Coverage Report

Created: 2026-02-14 06:49

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libFDK/src/qmf.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):   Markus Lohwasser, Josef Hoepfl, Manuel Jander
98
99
   Description: QMF filterbank
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  Complex qmf analysis/synthesis
106
  This module contains the qmf filterbank for analysis [
107
  cplxAnalysisQmfFiltering() ] and synthesis [ cplxSynthesisQmfFiltering() ]. It
108
  is a polyphase implementation of a complex exponential modulated filter bank.
109
  The analysis part usually runs at half the sample rate than the synthesis
110
  part. (So called "dual-rate" mode.)
111
112
  The coefficients of the prototype filter are specified in #qmf_pfilt640 (in
113
  sbr_rom.cpp). Thus only a 64 channel version (32 on the analysis side) with a
114
  640 tap prototype filter are used.
115
116
  \anchor PolyphaseFiltering <h2>About polyphase filtering</h2>
117
  The polyphase implementation of a filterbank requires filtering at the input
118
  and output. This is implemented as part of cplxAnalysisQmfFiltering() and
119
  cplxSynthesisQmfFiltering(). The implementation requires the filter
120
  coefficients in a specific structure as described in #sbr_qmf_64_640_qmf (in
121
  sbr_rom.cpp).
122
123
  This module comprises the computationally most expensive functions of the SBR
124
  decoder. The accuracy of computations is also important and has a direct
125
  impact on the overall sound quality. Therefore a special test program is
126
  available which can be used to only test the filterbank: main_audio.cpp
127
128
  This modules also uses scaling of data to provide better SNR on fixed-point
129
  processors. See #QMF_SCALE_FACTOR (in sbr_scale.h) for details. An interesting
130
  note: The function getScalefactor() can constitute a significant amount of
131
  computational complexity - very much depending on the bitrate. Since it is a
132
  rather small function, effective assembler optimization might be possible.
133
134
*/
135
136
#include "qmf.h"
137
138
#include "FDK_trigFcts.h"
139
#include "fixpoint_math.h"
140
#include "dct.h"
141
142
#define QSSCALE (0)
143
#define FX_DBL2FX_QSS(x) (x)
144
#define FX_QSS2FX_DBL(x) (x)
145
146
/* moved to qmf_pcm.h: -> qmfSynPrototypeFirSlot */
147
/* moved to qmf_pcm.h: -> qmfSynPrototypeFirSlot_NonSymmetric */
148
/* moved to qmf_pcm.h: -> qmfSynthesisFilteringSlot */
149
150
/*!
151
 *
152
 * \brief Perform real-valued forward modulation of the time domain
153
 *        data of timeIn and stores the real part of the subband
154
 *        samples in rSubband
155
 *
156
 */
157
static void qmfForwardModulationLP_even(
158
    HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank  */
159
    FIXP_DBL *timeIn,              /*!< Time Signal */
160
    FIXP_DBL *rSubband)            /*!< Real Output */
161
653k
{
162
653k
  int i;
163
653k
  int L = anaQmf->no_channels;
164
653k
  int M = L >> 1;
165
653k
  int scale = 0;
166
653k
  FIXP_DBL accu;
167
168
653k
  const FIXP_DBL *timeInTmp1 = (FIXP_DBL *)&timeIn[3 * M];
169
653k
  const FIXP_DBL *timeInTmp2 = timeInTmp1;
170
653k
  FIXP_DBL *rSubbandTmp = rSubband;
171
172
653k
  rSubband[0] = timeIn[3 * M] >> 1;
173
174
10.4M
  for (i = M - 1; i != 0; i--) {
175
9.79M
    accu = ((*--timeInTmp1) >> 1) + ((*++timeInTmp2) >> 1);
176
9.79M
    *++rSubbandTmp = accu;
177
9.79M
  }
178
179
653k
  timeInTmp1 = &timeIn[2 * M];
180
653k
  timeInTmp2 = &timeIn[0];
181
653k
  rSubbandTmp = &rSubband[M];
182
183
11.1M
  for (i = L - M; i != 0; i--) {
184
10.4M
    accu = ((*timeInTmp1--) >> 1) - ((*timeInTmp2++) >> 1);
185
10.4M
    *rSubbandTmp++ = accu;
186
10.4M
  }
187
188
653k
  dct_III(rSubband, timeIn, L, &scale);
189
653k
}
190
191
#if !defined(FUNCTION_qmfForwardModulationLP_odd)
192
static void qmfForwardModulationLP_odd(
193
    HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank  */
194
    const FIXP_DBL *timeIn,        /*!< Time Signal */
195
    FIXP_DBL *rSubband)            /*!< Real Output */
196
1.31M
{
197
1.31M
  int i;
198
1.31M
  int L = anaQmf->no_channels;
199
1.31M
  int M = L >> 1;
200
1.31M
  int shift = (anaQmf->no_channels >> 6) + 1;
201
202
21.7M
  for (i = 0; i < M; i++) {
203
20.4M
    rSubband[M + i] = (timeIn[L - 1 - i] >> 1) - (timeIn[i] >> shift);
204
20.4M
    rSubband[M - 1 - i] =
205
20.4M
        (timeIn[L + i] >> 1) + (timeIn[2 * L - 1 - i] >> shift);
206
20.4M
  }
207
208
1.31M
  dct_IV(rSubband, L, &shift);
209
1.31M
}
210
#endif /* !defined(FUNCTION_qmfForwardModulationLP_odd) */
211
212
/*!
213
 *
214
 * \brief Perform complex-valued forward modulation of the time domain
215
 *        data of timeIn and stores the real part of the subband
216
 *        samples in rSubband, and the imaginary part in iSubband
217
 *
218
 *
219
 */
220
#if !defined(FUNCTION_qmfForwardModulationHQ)
221
static void qmfForwardModulationHQ(
222
    HANDLE_QMF_FILTER_BANK anaQmf,   /*!< Handle of Qmf Analysis Bank  */
223
    const FIXP_DBL *RESTRICT timeIn, /*!< Time Signal */
224
    FIXP_DBL *RESTRICT rSubband,     /*!< Real Output */
225
    FIXP_DBL *RESTRICT iSubband      /*!< Imaginary Output */
226
11.5M
) {
227
11.5M
  int i;
228
11.5M
  int L = anaQmf->no_channels;
229
11.5M
  int L2 = L << 1;
230
11.5M
  int shift = 0;
231
232
  /* Time advance by one sample, which is equivalent to the complex
233
     rotation at the end of the analysis. Works only for STD mode. */
234
11.5M
  if ((L == 64) && !(anaQmf->flags & (QMF_FLAG_CLDFB | QMF_FLAG_MPSLDFB))) {
235
0
    FIXP_DBL x, y;
236
237
    /*rSubband[0] = u[1] + u[0]*/
238
    /*iSubband[0] = u[1] - u[0]*/
239
0
    x = timeIn[1] >> 1;
240
0
    y = timeIn[0];
241
0
    rSubband[0] = x + (y >> 1);
242
0
    iSubband[0] = x - (y >> 1);
243
244
    /*rSubband[n] = u[n+1] - u[2M-n], n=1,...,M-1*/
245
    /*iSubband[n] = u[n+1] + u[2M-n], n=1,...,M-1*/
246
0
    for (i = 1; i < L; i++) {
247
0
      x = timeIn[i + 1] >> 1; /*u[n+1]  */
248
0
      y = timeIn[L2 - i];     /*u[2M-n] */
249
0
      rSubband[i] = x - (y >> 1);
250
0
      iSubband[i] = x + (y >> 1);
251
0
    }
252
11.5M
  } else {
253
157M
    for (i = 0; i < L; i += 2) {
254
146M
      FIXP_DBL x0, x1, y0, y1;
255
256
146M
      x0 = timeIn[i + 0] >> 1;
257
146M
      x1 = timeIn[i + 1] >> 1;
258
146M
      y0 = timeIn[L2 - 1 - i];
259
146M
      y1 = timeIn[L2 - 2 - i];
260
261
146M
      rSubband[i + 0] = x0 - (y0 >> 1);
262
146M
      rSubband[i + 1] = x1 - (y1 >> 1);
263
146M
      iSubband[i + 0] = x0 + (y0 >> 1);
264
146M
      iSubband[i + 1] = x1 + (y1 >> 1);
265
146M
    }
266
11.5M
  }
267
268
11.5M
  dct_IV(rSubband, L, &shift);
269
11.5M
  dst_IV(iSubband, L, &shift);
270
271
  /* Do the complex rotation except for the case of 64 bands (in STD mode). */
272
11.5M
  if ((L != 64) || (anaQmf->flags & (QMF_FLAG_CLDFB | QMF_FLAG_MPSLDFB))) {
273
11.5M
    if (anaQmf->flags & QMF_FLAG_MPSLDFB_OPTIMIZE_MODULATION) {
274
603k
      FIXP_DBL iBand;
275
10.3M
      for (i = 0; i < fMin(anaQmf->lsb, L); i += 2) {
276
9.74M
        iBand = rSubband[i];
277
9.74M
        rSubband[i] = -iSubband[i];
278
9.74M
        iSubband[i] = iBand;
279
280
9.74M
        iBand = -rSubband[i + 1];
281
9.74M
        rSubband[i + 1] = iSubband[i + 1];
282
9.74M
        iSubband[i + 1] = iBand;
283
9.74M
      }
284
10.9M
    } else {
285
10.9M
      const FIXP_QTW *sbr_t_cos;
286
10.9M
      const FIXP_QTW *sbr_t_sin;
287
10.9M
      const int len = L; /* was len = fMin(anaQmf->lsb, L) but in case of USAC
288
                            the signal above lsb is actually needed in some
289
                            cases (HBE?) */
290
10.9M
      sbr_t_cos = anaQmf->t_cos;
291
10.9M
      sbr_t_sin = anaQmf->t_sin;
292
293
283M
      for (i = 0; i < len; i++) {
294
272M
        cplxMult(&iSubband[i], &rSubband[i], iSubband[i], rSubband[i],
295
272M
                 sbr_t_cos[i], sbr_t_sin[i]);
296
272M
      }
297
10.9M
    }
298
11.5M
  }
299
11.5M
}
300
#endif /* FUNCTION_qmfForwardModulationHQ */
301
302
/*!
303
 *
304
 * \brief Perform low power inverse modulation of the subband
305
 *        samples stored in rSubband (real part) and iSubband (imaginary
306
 *        part) and stores the result in pWorkBuffer.
307
 *
308
 */
309
inline static void qmfInverseModulationLP_even(
310
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */
311
    const FIXP_DBL *qmfReal, /*!< Pointer to qmf real subband slot (input) */
312
    const int scaleFactorLowBand,  /*!< Scalefactor for Low band */
313
    const int scaleFactorHighBand, /*!< Scalefactor for High band */
314
    FIXP_DBL *pTimeOut             /*!< Pointer to qmf subband slot (output)*/
315
4.61M
) {
316
4.61M
  int i;
317
4.61M
  int L = synQmf->no_channels;
318
4.61M
  int M = L >> 1;
319
4.61M
  int scale = 0;
320
4.61M
  FIXP_DBL tmp;
321
4.61M
  FIXP_DBL *RESTRICT tReal = pTimeOut;
322
4.61M
  FIXP_DBL *RESTRICT tImag = pTimeOut + L;
323
324
  /* Move input to output vector with offset */
325
4.61M
  scaleValuesSaturate(&tReal[0], &qmfReal[0], synQmf->lsb, scaleFactorLowBand);
326
4.61M
  scaleValuesSaturate(&tReal[0 + synQmf->lsb], &qmfReal[0 + synQmf->lsb],
327
4.61M
                      synQmf->usb - synQmf->lsb, scaleFactorHighBand);
328
4.61M
  FDKmemclear(&tReal[0 + synQmf->usb], (L - synQmf->usb) * sizeof(FIXP_DBL));
329
330
  /* Dct type-2 transform */
331
4.61M
  dct_II(tReal, tImag, L, &scale);
332
333
  /* Expand output and replace inplace the output buffers */
334
4.61M
  tImag[0] = tReal[M];
335
4.61M
  tImag[M] = (FIXP_DBL)0;
336
4.61M
  tmp = tReal[0];
337
4.61M
  tReal[0] = tReal[M];
338
4.61M
  tReal[M] = tmp;
339
340
22.6M
  for (i = 1; i < M / 2; i++) {
341
    /* Imag */
342
18.0M
    tmp = tReal[L - i];
343
18.0M
    tImag[M - i] = tmp;
344
18.0M
    tImag[i + M] = -tmp;
345
346
18.0M
    tmp = tReal[M + i];
347
18.0M
    tImag[i] = tmp;
348
18.0M
    tImag[L - i] = -tmp;
349
350
    /* Real */
351
18.0M
    tReal[M + i] = tReal[i];
352
18.0M
    tReal[L - i] = tReal[M - i];
353
18.0M
    tmp = tReal[i];
354
18.0M
    tReal[i] = tReal[M - i];
355
18.0M
    tReal[M - i] = tmp;
356
18.0M
  }
357
  /* Remaining odd terms */
358
4.61M
  tmp = tReal[M + M / 2];
359
4.61M
  tImag[M / 2] = tmp;
360
4.61M
  tImag[M / 2 + M] = -tmp;
361
362
4.61M
  tReal[M + M / 2] = tReal[M / 2];
363
4.61M
}
364
365
inline static void qmfInverseModulationLP_odd(
366
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */
367
    const FIXP_DBL *qmfReal, /*!< Pointer to qmf real subband slot (input) */
368
    const int scaleFactorLowBand,  /*!< Scalefactor for Low band */
369
    const int scaleFactorHighBand, /*!< Scalefactor for High band */
370
    FIXP_DBL *pTimeOut             /*!< Pointer to qmf subband slot (output)*/
371
1.31M
) {
372
1.31M
  int i;
373
1.31M
  int L = synQmf->no_channels;
374
1.31M
  int M = L >> 1;
375
1.31M
  int shift = 0;
376
377
  /* Move input to output vector with offset */
378
1.31M
  scaleValuesSaturate(pTimeOut + M, qmfReal, synQmf->lsb, scaleFactorLowBand);
379
1.31M
  scaleValuesSaturate(pTimeOut + M + synQmf->lsb, qmfReal + synQmf->lsb,
380
1.31M
                      synQmf->usb - synQmf->lsb, scaleFactorHighBand);
381
1.31M
  FDKmemclear(pTimeOut + M + synQmf->usb, (L - synQmf->usb) * sizeof(FIXP_DBL));
382
383
1.31M
  dct_IV(pTimeOut + M, L, &shift);
384
33.3M
  for (i = 0; i < M; i++) {
385
32.0M
    pTimeOut[i] = pTimeOut[L - 1 - i];
386
32.0M
    pTimeOut[2 * L - 1 - i] = -pTimeOut[L + i];
387
32.0M
  }
388
1.31M
}
389
390
#ifndef FUNCTION_qmfInverseModulationHQ
391
/*!
392
 *
393
 * \brief Perform complex-valued inverse modulation of the subband
394
 *        samples stored in rSubband (real part) and iSubband (imaginary
395
 *        part) and stores the result in pWorkBuffer.
396
 *
397
 */
398
inline static void qmfInverseModulationHQ(
399
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank     */
400
    const FIXP_DBL *qmfReal,       /*!< Pointer to qmf real subband slot */
401
    const FIXP_DBL *qmfImag,       /*!< Pointer to qmf imag subband slot */
402
    const int scaleFactorLowBand,  /*!< Scalefactor for Low band         */
403
    const int scaleFactorHighBand, /*!< Scalefactor for High band        */
404
    FIXP_DBL *pWorkBuffer          /*!< WorkBuffer (output)              */
405
13.2M
) {
406
13.2M
  int i;
407
13.2M
  int L = synQmf->no_channels;
408
13.2M
  int M = L >> 1;
409
13.2M
  int shift = 0;
410
13.2M
  FIXP_DBL *RESTRICT tReal = pWorkBuffer;
411
13.2M
  FIXP_DBL *RESTRICT tImag = pWorkBuffer + L;
412
413
13.2M
  if (synQmf->flags & QMF_FLAG_CLDFB) {
414
337k
    for (i = 0; i < synQmf->usb; i++) {
415
328k
      cplxMultDiv2(&tImag[i], &tReal[i], qmfImag[i], qmfReal[i],
416
328k
                   synQmf->t_cos[i], synQmf->t_sin[i]);
417
328k
    }
418
9.47k
    scaleValuesSaturate(&tReal[0], synQmf->lsb, scaleFactorLowBand + 1);
419
9.47k
    scaleValuesSaturate(&tReal[0 + synQmf->lsb], synQmf->usb - synQmf->lsb,
420
9.47k
                        scaleFactorHighBand + 1);
421
9.47k
    scaleValuesSaturate(&tImag[0], synQmf->lsb, scaleFactorLowBand + 1);
422
9.47k
    scaleValuesSaturate(&tImag[0 + synQmf->lsb], synQmf->usb - synQmf->lsb,
423
9.47k
                        scaleFactorHighBand + 1);
424
9.47k
  }
425
426
13.2M
  if ((synQmf->flags & QMF_FLAG_CLDFB) == 0) {
427
13.2M
    scaleValuesSaturate(&tReal[0], &qmfReal[0], synQmf->lsb,
428
13.2M
                        scaleFactorLowBand);
429
13.2M
    scaleValuesSaturate(&tReal[0 + synQmf->lsb], &qmfReal[0 + synQmf->lsb],
430
13.2M
                        synQmf->usb - synQmf->lsb, scaleFactorHighBand);
431
13.2M
    scaleValuesSaturate(&tImag[0], &qmfImag[0], synQmf->lsb,
432
13.2M
                        scaleFactorLowBand);
433
13.2M
    scaleValuesSaturate(&tImag[0 + synQmf->lsb], &qmfImag[0 + synQmf->lsb],
434
13.2M
                        synQmf->usb - synQmf->lsb, scaleFactorHighBand);
435
13.2M
  }
436
437
13.2M
  FDKmemclear(&tReal[synQmf->usb],
438
13.2M
              (synQmf->no_channels - synQmf->usb) * sizeof(FIXP_DBL));
439
13.2M
  FDKmemclear(&tImag[synQmf->usb],
440
13.2M
              (synQmf->no_channels - synQmf->usb) * sizeof(FIXP_DBL));
441
442
13.2M
  dct_IV(tReal, L, &shift);
443
13.2M
  dst_IV(tImag, L, &shift);
444
445
13.2M
  if (synQmf->flags & QMF_FLAG_CLDFB) {
446
203k
    for (i = 0; i < M; i++) {
447
194k
      FIXP_DBL r1, i1, r2, i2;
448
194k
      r1 = tReal[i];
449
194k
      i2 = tImag[L - 1 - i];
450
194k
      r2 = tReal[L - i - 1];
451
194k
      i1 = tImag[i];
452
453
194k
      tReal[i] = (r1 - i1) >> 1;
454
194k
      tImag[L - 1 - i] = -(r1 + i1) >> 1;
455
194k
      tReal[L - i - 1] = (r2 - i2) >> 1;
456
194k
      tImag[i] = -(r2 + i2) >> 1;
457
194k
    }
458
13.2M
  } else {
459
    /* The array accesses are negative to compensate the missing minus sign in
460
     * the low and hi band gain. */
461
    /* 26 cycles on ARM926 */
462
416M
    for (i = 0; i < M; i++) {
463
403M
      FIXP_DBL r1, i1, r2, i2;
464
403M
      r1 = -tReal[i];
465
403M
      i2 = -tImag[L - 1 - i];
466
403M
      r2 = -tReal[L - i - 1];
467
403M
      i1 = -tImag[i];
468
469
403M
      tReal[i] = (r1 - i1) >> 1;
470
403M
      tImag[L - 1 - i] = -(r1 + i1) >> 1;
471
403M
      tReal[L - i - 1] = (r2 - i2) >> 1;
472
403M
      tImag[i] = -(r2 + i2) >> 1;
473
403M
    }
474
13.2M
  }
475
13.2M
}
476
#endif /* #ifndef FUNCTION_qmfInverseModulationHQ */
477
478
/*!
479
 *
480
 * \brief Create QMF filter bank instance
481
 *
482
 * \return 0 if successful
483
 *
484
 */
485
static int qmfInitFilterBank(
486
    HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Handle to return */
487
    void *pFilterStates,          /*!< Handle to filter states */
488
    int noCols,                   /*!< Number of timeslots per frame */
489
    int lsb,                      /*!< Lower end of QMF frequency range */
490
    int usb,                      /*!< Upper end of QMF frequency range */
491
    int no_channels,              /*!< Number of channels (bands) */
492
    UINT flags,                   /*!< flags */
493
    int synflag)                  /*!< 1: synthesis; 0: analysis */
494
231k
{
495
231k
  FDKmemclear(h_Qmf, sizeof(QMF_FILTER_BANK));
496
497
231k
  if (flags & QMF_FLAG_MPSLDFB) {
498
12.1k
    flags |= QMF_FLAG_NONSYMMETRIC;
499
12.1k
    flags |= QMF_FLAG_MPSLDFB_OPTIMIZE_MODULATION;
500
501
12.1k
    h_Qmf->t_cos = NULL;
502
12.1k
    h_Qmf->t_sin = NULL;
503
12.1k
    h_Qmf->filterScale = QMF_MPSLDFB_PFT_SCALE;
504
12.1k
    h_Qmf->p_stride = 1;
505
506
12.1k
    switch (no_channels) {
507
2.31k
      case 64:
508
2.31k
        h_Qmf->p_filter = qmf_mpsldfb_640;
509
2.31k
        h_Qmf->FilterSize = 640;
510
2.31k
        break;
511
9.86k
      case 32:
512
9.86k
        h_Qmf->p_filter = qmf_mpsldfb_320;
513
9.86k
        h_Qmf->FilterSize = 320;
514
9.86k
        break;
515
0
      default:
516
0
        return -1;
517
12.1k
    }
518
12.1k
  }
519
520
231k
  if (!(flags & QMF_FLAG_MPSLDFB) && (flags & QMF_FLAG_CLDFB)) {
521
94.9k
    flags |= QMF_FLAG_NONSYMMETRIC;
522
94.9k
    h_Qmf->filterScale = QMF_CLDFB_PFT_SCALE;
523
524
94.9k
    h_Qmf->p_stride = 1;
525
94.9k
    switch (no_channels) {
526
8.30k
      case 64:
527
8.30k
        h_Qmf->t_cos = qmf_phaseshift_cos64_cldfb;
528
8.30k
        h_Qmf->t_sin = qmf_phaseshift_sin64_cldfb;
529
8.30k
        h_Qmf->p_filter = qmf_cldfb_640;
530
8.30k
        h_Qmf->FilterSize = 640;
531
8.30k
        break;
532
74.1k
      case 32:
533
74.1k
        h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos32_cldfb_syn
534
74.1k
                                 : qmf_phaseshift_cos32_cldfb_ana;
535
74.1k
        h_Qmf->t_sin = qmf_phaseshift_sin32_cldfb;
536
74.1k
        h_Qmf->p_filter = qmf_cldfb_320;
537
74.1k
        h_Qmf->FilterSize = 320;
538
74.1k
        break;
539
8.95k
      case 16:
540
8.95k
        h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos16_cldfb_syn
541
8.95k
                                 : qmf_phaseshift_cos16_cldfb_ana;
542
8.95k
        h_Qmf->t_sin = qmf_phaseshift_sin16_cldfb;
543
8.95k
        h_Qmf->p_filter = qmf_cldfb_160;
544
8.95k
        h_Qmf->FilterSize = 160;
545
8.95k
        break;
546
3.59k
      case 8:
547
3.59k
        h_Qmf->t_cos = (synflag) ? qmf_phaseshift_cos8_cldfb_syn
548
3.59k
                                 : qmf_phaseshift_cos8_cldfb_ana;
549
3.59k
        h_Qmf->t_sin = qmf_phaseshift_sin8_cldfb;
550
3.59k
        h_Qmf->p_filter = qmf_cldfb_80;
551
3.59k
        h_Qmf->FilterSize = 80;
552
3.59k
        break;
553
0
      default:
554
0
        return -1;
555
94.9k
    }
556
94.9k
  }
557
558
231k
  if (!(flags & QMF_FLAG_MPSLDFB) && ((flags & QMF_FLAG_CLDFB) == 0)) {
559
124k
    switch (no_channels) {
560
41.2k
      case 64:
561
41.2k
        h_Qmf->p_filter = qmf_pfilt640;
562
41.2k
        h_Qmf->t_cos = qmf_phaseshift_cos64;
563
41.2k
        h_Qmf->t_sin = qmf_phaseshift_sin64;
564
41.2k
        h_Qmf->p_stride = 1;
565
41.2k
        h_Qmf->FilterSize = 640;
566
41.2k
        h_Qmf->filterScale = 0;
567
41.2k
        break;
568
977
      case 40:
569
977
        if (synflag) {
570
0
          break;
571
977
        } else {
572
977
          h_Qmf->p_filter = qmf_pfilt400; /* Scaling factor 0.8 */
573
977
          h_Qmf->t_cos = qmf_phaseshift_cos40;
574
977
          h_Qmf->t_sin = qmf_phaseshift_sin40;
575
977
          h_Qmf->filterScale = 1;
576
977
          h_Qmf->p_stride = 1;
577
977
          h_Qmf->FilterSize = no_channels * 10;
578
977
        }
579
977
        break;
580
29.9k
      case 32:
581
29.9k
        h_Qmf->p_filter = qmf_pfilt640;
582
29.9k
        if (flags & QMF_FLAG_DOWNSAMPLED) {
583
446
          h_Qmf->t_cos = qmf_phaseshift_cos_downsamp32;
584
446
          h_Qmf->t_sin = qmf_phaseshift_sin_downsamp32;
585
29.4k
        } else {
586
29.4k
          h_Qmf->t_cos = qmf_phaseshift_cos32;
587
29.4k
          h_Qmf->t_sin = qmf_phaseshift_sin32;
588
29.4k
        }
589
29.9k
        h_Qmf->p_stride = 2;
590
29.9k
        h_Qmf->FilterSize = 640;
591
29.9k
        h_Qmf->filterScale = 0;
592
29.9k
        break;
593
977
      case 20:
594
977
        h_Qmf->p_filter = qmf_pfilt200;
595
977
        h_Qmf->p_stride = 1;
596
977
        h_Qmf->FilterSize = 200;
597
977
        h_Qmf->filterScale = 0;
598
977
        break;
599
11.3k
      case 12:
600
11.3k
        h_Qmf->p_filter = qmf_pfilt120;
601
11.3k
        h_Qmf->p_stride = 1;
602
11.3k
        h_Qmf->FilterSize = 120;
603
11.3k
        h_Qmf->filterScale = 0;
604
11.3k
        break;
605
2.80k
      case 8:
606
2.80k
        h_Qmf->p_filter = qmf_pfilt640;
607
2.80k
        h_Qmf->p_stride = 8;
608
2.80k
        h_Qmf->FilterSize = 640;
609
2.80k
        h_Qmf->filterScale = 0;
610
2.80k
        break;
611
14.9k
      case 16:
612
14.9k
        h_Qmf->p_filter = qmf_pfilt640;
613
14.9k
        h_Qmf->t_cos = qmf_phaseshift_cos16;
614
14.9k
        h_Qmf->t_sin = qmf_phaseshift_sin16;
615
14.9k
        h_Qmf->p_stride = 4;
616
14.9k
        h_Qmf->FilterSize = 640;
617
14.9k
        h_Qmf->filterScale = 0;
618
14.9k
        break;
619
22.4k
      case 24:
620
22.4k
        h_Qmf->p_filter = qmf_pfilt240;
621
22.4k
        h_Qmf->t_cos = qmf_phaseshift_cos24;
622
22.4k
        h_Qmf->t_sin = qmf_phaseshift_sin24;
623
22.4k
        h_Qmf->p_stride = 1;
624
22.4k
        h_Qmf->FilterSize = 240;
625
22.4k
        h_Qmf->filterScale = 1;
626
22.4k
        break;
627
22
      default:
628
22
        return -1;
629
124k
    }
630
124k
  }
631
632
231k
  h_Qmf->synScalefactor = h_Qmf->filterScale;
633
  // DCT|DST dependency
634
231k
  switch (no_channels) {
635
0
    case 128:
636
0
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK + 1;
637
0
      break;
638
977
    case 40: {
639
977
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
640
977
    } break;
641
51.8k
    case 64:
642
51.8k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK;
643
51.8k
      break;
644
6.39k
    case 8:
645
6.39k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 3;
646
6.39k
      break;
647
11.3k
    case 12:
648
11.3k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK;
649
11.3k
      break;
650
977
    case 20:
651
977
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK + 1;
652
977
      break;
653
113k
    case 32:
654
113k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
655
113k
      break;
656
23.8k
    case 16:
657
23.8k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 2;
658
23.8k
      break;
659
22.4k
    case 24:
660
22.4k
      h_Qmf->synScalefactor += ALGORITHMIC_SCALING_IN_SYNTHESIS_FILTERBANK - 1;
661
22.4k
      break;
662
0
    default:
663
0
      return -1;
664
231k
  }
665
666
231k
  h_Qmf->flags = flags;
667
668
231k
  h_Qmf->no_channels = no_channels;
669
231k
  h_Qmf->no_col = noCols;
670
671
231k
  h_Qmf->lsb = fMin(lsb, h_Qmf->no_channels);
672
231k
  h_Qmf->usb = synflag
673
231k
                   ? fMin(usb, h_Qmf->no_channels)
674
231k
                   : usb; /* was: h_Qmf->usb = fMin(usb, h_Qmf->no_channels); */
675
676
231k
  h_Qmf->FilterStates = (void *)pFilterStates;
677
678
231k
  h_Qmf->outScalefactor =
679
231k
      (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK + h_Qmf->filterScale) +
680
231k
      h_Qmf->synScalefactor;
681
682
231k
  h_Qmf->outGain_m =
683
231k
      (FIXP_DBL)0x80000000; /* default init value will be not applied */
684
231k
  h_Qmf->outGain_e = 0;
685
686
231k
  return (0);
687
231k
}
688
689
/*!
690
 *
691
 * \brief Adjust synthesis qmf filter states
692
 *
693
 * \return void
694
 *
695
 */
696
static inline void qmfAdaptFilterStates(
697
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Filter Bank */
698
    int scaleFactorDiff)           /*!< Scale factor difference to be applied */
699
121k
{
700
121k
  if (synQmf == NULL || synQmf->FilterStates == NULL) {
701
0
    return;
702
0
  }
703
121k
  if (scaleFactorDiff > 0) {
704
79.0k
    scaleValuesSaturate((FIXP_QSS *)synQmf->FilterStates,
705
79.0k
                        synQmf->no_channels * (QMF_NO_POLY * 2 - 1),
706
79.0k
                        scaleFactorDiff);
707
79.0k
  } else {
708
42.3k
    scaleValues((FIXP_QSS *)synQmf->FilterStates,
709
42.3k
                synQmf->no_channels * (QMF_NO_POLY * 2 - 1), scaleFactorDiff);
710
42.3k
  }
711
121k
}
712
713
/*!
714
 *
715
 * \brief Create QMF filter bank instance
716
 *
717
 *
718
 * \return 0 if succesful
719
 *
720
 */
721
int qmfInitSynthesisFilterBank(
722
    HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Returns handle */
723
    FIXP_QSS *pFilterStates,      /*!< Handle to filter states */
724
    int noCols,                   /*!< Number of timeslots per frame */
725
    int lsb,                      /*!< lower end of QMF */
726
    int usb,                      /*!< upper end of QMF */
727
    int no_channels,              /*!< Number of channels (bands) */
728
    int flags)                    /*!< Low Power flag */
729
120k
{
730
120k
  int oldOutScale = h_Qmf->outScalefactor;
731
120k
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
732
120k
                              no_channels, flags, 1);
733
120k
  if (h_Qmf->FilterStates != NULL) {
734
120k
    if (!(flags & QMF_FLAG_KEEP_STATES)) {
735
82.5k
      FDKmemclear(
736
82.5k
          h_Qmf->FilterStates,
737
82.5k
          (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QSS));
738
82.5k
    } else {
739
37.9k
      qmfAdaptFilterStates(h_Qmf, oldOutScale - h_Qmf->outScalefactor);
740
37.9k
    }
741
120k
  }
742
743
120k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
744
120k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->usb);
745
746
120k
  return err;
747
120k
}
748
749
/*!
750
 *
751
 * \brief Change scale factor for output data and adjust qmf filter states
752
 *
753
 * \return void
754
 *
755
 */
756
void qmfChangeOutScalefactor(
757
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
758
    int outScalefactor             /*!< New scaling factor for output data */
759
513k
) {
760
513k
  if (synQmf == NULL) {
761
0
    return;
762
0
  }
763
764
  /* Add internal filterbank scale */
765
513k
  outScalefactor +=
766
513k
      (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK + synQmf->filterScale) +
767
513k
      synQmf->synScalefactor;
768
769
  /* adjust filter states when scale factor has been changed */
770
513k
  if (synQmf->outScalefactor != outScalefactor) {
771
83.4k
    int diff;
772
773
83.4k
    diff = synQmf->outScalefactor - outScalefactor;
774
775
83.4k
    qmfAdaptFilterStates(synQmf, diff);
776
777
    /* save new scale factor */
778
83.4k
    synQmf->outScalefactor = outScalefactor;
779
83.4k
  }
780
513k
}
781
782
/*!
783
 *
784
 * \brief Get scale factor change which was set by qmfChangeOutScalefactor()
785
 *
786
 * \return scaleFactor
787
 *
788
 */
789
int qmfGetOutScalefactor(
790
    HANDLE_QMF_FILTER_BANK synQmf) /*!< Handle of Qmf Synthesis Bank */
791
97.0k
{
792
97.0k
  int scaleFactor = synQmf->outScalefactor
793
97.0k
                        ? (synQmf->outScalefactor -
794
36.6k
                           (ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK +
795
36.6k
                            synQmf->filterScale + synQmf->synScalefactor))
796
97.0k
                        : 0;
797
97.0k
  return scaleFactor;
798
97.0k
}
799
800
/*!
801
 *
802
 * \brief Change gain for output data
803
 *
804
 * \return void
805
 *
806
 */
807
void qmfChangeOutGain(
808
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank */
809
    FIXP_DBL outputGain,           /*!< New gain for output data (mantissa) */
810
    int outputGainScale            /*!< New gain for output data (exponent) */
811
143k
) {
812
143k
  synQmf->outGain_m = outputGain;
813
143k
  synQmf->outGain_e = outputGainScale;
814
143k
}
815
816
0
#define INT_PCM_QMFOUT INT_PCM
817
0
#define SAMPLE_BITS_QMFOUT SAMPLE_BITS
818
#include "qmf_pcm.h"
819
#if SAMPLE_BITS == 16
820
  /* also create a 32 bit output version */
821
#undef INT_PCM_QMFOUT
822
#undef SAMPLE_BITS_QMFOUT
823
#undef QMF_PCM_H
824
#undef FIXP_QAS
825
#undef QAS_BITS
826
#undef INT_PCM_QMFIN
827
962M
#define INT_PCM_QMFOUT LONG
828
19.1M
#define SAMPLE_BITS_QMFOUT 32
829
36.6M
#define FIXP_QAS FIXP_DBL
830
#define QAS_BITS 32
831
#define INT_PCM_QMFIN LONG
832
#include "qmf_pcm.h"
833
#endif