Coverage Report

Created: 2023-06-17 06:26

/src/aac/libSACdec/src/sac_stp.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2021 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/*********************** MPEG surround decoder library *************************
96
97
   Author(s):
98
99
   Description: SAC Dec subband processing
100
101
*******************************************************************************/
102
103
#include "sac_stp.h"
104
#include "sac_calcM1andM2.h"
105
#include "sac_bitdec.h"
106
#include "FDK_matrixCalloc.h"
107
#include "sac_rom.h"
108
109
2.14M
#define SF_FREQ_DOMAIN_HEADROOM (2 * (1))
110
111
15.0M
#define BP_GF_START 6
112
714k
#define BP_GF_SIZE 25
113
70.6k
#define HP_SIZE 9
114
714k
#define STP_UPDATE_ENERGY_RATE 32
115
116
#define SF_WET 5
117
#define SF_DRY \
118
0
  3 /* SF_DRY == 2 would produce good conformance test results as well */
119
#define SF_DRY_NRG                                                           \
120
14.2M
  (4 - 1) /* 8.495f = sum(BP_GF__FDK[i])                                     \
121
             i=0,..,(sizeof(BP_GF__FDK)/sizeof(FIXP_CFG)-1) => energy        \
122
             calculation needs 4 bits headroom, headroom can be reduced by 1 \
123
             bit due to fPow2Div2() usage */
124
#define SF_WET_NRG                                                           \
125
28.5M
  (4 - 1) /* 8.495f = sum(BP_GF__FDK[i])                                     \
126
             i=0,..,(sizeof(BP_GF__FDK)/sizeof(FIXP_CFG)-1) => energy        \
127
             calculation needs 4 bits headroom, headroom can be reduced by 1 \
128
             bit due to fPow2Div2() usage */
129
#define SF_PRODUCT_BP_GF 13
130
#define SF_PRODUCT_BP_GF_GF 26
131
#define SF_SCALE 2
132
133
42.0k
#define SF_SCALE_LD64 FL2FXCONST_DBL(0.03125)      /* LD64((1<<SF_SCALE))*/
134
2.14M
#define STP_LPF_COEFF1__FDK FL2FXCONST_DBL(0.950f) /* 0.95 */
135
2.14M
#define ONE_MINUS_STP_LPF_COEFF1__FDK FL2FXCONST_DBL(0.05f) /* 1.0 - 0.95 */
136
1.42M
#define STP_LPF_COEFF2__FDK FL2FXCONST_DBL(0.450f)          /* 0.45 */
137
#define ONE_MINUS_STP_LPF_COEFF2__FDK \
138
1.42M
  FL2FXCONST_DBL(1.0f - 0.450f) /* 1.0 - 0.45 */
139
#define STP_SCALE_LIMIT__FDK \
140
1.42M
  FL2FXCONST_DBL(2.82f / (float)(1 << SF_SCALE)) /* scaled by SF_SCALE */
141
#define ONE_DIV_STP_SCALE_LIMIT__FDK                                          \
142
2.65M
  FL2FXCONST_DBL(1.0f / 2.82f / (float)(1 << SF_SCALE)) /* scaled by SF_SCALE \
143
                                                         */
144
#define ABS_THR__FDK       \
145
  FL2FXCONST_DBL(ABS_THR / \
146
                 ((float)(1 << (22 + 22 - 26)))) /* scaled by 18 bits */
147
#define ABS_THR2__FDK                      \
148
  FL2FXCONST_DBL(ABS_THR * 32.0f * 32.0f / \
149
                 ((float)(1 << (22 + 22 - 26)))) /* scaled by 10 bits */
150
#define STP_SCALE_LIMIT_HI \
151
167k
  FL2FXCONST_DBL(3.02222222222 / (1 << SF_SCALE)) /* see 4. below */
152
#define STP_SCALE_LIMIT_LO \
153
6.07k
  FL2FXCONST_DBL(0.28289992119 / (1 << SF_SCALE)) /* see 4. below */
154
#define STP_SCALE_LIMIT_HI_LD64                 \
155
215k
  FL2FXCONST_DBL(0.04986280452) /* see 4. below \
156
                                 */
157
#define STP_SCALE_LIMIT_LO_LD64                 \
158
48.1k
  FL2FXCONST_DBL(0.05692613500) /* see 4. below \
159
                                 */
160
161
/*  Scale factor calculation for the diffuse signal needs adapted thresholds
162
    for STP_SCALE_LIMIT and 1/STP_SCALE_LIMIT:
163
164
    1. scale = sqrt(DryNrg/WetNrg)
165
166
    2. Damping of scale factor
167
       scale2 = 0.1 + 0.9 * scale
168
169
    3. Limiting of scale factor
170
          STP_SCALE_LIMIT           >=        scale2        >= 1/STP_SCALE_LIMIT
171
       => STP_SCALE_LIMIT           >=  (0.1 + 0.9 * scale) >= 1/STP_SCALE_LIMIT
172
       => (STP_SCALE_LIMIT-0.1)/0.9 >=        scale         >=
173
   (1/STP_SCALE_LIMIT-0.1)/0.9
174
175
    3. Limiting of scale factor before sqrt calculation
176
       ((STP_SCALE_LIMIT-0.1)/0.9)^2 >= (scale^2) >=
177
   ((1/STP_SCALE_LIMIT-0.1)/0.9)^2 (STP_SCALE_LIMIT_HI)^2        >= (scale^2) >=
178
   (STP_SCALE_LIMIT_LO)^2
179
180
    4. Thresholds for limiting of scale factor
181
       STP_SCALE_LIMIT_HI      = ((2.82-0.1)/0.9)
182
       STP_SCALE_LIMIT_LO      = (((1.0/2.82)-0.1)/0.9)
183
       STP_SCALE_LIMIT_HI_LD64 = LD64(STP_SCALE_LIMIT_HI*STP_SCALE_LIMIT_HI)
184
       STP_SCALE_LIMIT_LO_LD64 = LD64(STP_SCALE_LIMIT_LO*STP_SCALE_LIMIT_LO)
185
*/
186
187
#define CALC_WET_SCALE(dryIdx, wetIdx)                                         \
188
215k
  if ((DryEnerLD64[dryIdx] - STP_SCALE_LIMIT_HI_LD64) > WetEnerLD64[wetIdx]) { \
189
167k
    scale[wetIdx] = STP_SCALE_LIMIT_HI;                                        \
190
167k
  } else if (DryEnerLD64[dryIdx] <                                             \
191
48.1k
             (WetEnerLD64[wetIdx] - STP_SCALE_LIMIT_LO_LD64)) {                \
192
6.07k
    scale[wetIdx] = STP_SCALE_LIMIT_LO;                                        \
193
42.0k
  } else {                                                                     \
194
42.0k
    tmp = ((DryEnerLD64[dryIdx] - WetEnerLD64[wetIdx]) >> 1) - SF_SCALE_LD64;  \
195
42.0k
    scale[wetIdx] = CalcInvLdData(tmp);                                        \
196
42.0k
  }
197
198
struct STP_DEC {
199
  FIXP_DBL runDryEner[MAX_INPUT_CHANNELS];
200
  FIXP_DBL runWetEner[MAX_OUTPUT_CHANNELS];
201
  FIXP_DBL oldDryEnerLD64[MAX_INPUT_CHANNELS];
202
  FIXP_DBL oldWetEnerLD64[MAX_OUTPUT_CHANNELS];
203
  FIXP_DBL prev_tp_scale[MAX_OUTPUT_CHANNELS];
204
  const FIXP_CFG *BP;
205
  const FIXP_CFG *BP_GF;
206
  int update_old_ener;
207
};
208
209
inline void combineSignalCplx(FIXP_DBL *hybOutputRealDry,
210
                              FIXP_DBL *hybOutputImagDry,
211
                              FIXP_DBL *hybOutputRealWet,
212
1.41M
                              FIXP_DBL *hybOutputImagWet, int bands) {
213
1.41M
  int n;
214
215
32.2M
  for (n = bands - 1; n >= 0; n--) {
216
30.7M
    *hybOutputRealDry = fAddSaturate(*hybOutputRealDry, *hybOutputRealWet);
217
30.7M
    *hybOutputImagDry = fAddSaturate(*hybOutputImagDry, *hybOutputImagWet);
218
30.7M
    hybOutputRealDry++, hybOutputRealWet++;
219
30.7M
    hybOutputImagDry++, hybOutputImagWet++;
220
30.7M
  }
221
1.41M
}
222
223
inline void combineSignalCplxScale1(FIXP_DBL *hybOutputRealDry,
224
                                    FIXP_DBL *hybOutputImagDry,
225
                                    FIXP_DBL *hybOutputRealWet,
226
                                    FIXP_DBL *hybOutputImagWet,
227
                                    const FIXP_CFG *pBP, FIXP_DBL scaleX,
228
11.7k
                                    int bands) {
229
11.7k
  int n;
230
11.7k
  FIXP_DBL scaleY;
231
47.0k
  for (n = bands - 1; n >= 0; n--) {
232
35.3k
    scaleY = fMult(scaleX, *pBP);
233
35.3k
    *hybOutputRealDry = SATURATE_LEFT_SHIFT(
234
35.3k
        (*hybOutputRealDry >> SF_SCALE) + fMult(*hybOutputRealWet, scaleY),
235
35.3k
        SF_SCALE, DFRACT_BITS);
236
35.3k
    *hybOutputImagDry = SATURATE_LEFT_SHIFT(
237
35.3k
        (*hybOutputImagDry >> SF_SCALE) + fMult(*hybOutputImagWet, scaleY),
238
35.3k
        SF_SCALE, DFRACT_BITS);
239
35.3k
    hybOutputRealDry++, hybOutputRealWet++;
240
35.3k
    hybOutputImagDry++, hybOutputImagWet++;
241
35.3k
    pBP++;
242
35.3k
  }
243
11.7k
}
244
245
inline void combineSignalCplxScale2(FIXP_DBL *hybOutputRealDry,
246
                                    FIXP_DBL *hybOutputImagDry,
247
                                    FIXP_DBL *hybOutputRealWet,
248
                                    FIXP_DBL *hybOutputImagWet, FIXP_DBL scaleX,
249
11.7k
                                    int bands) {
250
11.7k
  int n;
251
252
496k
  for (n = bands - 1; n >= 0; n--) {
253
485k
    *hybOutputRealDry = SATURATE_LEFT_SHIFT(
254
485k
        (*hybOutputRealDry >> SF_SCALE) + fMult(*hybOutputRealWet, scaleX),
255
485k
        SF_SCALE, DFRACT_BITS);
256
485k
    *hybOutputImagDry = SATURATE_LEFT_SHIFT(
257
485k
        (*hybOutputImagDry >> SF_SCALE) + fMult(*hybOutputImagWet, scaleX),
258
485k
        SF_SCALE, DFRACT_BITS);
259
485k
    hybOutputRealDry++, hybOutputRealWet++;
260
485k
    hybOutputImagDry++, hybOutputImagWet++;
261
485k
  }
262
11.7k
}
263
264
/*******************************************************************************
265
 Functionname: subbandTPCreate
266
 ******************************************************************************/
267
37.1k
SACDEC_ERROR subbandTPCreate(HANDLE_STP_DEC *hStpDec) {
268
37.1k
  HANDLE_STP_DEC self = NULL;
269
37.1k
  FDK_ALLOCATE_MEMORY_1D(self, 1, struct STP_DEC)
270
37.1k
  if (hStpDec != NULL) {
271
37.1k
    *hStpDec = self;
272
37.1k
  }
273
274
37.1k
  return MPS_OK;
275
0
bail:
276
0
  return MPS_OUTOFMEMORY;
277
37.1k
}
278
279
61.3k
SACDEC_ERROR subbandTPInit(HANDLE_STP_DEC self) {
280
61.3k
  SACDEC_ERROR err = MPS_OK;
281
61.3k
  int ch;
282
283
184k
  for (ch = 0; ch < MAX_OUTPUT_CHANNELS; ch++) {
284
122k
    self->prev_tp_scale[ch] = FL2FXCONST_DBL(1.0f / (1 << SF_SCALE));
285
122k
    self->oldWetEnerLD64[ch] = FL2FXCONST_DBL(0.0);
286
122k
  }
287
122k
  for (ch = 0; ch < MAX_INPUT_CHANNELS; ch++) {
288
61.3k
    self->oldDryEnerLD64[ch] = FL2FXCONST_DBL(0.0);
289
61.3k
  }
290
291
61.3k
  self->BP = BP__FDK;
292
61.3k
  self->BP_GF = BP_GF__FDK;
293
294
61.3k
  self->update_old_ener = 0;
295
296
61.3k
  return err;
297
61.3k
}
298
299
/*******************************************************************************
300
 Functionname: subbandTPDestroy
301
 ******************************************************************************/
302
37.1k
void subbandTPDestroy(HANDLE_STP_DEC *hStpDec) {
303
37.1k
  if (hStpDec != NULL) {
304
37.1k
    FDK_FREE_MEMORY_1D(*hStpDec);
305
37.1k
  }
306
37.1k
}
307
308
/*******************************************************************************
309
 Functionname: subbandTPApply
310
 ******************************************************************************/
311
714k
SACDEC_ERROR subbandTPApply(spatialDec *self, const SPATIAL_BS_FRAME *frame) {
312
714k
  FIXP_DBL *qmfOutputRealDry[MAX_OUTPUT_CHANNELS];
313
714k
  FIXP_DBL *qmfOutputImagDry[MAX_OUTPUT_CHANNELS];
314
714k
  FIXP_DBL *qmfOutputRealWet[MAX_OUTPUT_CHANNELS];
315
714k
  FIXP_DBL *qmfOutputImagWet[MAX_OUTPUT_CHANNELS];
316
317
714k
  FIXP_DBL DryEner[MAX_INPUT_CHANNELS];
318
714k
  FIXP_DBL scale[MAX_OUTPUT_CHANNELS];
319
320
714k
  FIXP_DBL DryEnerLD64[MAX_INPUT_CHANNELS];
321
714k
  FIXP_DBL WetEnerLD64[MAX_OUTPUT_CHANNELS];
322
323
714k
  FIXP_DBL DryEner0 = FL2FXCONST_DBL(0.0f);
324
714k
  FIXP_DBL WetEnerX, damp, tmp;
325
714k
  FIXP_DBL dmxReal0, dmxImag0;
326
714k
  int skipChannels[MAX_OUTPUT_CHANNELS];
327
714k
  int n, ch, cplxBands, cplxHybBands;
328
714k
  int dry_scale_dmx, wet_scale_dmx;
329
714k
  int i_LF, i_RF;
330
714k
  HANDLE_STP_DEC hStpDec;
331
714k
  const FIXP_CFG *pBP;
332
333
714k
  int nrgScale = (2 * self->clipProtectGainSF__FDK);
334
335
714k
  hStpDec = self->hStpDec;
336
337
  /* set scalefactor and loop counter */
338
714k
  FDK_ASSERT(SF_DRY >= 1);
339
0
  {
340
714k
    cplxBands = BP_GF_SIZE;
341
714k
    cplxHybBands = self->hybridBands;
342
714k
    if (self->treeConfig == TREE_212) {
343
714k
      dry_scale_dmx = 2; /* 2 bits to compensate fMultDiv2() and fPow2Div2()
344
                            used in energy calculation */
345
714k
    } else {
346
0
      dry_scale_dmx = (2 * SF_DRY) - 2;
347
0
    }
348
714k
    wet_scale_dmx = 2;
349
714k
  }
350
351
  /* setup pointer for forming the direct downmix signal */
352
2.14M
  for (ch = 0; ch < self->numOutputChannels; ch++) {
353
1.42M
    qmfOutputRealDry[ch] = &self->hybOutputRealDry__FDK[ch][7];
354
1.42M
    qmfOutputRealWet[ch] = &self->hybOutputRealWet__FDK[ch][7];
355
1.42M
    qmfOutputImagDry[ch] = &self->hybOutputImagDry__FDK[ch][7];
356
1.42M
    qmfOutputImagWet[ch] = &self->hybOutputImagWet__FDK[ch][7];
357
1.42M
  }
358
359
  /* clear skipping flag for all output channels */
360
714k
  FDKmemset(skipChannels, 0, self->numOutputChannels * sizeof(int));
361
362
  /* set scale values to zero */
363
714k
  FDKmemset(scale, 0, self->numOutputChannels * sizeof(FIXP_DBL));
364
365
  /* update normalisation energy with latest smoothed energy */
366
714k
  if (hStpDec->update_old_ener == STP_UPDATE_ENERGY_RATE) {
367
11.4k
    hStpDec->update_old_ener = 1;
368
22.8k
    for (ch = 0; ch < self->numInputChannels; ch++) {
369
11.4k
      hStpDec->oldDryEnerLD64[ch] =
370
11.4k
          CalcLdData(fAddSaturate(hStpDec->runDryEner[ch], ABS_THR__FDK));
371
11.4k
    }
372
34.2k
    for (ch = 0; ch < self->numOutputChannels; ch++) {
373
22.8k
      if (self->treeConfig == TREE_212)
374
22.8k
        hStpDec->oldWetEnerLD64[ch] =
375
22.8k
            CalcLdData(fAddSaturate(hStpDec->runWetEner[ch], ABS_THR__FDK));
376
0
      else
377
0
        hStpDec->oldWetEnerLD64[ch] =
378
0
            CalcLdData(fAddSaturate(hStpDec->runWetEner[ch], ABS_THR2__FDK));
379
22.8k
    }
380
703k
  } else {
381
703k
    hStpDec->update_old_ener++;
382
703k
  }
383
384
  /* get channel configuration */
385
714k
  switch (self->treeConfig) {
386
714k
    case TREE_212:
387
714k
      i_LF = 0;
388
714k
      i_RF = 1;
389
714k
      break;
390
0
    default:
391
0
      return MPS_WRONG_TREECONFIG;
392
714k
  }
393
394
  /* form the 'direct' downmix signal */
395
714k
  pBP = hStpDec->BP_GF - BP_GF_START;
396
714k
  switch (self->treeConfig) {
397
714k
    case TREE_212:
398
714k
      INT sMin, sNorm, sReal, sImag;
399
400
714k
      sReal = fMin(getScalefactor(&qmfOutputRealDry[i_LF][BP_GF_START],
401
714k
                                  cplxBands - BP_GF_START),
402
714k
                   getScalefactor(&qmfOutputRealDry[i_RF][BP_GF_START],
403
714k
                                  cplxBands - BP_GF_START));
404
714k
      sImag = fMin(getScalefactor(&qmfOutputImagDry[i_LF][BP_GF_START],
405
714k
                                  cplxBands - BP_GF_START),
406
714k
                   getScalefactor(&qmfOutputImagDry[i_RF][BP_GF_START],
407
714k
                                  cplxBands - BP_GF_START));
408
714k
      sMin = fMin(sReal, sImag) - 1;
409
410
14.2M
      for (n = BP_GF_START; n < cplxBands; n++) {
411
13.5M
        dmxReal0 = scaleValue(qmfOutputRealDry[i_LF][n], sMin) +
412
13.5M
                   scaleValue(qmfOutputRealDry[i_RF][n], sMin);
413
13.5M
        dmxImag0 = scaleValue(qmfOutputImagDry[i_LF][n], sMin) +
414
13.5M
                   scaleValue(qmfOutputImagDry[i_RF][n], sMin);
415
416
13.5M
        DryEner0 += (fMultDiv2(fPow2Div2(dmxReal0), pBP[n]) +
417
13.5M
                     fMultDiv2(fPow2Div2(dmxImag0), pBP[n])) >>
418
13.5M
                    SF_DRY_NRG;
419
13.5M
      }
420
421
714k
      sNorm = SF_FREQ_DOMAIN_HEADROOM + SF_DRY_NRG + dry_scale_dmx -
422
714k
              (2 * sMin) + nrgScale;
423
714k
      DryEner0 = scaleValueSaturate(
424
714k
          DryEner0, fMax(fMin(sNorm, DFRACT_BITS - 1), -(DFRACT_BITS - 1)));
425
714k
      break;
426
0
    default:;
427
714k
  }
428
714k
  DryEner[0] = DryEner0;
429
430
  /* normalise the 'direct' signals */
431
1.42M
  for (ch = 0; ch < self->numInputChannels; ch++) {
432
714k
    if (self->treeConfig != TREE_212) DryEner[ch] = DryEner[ch] << nrgScale;
433
714k
    hStpDec->runDryEner[ch] =
434
714k
        fMult(STP_LPF_COEFF1__FDK, hStpDec->runDryEner[ch]) +
435
714k
        fMult(ONE_MINUS_STP_LPF_COEFF1__FDK, DryEner[ch]);
436
714k
    if (DryEner[ch] != FL2FXCONST_DBL(0.0f)) {
437
107k
      DryEnerLD64[ch] =
438
107k
          fixMax((CalcLdData(DryEner[ch]) - hStpDec->oldDryEnerLD64[ch]),
439
107k
                 FL2FXCONST_DBL(-0.484375f));
440
607k
    } else {
441
607k
      DryEnerLD64[ch] = FL2FXCONST_DBL(-0.484375f);
442
607k
    }
443
714k
  }
444
714k
  for (; ch < MAX_INPUT_CHANNELS; ch++) {
445
0
    DryEnerLD64[ch] = FL2FXCONST_DBL(-0.484375f);
446
0
  }
447
448
  /* normalise the 'diffuse' signals */
449
714k
  pBP = hStpDec->BP_GF - BP_GF_START;
450
2.14M
  for (ch = 0; ch < self->numOutputChannels; ch++) {
451
1.42M
    if (skipChannels[ch]) {
452
0
      continue;
453
0
    }
454
455
1.42M
    WetEnerX = FL2FXCONST_DBL(0.0f);
456
457
1.42M
    if (self->treeConfig == TREE_212) {
458
1.42M
      INT sMin, sNorm;
459
460
1.42M
      sMin = fMin(getScalefactor(&qmfOutputRealWet[ch][BP_GF_START],
461
1.42M
                                 cplxBands - BP_GF_START),
462
1.42M
                  getScalefactor(&qmfOutputImagWet[ch][BP_GF_START],
463
1.42M
                                 cplxBands - BP_GF_START));
464
465
28.5M
      for (n = BP_GF_START; n < cplxBands; n++) {
466
27.1M
        WetEnerX +=
467
27.1M
            (fMultDiv2(fPow2Div2(scaleValue(qmfOutputRealWet[ch][n], sMin)),
468
27.1M
                       pBP[n]) +
469
27.1M
             fMultDiv2(fPow2Div2(scaleValue(qmfOutputImagWet[ch][n], sMin)),
470
27.1M
                       pBP[n])) >>
471
27.1M
            SF_WET_NRG;
472
27.1M
      }
473
1.42M
      sNorm = SF_FREQ_DOMAIN_HEADROOM + SF_WET_NRG + wet_scale_dmx -
474
1.42M
              (2 * sMin) + nrgScale;
475
1.42M
      WetEnerX = scaleValueSaturate(
476
1.42M
          WetEnerX, fMax(fMin(sNorm, DFRACT_BITS - 1), -(DFRACT_BITS - 1)));
477
1.42M
    } else
478
1.42M
      FDK_ASSERT(self->treeConfig == TREE_212);
479
480
0
    hStpDec->runWetEner[ch] =
481
1.42M
        fMult(STP_LPF_COEFF1__FDK, hStpDec->runWetEner[ch]) +
482
1.42M
        fMult(ONE_MINUS_STP_LPF_COEFF1__FDK, WetEnerX);
483
484
1.42M
    if (WetEnerX == FL2FXCONST_DBL(0.0f)) {
485
1.38M
      WetEnerLD64[ch] = FL2FXCONST_DBL(-0.484375f);
486
1.38M
    } else {
487
40.5k
      WetEnerLD64[ch] =
488
40.5k
          fixMax((CalcLdData(WetEnerX) - hStpDec->oldWetEnerLD64[ch]),
489
40.5k
                 FL2FXCONST_DBL(-0.484375f));
490
40.5k
    }
491
1.42M
  }
492
493
  /* compute scale factor for the 'diffuse' signals */
494
714k
  switch (self->treeConfig) {
495
714k
    case TREE_212:
496
714k
      if (DryEner[0] != FL2FXCONST_DBL(0.0f)) {
497
107k
        CALC_WET_SCALE(0, i_LF);
498
107k
        CALC_WET_SCALE(0, i_RF);
499
107k
      }
500
714k
      break;
501
0
    default:;
502
714k
  }
503
504
714k
  damp = FL2FXCONST_DBL(0.1f / (1 << SF_SCALE));
505
2.14M
  for (ch = 0; ch < self->numOutputChannels; ch++) {
506
    /* damp the scaling factor */
507
1.42M
    scale[ch] = damp + fMult(FL2FXCONST_DBL(0.9f), scale[ch]);
508
509
    /* limiting the scale factor */
510
1.42M
    if (scale[ch] > STP_SCALE_LIMIT__FDK) {
511
0
      scale[ch] = STP_SCALE_LIMIT__FDK;
512
0
    }
513
1.42M
    if (scale[ch] < ONE_DIV_STP_SCALE_LIMIT__FDK) {
514
1.22M
      scale[ch] = ONE_DIV_STP_SCALE_LIMIT__FDK;
515
1.22M
    }
516
517
    /* low pass filter the scaling factor */
518
1.42M
    scale[ch] =
519
1.42M
        fMult(STP_LPF_COEFF2__FDK, scale[ch]) +
520
1.42M
        fMult(ONE_MINUS_STP_LPF_COEFF2__FDK, hStpDec->prev_tp_scale[ch]);
521
1.42M
    hStpDec->prev_tp_scale[ch] = scale[ch];
522
1.42M
  }
523
524
  /* combine 'direct' and scaled 'diffuse' signal */
525
714k
  FDK_ASSERT((HP_SIZE - 3 + 10 - 1) == PC_NUM_HYB_BANDS);
526
0
  const SCHAR *channlIndex = row2channelSTP[self->treeConfig];
527
528
2.14M
  for (ch = 0; ch < self->numOutputChannels; ch++) {
529
1.42M
    int no_scaling;
530
531
1.42M
    no_scaling = !frame->tempShapeEnableChannelSTP[channlIndex[ch]];
532
1.42M
    if (no_scaling) {
533
1.41M
      combineSignalCplx(
534
1.41M
          &self->hybOutputRealDry__FDK[ch][self->tp_hybBandBorder],
535
1.41M
          &self->hybOutputImagDry__FDK[ch][self->tp_hybBandBorder],
536
1.41M
          &self->hybOutputRealWet__FDK[ch][self->tp_hybBandBorder],
537
1.41M
          &self->hybOutputImagWet__FDK[ch][self->tp_hybBandBorder],
538
1.41M
          cplxHybBands - self->tp_hybBandBorder);
539
540
1.41M
    } else {
541
11.7k
      FIXP_DBL scaleX;
542
11.7k
      scaleX = scale[ch];
543
11.7k
      pBP = hStpDec->BP - self->tp_hybBandBorder;
544
      /* Band[HP_SIZE-3+10-1] needs not to be processed in
545
         combineSignalCplxScale1(), because pB[HP_SIZE-3+10-1] would be 1.0 */
546
11.7k
      combineSignalCplxScale1(
547
11.7k
          &self->hybOutputRealDry__FDK[ch][self->tp_hybBandBorder],
548
11.7k
          &self->hybOutputImagDry__FDK[ch][self->tp_hybBandBorder],
549
11.7k
          &self->hybOutputRealWet__FDK[ch][self->tp_hybBandBorder],
550
11.7k
          &self->hybOutputImagWet__FDK[ch][self->tp_hybBandBorder],
551
11.7k
          &pBP[self->tp_hybBandBorder], scaleX,
552
11.7k
          (HP_SIZE - 3 + 10 - 1) - self->tp_hybBandBorder);
553
554
11.7k
      {
555
11.7k
        combineSignalCplxScale2(
556
11.7k
            &self->hybOutputRealDry__FDK[ch][HP_SIZE - 3 + 10 - 1],
557
11.7k
            &self->hybOutputImagDry__FDK[ch][HP_SIZE - 3 + 10 - 1],
558
11.7k
            &self->hybOutputRealWet__FDK[ch][HP_SIZE - 3 + 10 - 1],
559
11.7k
            &self->hybOutputImagWet__FDK[ch][HP_SIZE - 3 + 10 - 1], scaleX,
560
11.7k
            cplxHybBands - (HP_SIZE - 3 + 10 - 1));
561
11.7k
      }
562
11.7k
    }
563
1.42M
  }
564
565
714k
  return (SACDEC_ERROR)MPS_OK;
566
0
  ;
567
0
}