: QMF filterbank
100
101
*******************************************************************************/
102
103
#ifndef QMF_PCM_H
104
#define QMF_PCM_H
105
106
/*
107
   All Synthesis functions dependent on datatype INT_PCM_QMFOUT
108
   Should only be included by qmf.cpp, but not compiled separately, please
109
   exclude compilation from project, if done otherwise. Is optional included
110
   twice to duplicate all functions with two different pre-definitions, as:
111
        #define INT_PCM_QMFOUT LONG
112
    and ...
113
        #define INT_PCM_QMFOUT SHORT
114
    needed to run QMF synthesis in both 16bit and 32bit sample output format.
115
*/
116
117
#define QSSCALE (0)
118
8.76G
#define FX_DBL2FX_QSS(x) (x)
119
858M
#define FX_QSS2FX_DBL(x) (x)
120
121
/*!
122
  \brief Perform Synthesis Prototype Filtering on a single slot of input data.
123
124
  The filter takes 2 * qmf->no_channels of input data and
125
  generates qmf->no_channels time domain output samples.
126
*/
127
/* static */
128
#ifndef FUNCTION_qmfSynPrototypeFirSlot
129
void qmfSynPrototypeFirSlot(
130
#else
131
void qmfSynPrototypeFirSlot_fallback(
132
#endif
133
    HANDLE_QMF_FILTER_BANK qmf,
134
    FIXP_DBL *RESTRICT realSlot,      /*!< Input: Pointer to real Slot */
135
    FIXP_DBL *RESTRICT imagSlot,      /*!< Input: Pointer to imag Slot */
136
    INT_PCM_QMFOUT *RESTRICT timeOut, /*!< Time domain data */
137
16.6M
    int stride) {
138
16.6M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
139
16.6M
  int no_channels = qmf->no_channels;
140
16.6M
  const FIXP_PFT *p_Filter = qmf->p_filter;
141
16.6M
  int p_stride = qmf->p_stride;
142
16.6M
  int j;
143
16.6M
  FIXP_QSS *RESTRICT sta = FilterStates;
144
16.6M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
145
16.6M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
146
16.6M
              qmf->outGain_e;
147
148
16.6M
  p_flt =
149
16.6M
      p_Filter + p_stride * QMF_NO_POLY; /*                     5th of 330 */
150
16.6M
  p_fltm = p_Filter + (qmf->FilterSize / 2) -
151
16.6M
           p_stride * QMF_NO_POLY; /* 5 + (320 - 2*5) = 315th of 330 */
152
153
16.6M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
154
155
16.6M
  FIXP_DBL rnd_val = 0;
156
157
16.6M
  if (scale > 0) {
158
0
    if (scale < (DFRACT_BITS - 1))
159
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
160
0
    else
161
0
      scale = (DFRACT_BITS - 1);
162
16.6M
  } else {
163
16.6M
    scale = fMax(scale, -(DFRACT_BITS - 1));
164
16.6M
  }
165
166
874M
  for (j = no_channels - 1; j >= 0; j--) {
167
858M
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
168
858M
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
169
858M
    {
170
858M
      INT_PCM_QMFOUT tmp;
171
858M
      FIXP_DBL Are = fMultAddDiv2(FX_QSS2FX_DBL(sta[0]), p_fltm[0], real);
172
173
      /* This PCM formatting performs:
174
         - multiplication with 16-bit gain, if not -1.0f
175
         - rounding, if shift right is applied
176
         - apply shift left (or right) with saturation to 32 (or 16) bits
177
         - store output with --stride in 32 (or 16) bit format
178
      */
179
858M
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
180
0
      {
181
0
        Are = fMult(Are, gain);
182
0
      }
183
858M
      if (scale >= 0) {
184
110k
        FDK_ASSERT(
185
110k
            Are <=
186
110k
            (Are + rnd_val)); /* Round-addition must not overflow, might be
187
                                 equal for rnd_val=0 */
188
110k
        tmp = (INT_PCM_QMFOUT)(
189
110k
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
190
858M
      } else {
191
858M
        tmp = (INT_PCM_QMFOUT)(
192
858M
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
193
858M
      }
194
195
858M
      { timeOut[(j)*stride] = tmp; }
196
858M
    }
197
198
858M
    sta[0] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[1]), p_flt[4], imag));
199
858M
    sta[1] =
200
858M
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[2]), p_fltm[1], real));
201
858M
    sta[2] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[3]), p_flt[3], imag));
202
858M
    sta[3] =
203
858M
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[4]), p_fltm[2], real));
204
858M
    sta[4] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[5]), p_flt[2], imag));
205
858M
    sta[5] =
206
858M
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[6]), p_fltm[3], real));
207
858M
    sta[6] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[7]), p_flt[1], imag));
208
858M
    sta[7] =
209
858M
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[8]), p_fltm[4], real));
210
858M
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
211
858M
    p_flt += (p_stride * QMF_NO_POLY);
212
858M
    p_fltm -= (p_stride * QMF_NO_POLY);
213
858M
    sta += 9;  // = (2*QMF_NO_POLY-1);
214
858M
  }
215
16.6M
}
Unexecuted instantiation: qmfSynPrototypeFirSlot(QMF_FILTER_BANK*, int*, int*, short*, int)
qmfSynPrototypeFirSlot(QMF_FILTER_BANK*, int*, int*, int*, int)
Line
Count
Source
137
16.6M
    int stride) {
138
16.6M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
139
16.6M
  int no_channels = qmf->no_channels;
140
16.6M
  const FIXP_PFT *p_Filter = qmf->p_filter;
141
16.6M
  int p_stride = qmf->p_stride;
142
16.6M
  int j;
143
16.6M
  FIXP_QSS *RESTRICT sta = FilterStates;
144
16.6M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
145
16.6M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
146
16.6M
              qmf->outGain_e;
147
148
16.6M
  p_flt =
149
16.6M
      p_Filter + p_stride * QMF_NO_POLY; /*                     5th of 330 */
150
16.6M
  p_fltm = p_Filter + (qmf->FilterSize / 2) -
151
16.6M
           p_stride * QMF_NO_POLY; /* 5 + (320 - 2*5) = 315th of 330 */
152
153
16.6M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
154
155
16.6M
  FIXP_DBL rnd_val = 0;
156
157
16.6M
  if (scale > 0) {
158
0
    if (scale < (DFRACT_BITS - 1))
159
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
160
0
    else
161
0
      scale = (DFRACT_BITS - 1);
162
16.6M
  } else {
163
16.6M
    scale = fMax(scale, -(DFRACT_BITS - 1));
164
16.6M
  }
165
166
874M
  for (j = no_channels - 1; j >= 0; j--) {
167
858M
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
168
858M
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
169
858M
    {
170
858M
      INT_PCM_QMFOUT tmp;
171
858M
      FIXP_DBL Are = fMultAddDiv2(FX_QSS2FX_DBL(sta[0]), p_fltm[0], real);
172
173
      /* This PCM formatting performs:
174
         - multiplication with 16-bit gain, if not -1.0f
175
         - rounding, if shift right is applied
176
         - apply shift left (or right) with saturation to 32 (or 16) bits
177
         - store output with --stride in 32 (or 16) bit format
178
      */
179
858M
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
180
0
      {
181
0
        Are = fMult(Are, gain);
182
0
      }
183
858M
      if (scale >= 0) {
184
110k
        FDK_ASSERT(
185
110k
            Are <=
186
110k
            (Are + rnd_val)); /* Round-addition must not overflow, might be
187
                                 equal for rnd_val=0 */
188
110k
        tmp = (INT_PCM_QMFOUT)(
189
110k
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
190
858M
      } else {
191
858M
        tmp = (INT_PCM_QMFOUT)(
192
858M
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
193
858M
      }
194
195
858M
      { timeOut[(j)*stride] = tmp; }
196
858M
    }
197
198
858M
    sta[0] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[1]), p_flt[4], imag));
199
858M
    sta[1] =
200
858M
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[2]), p_fltm[1], real));
201
858M
    sta[2] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[3]), p_flt[3], imag));
202
858M
    sta[3] =
203
858M
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[4]), p_fltm[2], real));
204
858M
    sta[4] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[5]), p_flt[2], imag));
205
858M
    sta[5] =
206
858M
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[6]), p_fltm[3], real));
207
858M
    sta[6] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[7]), p_flt[1], imag));
208
858M
    sta[7] =
209
858M
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[8]), p_fltm[4], real));
210
858M
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
211
858M
    p_flt += (p_stride * QMF_NO_POLY);
212
858M
    p_fltm -= (p_stride * QMF_NO_POLY);
213
858M
    sta += 9;  // = (2*QMF_NO_POLY-1);
214
858M
  }
215
16.6M
}
216
217
#ifndef FUNCTION_qmfSynPrototypeFirSlot_NonSymmetric
218
/*!
219
  \brief Perform Synthesis Prototype Filtering on a single slot of input data.
220
221
  The filter takes 2 * qmf->no_channels of input data and
222
  generates qmf->no_channels time domain output samples.
223
*/
224
static void qmfSynPrototypeFirSlot_NonSymmetric(
225
    HANDLE_QMF_FILTER_BANK qmf,
226
    FIXP_DBL *RESTRICT realSlot,      /*!< Input: Pointer to real Slot */
227
    FIXP_DBL *RESTRICT imagSlot,      /*!< Input: Pointer to imag Slot */
228
    INT_PCM_QMFOUT *RESTRICT timeOut, /*!< Time domain data */
229
2.53M
    int stride) {
230
2.53M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
231
2.53M
  int no_channels = qmf->no_channels;
232
2.53M
  const FIXP_PFT *p_Filter = qmf->p_filter;
233
2.53M
  int p_stride = qmf->p_stride;
234
2.53M
  int j;
235
2.53M
  FIXP_QSS *RESTRICT sta = FilterStates;
236
2.53M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
237
2.53M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
238
2.53M
              qmf->outGain_e;
239
240
2.53M
  p_flt = p_Filter; /*!< Pointer to first half of filter coefficients */
241
2.53M
  p_fltm =
242
2.53M
      &p_flt[qmf->FilterSize / 2]; /* at index 320, overall 640 coefficients */
243
244
2.53M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
245
246
2.53M
  FIXP_DBL rnd_val = (FIXP_DBL)0;
247
248
2.53M
  if (scale > 0) {
249
0
    if (scale < (DFRACT_BITS - 1))
250
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
251
0
    else
252
0
      scale = (DFRACT_BITS - 1);
253
2.53M
  } else {
254
2.53M
    scale = fMax(scale, -(DFRACT_BITS - 1));
255
2.53M
  }
256
257
106M
  for (j = no_channels - 1; j >= 0; j--) {
258
103M
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
259
103M
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
260
103M
    {
261
103M
      INT_PCM_QMFOUT tmp;
262
103M
      FIXP_DBL Are = sta[0] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[4], real));
263
264
      /* This PCM formatting performs:
265
         - multiplication with 16-bit gain, if not -1.0f
266
         - rounding, if shift right is applied
267
         - apply shift left (or right) with saturation to 32 (or 16) bits
268
         - store output with --stride in 32 (or 16) bit format
269
      */
270
103M
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
271
0
      {
272
0
        Are = fMult(Are, gain);
273
0
      }
274
103M
      if (scale > 0) {
275
0
        FDK_ASSERT(Are <
276
0
                   (Are + rnd_val)); /* Round-addition must not overflow */
277
0
        tmp = (INT_PCM_QMFOUT)(
278
0
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
279
103M
      } else {
280
103M
        tmp = (INT_PCM_QMFOUT)(
281
103M
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
282
103M
      }
283
103M
      timeOut[j * stride] = tmp;
284
103M
    }
285
286
103M
    sta[0] = sta[1] + FX_DBL2FX_QSS(fMultDiv2(p_flt[4], imag));
287
103M
    sta[1] = sta[2] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[3], real));
288
103M
    sta[2] = sta[3] + FX_DBL2FX_QSS(fMultDiv2(p_flt[3], imag));
289
290
103M
    sta[3] = sta[4] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[2], real));
291
103M
    sta[4] = sta[5] + FX_DBL2FX_QSS(fMultDiv2(p_flt[2], imag));
292
103M
    sta[5] = sta[6] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[1], real));
293
103M
    sta[6] = sta[7] + FX_DBL2FX_QSS(fMultDiv2(p_flt[1], imag));
294
295
103M
    sta[7] = sta[8] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[0], real));
296
103M
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
297
298
103M
    p_flt += (p_stride * QMF_NO_POLY);
299
103M
    p_fltm += (p_stride * QMF_NO_POLY);
300
103M
    sta += 9;  // = (2*QMF_NO_POLY-1);
301
103M
  }
302
2.53M
}
Unexecuted instantiation: qmf.cpp:qmfSynPrototypeFirSlot_NonSymmetric(QMF_FILTER_BANK*, int*, int*, short*, int)
qmf.cpp:qmfSynPrototypeFirSlot_NonSymmetric(QMF_FILTER_BANK*, int*, int*, int*, int)
Line
Count
Source
229
2.53M
    int stride) {
230
2.53M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
231
2.53M
  int no_channels = qmf->no_channels;
232
2.53M
  const FIXP_PFT *p_Filter = qmf->p_filter;
233
2.53M
  int p_stride = qmf->p_stride;
234
2.53M
  int j;
235
2.53M
  FIXP_QSS *RESTRICT sta = FilterStates;
236
2.53M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
237
2.53M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
238
2.53M
              qmf->outGain_e;
239
240
2.53M
  p_flt = p_Filter; /*!< Pointer to first half of filter coefficients */
241
2.53M
  p_fltm =
242
2.53M
      &p_flt[qmf->FilterSize / 2]; /* at index 320, overall 640 coefficients */
243
244
2.53M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
245
246
2.53M
  FIXP_DBL rnd_val = (FIXP_DBL)0;
247
248
2.53M
  if (scale > 0) {
249
0
    if (scale < (DFRACT_BITS - 1))
250
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
251
0
    else
252
0
      scale = (DFRACT_BITS - 1);
253
2.53M
  } else {
254
2.53M
    scale = fMax(scale, -(DFRACT_BITS - 1));
255
2.53M
  }
256
257
106M
  for (j = no_channels - 1; j >= 0; j--) {
258
103M
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
259
103M
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
260
103M
    {
261
103M
      INT_PCM_QMFOUT tmp;
262
103M
      FIXP_DBL Are = sta[0] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[4], real));
263
264
      /* This PCM formatting performs:
265
         - multiplication with 16-bit gain, if not -1.0f
266
         - rounding, if shift right is applied
267
         - apply shift left (or right) with saturation to 32 (or 16) bits
268
         - store output with --stride in 32 (or 16) bit format
269
      */
270
103M
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
271
0
      {
272
0
        Are = fMult(Are, gain);
273
0
      }
274
103M
      if (scale > 0) {
275
0
        FDK_ASSERT(Are <
276
0
                   (Are + rnd_val)); /* Round-addition must not overflow */
277
0
        tmp = (INT_PCM_QMFOUT)(
278
0
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
279
103M
      } else {
280
103M
        tmp = (INT_PCM_QMFOUT)(
281
103M
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
282
103M
      }
283
103M
      timeOut[j * stride] = tmp;
284
103M
    }
285
286
103M
    sta[0] = sta[1] + FX_DBL2FX_QSS(fMultDiv2(p_flt[4], imag));
287
103M
    sta[1] = sta[2] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[3], real));
288
103M
    sta[2] = sta[3] + FX_DBL2FX_QSS(fMultDiv2(p_flt[3], imag));
289
290
103M
    sta[3] = sta[4] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[2], real));
291
103M
    sta[4] = sta[5] + FX_DBL2FX_QSS(fMultDiv2(p_flt[2], imag));
292
103M
    sta[5] = sta[6] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[1], real));
293
103M
    sta[6] = sta[7] + FX_DBL2FX_QSS(fMultDiv2(p_flt[1], imag));
294
295
103M
    sta[7] = sta[8] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[0], real));
296
103M
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
297
298
103M
    p_flt += (p_stride * QMF_NO_POLY);
299
103M
    p_fltm += (p_stride * QMF_NO_POLY);
300
103M
    sta += 9;  // = (2*QMF_NO_POLY-1);
301
103M
  }
302
2.53M
}
303
#endif /* FUNCTION_qmfSynPrototypeFirSlot_NonSymmetric */
304
305
void qmfSynthesisFilteringSlot(HANDLE_QMF_FILTER_BANK synQmf,
306
                               const FIXP_DBL *realSlot,
307
                               const FIXP_DBL *imagSlot,
308
                               const int scaleFactorLowBand,
309
                               const int scaleFactorHighBand,
310
                               INT_PCM_QMFOUT *timeOut, const int stride,
311
19.1M
                               FIXP_DBL *pWorkBuffer) {
312
19.1M
  if (!(synQmf->flags & QMF_FLAG_LP))
313
13.2M
    qmfInverseModulationHQ(synQmf, realSlot, imagSlot, scaleFactorLowBand,
314
13.2M
                           scaleFactorHighBand, pWorkBuffer);
315
5.93M
  else {
316
5.93M
    if (synQmf->flags & QMF_FLAG_CLDFB) {
317
1.31M
      qmfInverseModulationLP_odd(synQmf, realSlot, scaleFactorLowBand,
318
1.31M
                                 scaleFactorHighBand, pWorkBuffer);
319
4.61M
    } else {
320
4.61M
      qmfInverseModulationLP_even(synQmf, realSlot, scaleFactorLowBand,
321
4.61M
                                  scaleFactorHighBand, pWorkBuffer);
322
4.61M
    }
323
5.93M
  }
324
325
19.1M
  if (synQmf->flags & QMF_FLAG_NONSYMMETRIC) {
326
2.53M
    qmfSynPrototypeFirSlot_NonSymmetric(synQmf, pWorkBuffer,
327
2.53M
                                        pWorkBuffer + synQmf->no_channels,
328
2.53M
                                        timeOut, stride);
329
16.6M
  } else {
330
16.6M
    qmfSynPrototypeFirSlot(synQmf, pWorkBuffer,
331
16.6M
                           pWorkBuffer + synQmf->no_channels, timeOut, stride);
332
16.6M
  }
333
19.1M
}
Unexecuted instantiation: qmfSynthesisFilteringSlot(QMF_FILTER_BANK*, int const*, int const*, int, int, short*, int, int*)
qmfSynthesisFilteringSlot(QMF_FILTER_BANK*, int const*, int const*, int, int, int*, int, int*)
Line
Count
Source
311
19.1M
                               FIXP_DBL *pWorkBuffer) {
312
19.1M
  if (!(synQmf->flags & QMF_FLAG_LP))
313
13.2M
    qmfInverseModulationHQ(synQmf, realSlot, imagSlot, scaleFactorLowBand,
314
13.2M
                           scaleFactorHighBand, pWorkBuffer);
315
5.93M
  else {
316
5.93M
    if (synQmf->flags & QMF_FLAG_CLDFB) {
317
1.31M
      qmfInverseModulationLP_odd(synQmf, realSlot, scaleFactorLowBand,
318
1.31M
                                 scaleFactorHighBand, pWorkBuffer);
319
4.61M
    } else {
320
4.61M
      qmfInverseModulationLP_even(synQmf, realSlot, scaleFactorLowBand,
321
4.61M
                                  scaleFactorHighBand, pWorkBuffer);
322
4.61M
    }
323
5.93M
  }
324
325
19.1M
  if (synQmf->flags & QMF_FLAG_NONSYMMETRIC) {
326
2.53M
    qmfSynPrototypeFirSlot_NonSymmetric(synQmf, pWorkBuffer,
327
2.53M
                                        pWorkBuffer + synQmf->no_channels,
328
2.53M
                                        timeOut, stride);
329
16.6M
  } else {
330
16.6M
    qmfSynPrototypeFirSlot(synQmf, pWorkBuffer,
331
16.6M
                           pWorkBuffer + synQmf->no_channels, timeOut, stride);
332
16.6M
  }
333
19.1M
}
334
335
/*!
336
 *
337
 * \brief Perform complex-valued subband synthesis of the
338
 *        low band and the high band and store the
339
 *        time domain data in timeOut
340
 *
341
 * First step: Calculate the proper scaling factor of current
342
 * spectral data in qmfReal/qmfImag, old spectral data in the overlap
343
 * range and filter states.
344
 *
345
 * Second step: Perform Frequency-to-Time mapping with inverse
346
 * Modulation slot-wise.
347
 *
348
 * Third step: Perform FIR-filter slot-wise. To save space for filter
349
 * states, the MAC operations are executed directly on the filter states
350
 * instead of accumulating several products in the accumulator. The
351
 * buffer shift at the end of the function should be replaced by a
352
 * modulo operation, which is available on some DSPs.
353
 *
354
 * Last step: Copy the upper part of the spectral data to the overlap buffer.
355
 *
356
 * The qmf coefficient table is symmetric. The symmetry is exploited by
357
 * shrinking the coefficient table to half the size. The addressing mode
358
 * takes care of the symmetries.  If the #define #QMFTABLE_FULL is set,
359
 * coefficient addressing works on the full table size. The code will be
360
 * slightly faster and slightly more compact.
361
 *
362
 * Workbuffer requirement: 2 x sizeof(**QmfBufferReal) * synQmf->no_channels
363
 * The workbuffer must be aligned
364
 */
365
void qmfSynthesisFiltering(
366
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */
367
    FIXP_DBL **QmfBufferReal,      /*!< Low and High band, real */
368
    FIXP_DBL **QmfBufferImag,      /*!< Low and High band, imag */
369
    const QMF_SCALE_FACTOR *scaleFactor,
370
    const INT ov_len,        /*!< split Slot of overlap and actual slots */
371
    INT_PCM_QMFOUT *timeOut, /*!< Pointer to output */
372
    const INT stride,        /*!< stride factor of output */
373
    FIXP_DBL *pWorkBuffer    /*!< pointer to temporal working buffer */
374
253k
) {
375
253k
  int i;
376
253k
  int L = synQmf->no_channels;
377
253k
  int scaleFactorHighBand;
378
253k
  int scaleFactorLowBand_ov, scaleFactorLowBand_no_ov;
379
380
253k
  FDK_ASSERT(synQmf->no_channels >= synQmf->lsb);
381
253k
  FDK_ASSERT(synQmf->no_channels >= synQmf->usb);
382
383
  /* adapt scaling */
384
253k
  scaleFactorHighBand = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
385
253k
                        scaleFactor->hb_scale - synQmf->filterScale;
386
253k
  scaleFactorLowBand_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
387
253k
                          scaleFactor->ov_lb_scale - synQmf->filterScale;
388
253k
  scaleFactorLowBand_no_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
389
253k
                             scaleFactor->lb_scale - synQmf->filterScale;
390
391
7.87M
  for (i = 0; i < synQmf->no_col; i++) /* ----- no_col loop ----- */
392
7.62M
  {
393
7.62M
    const FIXP_DBL *QmfBufferImagSlot = NULL;
394
395
7.62M
    int scaleFactorLowBand =
396
7.62M
        (i < ov_len) ? scaleFactorLowBand_ov : scaleFactorLowBand_no_ov;
397
398
7.62M
    if (!(synQmf->flags & QMF_FLAG_LP)) QmfBufferImagSlot = QmfBufferImag[i];
399
400
7.62M
    qmfSynthesisFilteringSlot(synQmf, QmfBufferReal[i], QmfBufferImagSlot,
401
7.62M
                              scaleFactorLowBand, scaleFactorHighBand,
402
7.62M
                              timeOut + (i * L * stride), stride, pWorkBuffer);
403
7.62M
  } /* no_col loop  i  */
404
253k
}
Unexecuted instantiation: qmfSynthesisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR const*, int, short*, int, int*)
qmfSynthesisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR const*, int, int*, int, int*)
Line
Count
Source
374
253k
) {
375
253k
  int i;
376
253k
  int L = synQmf->no_channels;
377
253k
  int scaleFactorHighBand;
378
253k
  int scaleFactorLowBand_ov, scaleFactorLowBand_no_ov;
379
380
253k
  FDK_ASSERT(synQmf->no_channels >= synQmf->lsb);
381
253k
  FDK_ASSERT(synQmf->no_channels >= synQmf->usb);
382
383
  /* adapt scaling */
384
253k
  scaleFactorHighBand = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
385
253k
                        scaleFactor->hb_scale - synQmf->filterScale;
386
253k
  scaleFactorLowBand_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
387
253k
                          scaleFactor->ov_lb_scale - synQmf->filterScale;
388
253k
  scaleFactorLowBand_no_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
389
253k
                             scaleFactor->lb_scale - synQmf->filterScale;
390
391
7.87M
  for (i = 0; i < synQmf->no_col; i++) /* ----- no_col loop ----- */
392
7.62M
  {
393
7.62M
    const FIXP_DBL *QmfBufferImagSlot = NULL;
394
395
7.62M
    int scaleFactorLowBand =
396
7.62M
        (i < ov_len) ? scaleFactorLowBand_ov : scaleFactorLowBand_no_ov;
397
398
7.62M
    if (!(synQmf->flags & QMF_FLAG_LP)) QmfBufferImagSlot = QmfBufferImag[i];
399
400
7.62M
    qmfSynthesisFilteringSlot(synQmf, QmfBufferReal[i], QmfBufferImagSlot,
401
7.62M
                              scaleFactorLowBand, scaleFactorHighBand,
402
7.62M
                              timeOut + (i * L * stride), stride, pWorkBuffer);
403
7.62M
  } /* no_col loop  i  */
404
253k
}
405
406
/*!
407
 *
408
 * \brief Create QMF filter bank instance
409
 *
410
 *
411
 * \return 0 if successful
412
 *
413
 */
414
int qmfInitAnalysisFilterBank(
415
    HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Returns handle */
416
    FIXP_QAS *pFilterStates,      /*!< Handle to filter states */
417
    int noCols,                   /*!< Number of timeslots per frame */
418
    int lsb,                      /*!< lower end of QMF */
419
    int usb,                      /*!< upper end of QMF */
420
    int no_channels,              /*!< Number of channels (bands) */
421
    int flags)                    /*!< Low Power flag */
422
111k
{
423
111k
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
424
111k
                              no_channels, flags, 0);
425
111k
  if (!(flags & QMF_FLAG_KEEP_STATES) && (h_Qmf->FilterStates != NULL)) {
426
76.1k
    FDKmemclear(h_Qmf->FilterStates,
427
76.1k
                (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QAS));
428
76.1k
  }
429
430
111k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
431
432
111k
  return err;
433
111k
}
Unexecuted instantiation: qmfInitAnalysisFilterBank(QMF_FILTER_BANK*, short*, int, int, int, int, int)
qmfInitAnalysisFilterBank(QMF_FILTER_BANK*, int*, int, int, int, int, int)
Line
Count
Source
422
111k
{
423
111k
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
424
111k
                              no_channels, flags, 0);
425
111k
  if (!(flags & QMF_FLAG_KEEP_STATES) && (h_Qmf->FilterStates != NULL)) {
426
76.1k
    FDKmemclear(h_Qmf->FilterStates,
427
76.1k
                (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QAS));
428
76.1k
  }
429
430
111k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
431
432
111k
  return err;
433
111k
}
434
435
#ifndef FUNCTION_qmfAnaPrototypeFirSlot
436
/*!
437
  \brief Perform Analysis Prototype Filtering on a single slot of input data.
438
*/
439
static void qmfAnaPrototypeFirSlot(
440
    FIXP_DBL *analysisBuffer,
441
    INT no_channels, /*!< Number channels of analysis filter */
442
    const FIXP_PFT *p_filter, INT p_stride, /*!< Stride of analysis filter    */
443
11.5M
    FIXP_QAS *RESTRICT pFilterStates) {
444
11.5M
  INT k;
445
446
11.5M
  FIXP_DBL accu;
447
11.5M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
448
11.5M
  FIXP_DBL *RESTRICT pData_0 = analysisBuffer + 2 * no_channels - 1;
449
11.5M
  FIXP_DBL *RESTRICT pData_1 = analysisBuffer;
450
451
11.5M
  FIXP_QAS *RESTRICT sta_0 = (FIXP_QAS *)pFilterStates;
452
11.5M
  FIXP_QAS *RESTRICT sta_1 =
453
11.5M
      (FIXP_QAS *)pFilterStates + (2 * QMF_NO_POLY * no_channels) - 1;
454
11.5M
  INT pfltStep = QMF_NO_POLY * (p_stride);
455
11.5M
  INT staStep1 = no_channels << 1;
456
11.5M
  INT staStep2 = (no_channels << 3) - 1; /* Rewind one less */
457
458
  /* FIR filters 127..64 0..63 */
459
304M
  for (k = 0; k < no_channels; k++) {
460
293M
    accu = fMultDiv2(p_flt[0], *sta_1);
461
293M
    sta_1 -= staStep1;
462
293M
    accu += fMultDiv2(p_flt[1], *sta_1);
463
293M
    sta_1 -= staStep1;
464
293M
    accu += fMultDiv2(p_flt[2], *sta_1);
465
293M
    sta_1 -= staStep1;
466
293M
    accu += fMultDiv2(p_flt[3], *sta_1);
467
293M
    sta_1 -= staStep1;
468
293M
    accu += fMultDiv2(p_flt[4], *sta_1);
469
293M
    *pData_1++ = (accu << 1);
470
293M
    sta_1 += staStep2;
471
472
293M
    p_flt += pfltStep;
473
293M
    accu = fMultDiv2(p_flt[0], *sta_0);
474
293M
    sta_0 += staStep1;
475
293M
    accu += fMultDiv2(p_flt[1], *sta_0);
476
293M
    sta_0 += staStep1;
477
293M
    accu += fMultDiv2(p_flt[2], *sta_0);
478
293M
    sta_0 += staStep1;
479
293M
    accu += fMultDiv2(p_flt[3], *sta_0);
480
293M
    sta_0 += staStep1;
481
293M
    accu += fMultDiv2(p_flt[4], *sta_0);
482
293M
    *pData_0-- = (accu << 1);
483
293M
    sta_0 -= staStep2;
484
293M
  }
485
11.5M
}
Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot(int*, int, short const*, int, short*)
qmf.cpp:qmfAnaPrototypeFirSlot(int*, int, short const*, int, int*)
Line
Count
Source
443
11.5M
    FIXP_QAS *RESTRICT pFilterStates) {
444
11.5M
  INT k;
445
446
11.5M
  FIXP_DBL accu;
447
11.5M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
448
11.5M
  FIXP_DBL *RESTRICT pData_0 = analysisBuffer + 2 * no_channels - 1;
449
11.5M
  FIXP_DBL *RESTRICT pData_1 = analysisBuffer;
450
451
11.5M
  FIXP_QAS *RESTRICT sta_0 = (FIXP_QAS *)pFilterStates;
452
11.5M
  FIXP_QAS *RESTRICT sta_1 =
453
11.5M
      (FIXP_QAS *)pFilterStates + (2 * QMF_NO_POLY * no_channels) - 1;
454
11.5M
  INT pfltStep = QMF_NO_POLY * (p_stride);
455
11.5M
  INT staStep1 = no_channels << 1;
456
11.5M
  INT staStep2 = (no_channels << 3) - 1; /* Rewind one less */
457
458
  /* FIR filters 127..64 0..63 */
459
304M
  for (k = 0; k < no_channels; k++) {
460
293M
    accu = fMultDiv2(p_flt[0], *sta_1);
461
293M
    sta_1 -= staStep1;
462
293M
    accu += fMultDiv2(p_flt[1], *sta_1);
463
293M
    sta_1 -= staStep1;
464
293M
    accu += fMultDiv2(p_flt[2], *sta_1);
465
293M
    sta_1 -= staStep1;
466
293M
    accu += fMultDiv2(p_flt[3], *sta_1);
467
293M
    sta_1 -= staStep1;
468
293M
    accu += fMultDiv2(p_flt[4], *sta_1);
469
293M
    *pData_1++ = (accu << 1);
470
293M
    sta_1 += staStep2;
471
472
293M
    p_flt += pfltStep;
473
293M
    accu = fMultDiv2(p_flt[0], *sta_0);
474
293M
    sta_0 += staStep1;
475
293M
    accu += fMultDiv2(p_flt[1], *sta_0);
476
293M
    sta_0 += staStep1;
477
293M
    accu += fMultDiv2(p_flt[2], *sta_0);
478
293M
    sta_0 += staStep1;
479
293M
    accu += fMultDiv2(p_flt[3], *sta_0);
480
293M
    sta_0 += staStep1;
481
293M
    accu += fMultDiv2(p_flt[4], *sta_0);
482
293M
    *pData_0-- = (accu << 1);
483
293M
    sta_0 -= staStep2;
484
293M
  }
485
11.5M
}
486
#endif /* !defined(FUNCTION_qmfAnaPrototypeFirSlot) */
487
488
#ifndef FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric
489
/*!
490
  \brief Perform Analysis Prototype Filtering on a single slot of input data.
491
*/
492
static void qmfAnaPrototypeFirSlot_NonSymmetric(
493
    FIXP_DBL *analysisBuffer,
494
    int no_channels, /*!< Number channels of analysis filter */
495
    const FIXP_PFT *p_filter, int p_stride, /*!< Stride of analysis filter    */
496
1.93M
    FIXP_QAS *RESTRICT pFilterStates) {
497
1.93M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
498
1.93M
  int p, k;
499
500
123M
  for (k = 0; k < 2 * no_channels; k++) {
501
121M
    FIXP_DBL accu = (FIXP_DBL)0;
502
503
121M
    p_flt += QMF_NO_POLY * (p_stride - 1);
504
505
    /*
506
      Perform FIR-Filter
507
    */
508
728M
    for (p = 0; p < QMF_NO_POLY; p++) {
509
606M
      accu += fMultDiv2(*p_flt++, pFilterStates[2 * no_channels * p]);
510
606M
    }
511
121M
    analysisBuffer[2 * no_channels - 1 - k] = (accu << 1);
512
121M
    pFilterStates++;
513
121M
  }
514
1.93M
}
Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot_NonSymmetric(int*, int, short const*, int, short*)
qmf.cpp:qmfAnaPrototypeFirSlot_NonSymmetric(int*, int, short const*, int, int*)
Line
Count
Source
496
1.93M
    FIXP_QAS *RESTRICT pFilterStates) {
497
1.93M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
498
1.93M
  int p, k;
499
500
123M
  for (k = 0; k < 2 * no_channels; k++) {
501
121M
    FIXP_DBL accu = (FIXP_DBL)0;
502
503
121M
    p_flt += QMF_NO_POLY * (p_stride - 1);
504
505
    /*
506
      Perform FIR-Filter
507
    */
508
728M
    for (p = 0; p < QMF_NO_POLY; p++) {
509
606M
      accu += fMultDiv2(*p_flt++, pFilterStates[2 * no_channels * p]);
510
606M
    }
511
121M
    analysisBuffer[2 * no_channels - 1 - k] = (accu << 1);
512
121M
    pFilterStates++;
513
121M
  }
514
1.93M
}
515
#endif /* FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric */
516
517
/*
518
 * \brief Perform one QMF slot analysis of the time domain data of timeIn
519
 *        with specified stride and stores the real part of the subband
520
 *        samples in rSubband, and the imaginary part in iSubband
521
 *
522
 *        Note: anaQmf->lsb can be greater than anaQmf->no_channels in case
523
 *        of implicit resampling (USAC with reduced 3/4 core frame length).
524
 */
525
void qmfAnalysisFilteringSlot(
526
    HANDLE_QMF_FILTER_BANK anaQmf,        /*!< Handle of Qmf Synthesis Bank  */
527
    FIXP_DBL *qmfReal,                    /*!< Low and High band, real */
528
    FIXP_DBL *qmfImag,                    /*!< Low and High band, imag */
529
    const INT_PCM_QMFIN *RESTRICT timeIn, /*!< Pointer to input */
530
    const int stride,                     /*!< stride factor of input */
531
    FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
532
13.5M
) {
533
13.5M
  int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);
534
  /*
535
    Feed time signal into oldest anaQmf->no_channels states
536
  */
537
13.5M
  {
538
13.5M
    FIXP_QAS *FilterStatesAnaTmp = ((FIXP_QAS *)anaQmf->FilterStates) + offset;
539
540
    /* Feed and scale actual time in slot */
541
190M
    for (int i = anaQmf->no_channels >> 1; i != 0; i--) {
542
      /* Place INT_PCM value left aligned in scaledTimeIn */
543
176M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
544
176M
      timeIn += stride;
545
176M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
546
176M
      timeIn += stride;
547
176M
    }
548
13.5M
  }
549
550
13.5M
  if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) {
551
1.93M
    qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,
552
1.93M
                                        anaQmf->p_filter, anaQmf->p_stride,
553
1.93M
                                        (FIXP_QAS *)anaQmf->FilterStates);
554
11.5M
  } else {
555
11.5M
    qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,
556
11.5M
                           anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);
557
11.5M
  }
558
559
13.5M
  if (anaQmf->flags & QMF_FLAG_LP) {
560
1.97M
    if (anaQmf->flags & QMF_FLAG_CLDFB)
561
1.31M
      qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);
562
653k
    else
563
653k
      qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);
564
565
11.5M
  } else {
566
11.5M
    qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);
567
11.5M
  }
568
  /*
569
    Shift filter states
570
571
    Should be realized with modulo addressing on a DSP instead of a true buffer
572
    shift
573
  */
574
13.5M
  FDKmemmove(anaQmf->FilterStates,
575
13.5M
             (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,
576
13.5M
             offset * sizeof(FIXP_QAS));
577
13.5M
}
Unexecuted instantiation: qmfAnalysisFilteringSlot(QMF_FILTER_BANK*, int*, int*, short const*, int, int*)
qmfAnalysisFilteringSlot(QMF_FILTER_BANK*, int*, int*, int const*, int, int*)
Line
Count
Source
532
13.5M
) {
533
13.5M
  int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);
534
  /*
535
    Feed time signal into oldest anaQmf->no_channels states
536
  */
537
13.5M
  {
538
13.5M
    FIXP_QAS *FilterStatesAnaTmp = ((FIXP_QAS *)anaQmf->FilterStates) + offset;
539
540
    /* Feed and scale actual time in slot */
541
190M
    for (int i = anaQmf->no_channels >> 1; i != 0; i--) {
542
      /* Place INT_PCM value left aligned in scaledTimeIn */
543
176M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
544
176M
      timeIn += stride;
545
176M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
546
176M
      timeIn += stride;
547
176M
    }
548
13.5M
  }
549
550
13.5M
  if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) {
551
1.93M
    qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,
552
1.93M
                                        anaQmf->p_filter, anaQmf->p_stride,
553
1.93M
                                        (FIXP_QAS *)anaQmf->FilterStates);
554
11.5M
  } else {
555
11.5M
    qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,
556
11.5M
                           anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);
557
11.5M
  }
558
559
13.5M
  if (anaQmf->flags & QMF_FLAG_LP) {
560
1.97M
    if (anaQmf->flags & QMF_FLAG_CLDFB)
561
1.31M
      qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);
562
653k
    else
563
653k
      qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);
564
565
11.5M
  } else {
566
11.5M
    qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);
567
11.5M
  }
568
  /*
569
    Shift filter states
570
571
    Should be realized with modulo addressing on a DSP instead of a true buffer
572
    shift
573
  */
574
13.5M
  FDKmemmove(anaQmf->FilterStates,
575
13.5M
             (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,
576
13.5M
             offset * sizeof(FIXP_QAS));
577
13.5M
}
578
579
/*!
580
 *
581
 * \brief Perform complex-valued subband filtering of the time domain
582
 *        data of timeIn and stores the real part of the subband
583
 *        samples in rAnalysis, and the imaginary part in iAnalysis
584
 * The qmf coefficient table is symmetric. The symmetry is expoited by
585
 * shrinking the coefficient table to half the size. The addressing mode
586
 * takes care of the symmetries.
587
 *
588
 *
589
 * \sa PolyphaseFiltering
590
 */
591
void qmfAnalysisFiltering(
592
    HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */
593
    FIXP_DBL **qmfReal,            /*!< Pointer to real subband slots */
594
    FIXP_DBL **qmfImag,            /*!< Pointer to imag subband slots */
595
    QMF_SCALE_FACTOR *scaleFactor,
596
    const INT_PCM_QMFIN *timeIn, /*!< Time signal */
597
    const int timeIn_e, const int stride,
598
    FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
599
325k
) {
600
325k
  int i;
601
325k
  int no_channels = anaQmf->no_channels;
602
603
325k
  scaleFactor->lb_scale =
604
325k
      -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;
605
325k
  scaleFactor->lb_scale -= anaQmf->filterScale;
606
607
9.69M
  for (i = 0; i < anaQmf->no_col; i++) {
608
9.36M
    FIXP_DBL *qmfImagSlot = NULL;
609
610
9.36M
    if (!(anaQmf->flags & QMF_FLAG_LP)) {
611
7.39M
      qmfImagSlot = qmfImag[i];
612
7.39M
    }
613
614
9.36M
    qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,
615
9.36M
                             pWorkBuffer);
616
617
9.36M
    timeIn += no_channels * stride;
618
619
9.36M
  } /* no_col loop  i  */
620
325k
}
Unexecuted instantiation: qmfAnalysisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR*, short const*, int, int, int*)
qmfAnalysisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR*, int const*, int, int, int*)
Line
Count
Source
599
325k
) {
600
325k
  int i;
601
325k
  int no_channels = anaQmf->no_channels;
602
603
325k
  scaleFactor->lb_scale =
604
325k
      -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;
605
325k
  scaleFactor->lb_scale -= anaQmf->filterScale;
606
607
9.69M
  for (i = 0; i < anaQmf->no_col; i++) {
608
9.36M
    FIXP_DBL *qmfImagSlot = NULL;
609
610
9.36M
    if (!(anaQmf->flags & QMF_FLAG_LP)) {
611
7.39M
      qmfImagSlot = qmfImag[i];
612
7.39M
    }
613
614
9.36M
    qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,
615
9.36M
                             pWorkBuffer);
616
617
9.36M
    timeIn += no_channels * stride;
618
619
9.36M
  } /* no_col loop  i  */
620
325k
}
621
#endif /* QMF_PCM_H */