Coverage Report

Created: 2024-06-17 06:33

/src/aac/libFDK/include/qmf_pcm.h
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):   Markus Lohwasser, Josef Hoepfl, Manuel Jander
98
99
   Description: QMF filterbank
100
101
*******************************************************************************/
102
103
#ifndef QMF_PCM_H
104
#define QMF_PCM_H
105
106
/*
107
   All Synthesis functions dependent on datatype INT_PCM_QMFOUT
108
   Should only be included by qmf.cpp, but not compiled separately, please
109
   exclude compilation from project, if done otherwise. Is optional included
110
   twice to duplicate all functions with two different pre-definitions, as:
111
        #define INT_PCM_QMFOUT LONG
112
    and ...
113
        #define INT_PCM_QMFOUT SHORT
114
    needed to run QMF synthesis in both 16bit and 32bit sample output format.
115
*/
116
117
#define QSSCALE (0)
118
11.3G
#define FX_DBL2FX_QSS(x) (x)
119
1.08G
#define FX_QSS2FX_DBL(x) (x)
120
121
/*!
122
  \brief Perform Synthesis Prototype Filtering on a single slot of input data.
123
124
  The filter takes 2 * qmf->no_channels of input data and
125
  generates qmf->no_channels time domain output samples.
126
*/
127
/* static */
128
#ifndef FUNCTION_qmfSynPrototypeFirSlot
129
void qmfSynPrototypeFirSlot(
130
#else
131
void qmfSynPrototypeFirSlot_fallback(
132
#endif
133
    HANDLE_QMF_FILTER_BANK qmf,
134
    FIXP_DBL *RESTRICT realSlot,      /*!< Input: Pointer to real Slot */
135
    FIXP_DBL *RESTRICT imagSlot,      /*!< Input: Pointer to imag Slot */
136
    INT_PCM_QMFOUT *RESTRICT timeOut, /*!< Time domain data */
137
21.5M
    int stride) {
138
21.5M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
139
21.5M
  int no_channels = qmf->no_channels;
140
21.5M
  const FIXP_PFT *p_Filter = qmf->p_filter;
141
21.5M
  int p_stride = qmf->p_stride;
142
21.5M
  int j;
143
21.5M
  FIXP_QSS *RESTRICT sta = FilterStates;
144
21.5M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
145
21.5M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
146
21.5M
              qmf->outGain_e;
147
148
21.5M
  p_flt =
149
21.5M
      p_Filter + p_stride * QMF_NO_POLY; /*                     5th of 330 */
150
21.5M
  p_fltm = p_Filter + (qmf->FilterSize / 2) -
151
21.5M
           p_stride * QMF_NO_POLY; /* 5 + (320 - 2*5) = 315th of 330 */
152
153
21.5M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
154
155
21.5M
  FIXP_DBL rnd_val = 0;
156
157
21.5M
  if (scale > 0) {
158
0
    if (scale < (DFRACT_BITS - 1))
159
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
160
0
    else
161
0
      scale = (DFRACT_BITS - 1);
162
21.5M
  } else {
163
21.5M
    scale = fMax(scale, -(DFRACT_BITS - 1));
164
21.5M
  }
165
166
1.10G
  for (j = no_channels - 1; j >= 0; j--) {
167
1.08G
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
168
1.08G
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
169
1.08G
    {
170
1.08G
      INT_PCM_QMFOUT tmp;
171
1.08G
      FIXP_DBL Are = fMultAddDiv2(FX_QSS2FX_DBL(sta[0]), p_fltm[0], real);
172
173
      /* This PCM formatting performs:
174
         - multiplication with 16-bit gain, if not -1.0f
175
         - rounding, if shift right is applied
176
         - apply shift left (or right) with saturation to 32 (or 16) bits
177
         - store output with --stride in 32 (or 16) bit format
178
      */
179
1.08G
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
180
0
      {
181
0
        Are = fMult(Are, gain);
182
0
      }
183
1.08G
      if (scale >= 0) {
184
55.4k
        FDK_ASSERT(
185
55.4k
            Are <=
186
55.4k
            (Are + rnd_val)); /* Round-addition must not overflow, might be
187
                                 equal for rnd_val=0 */
188
55.4k
        tmp = (INT_PCM_QMFOUT)(
189
55.4k
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
190
1.08G
      } else {
191
1.08G
        tmp = (INT_PCM_QMFOUT)(
192
1.08G
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
193
1.08G
      }
194
195
1.08G
      { timeOut[(j)*stride] = tmp; }
196
1.08G
    }
197
198
1.08G
    sta[0] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[1]), p_flt[4], imag));
199
1.08G
    sta[1] =
200
1.08G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[2]), p_fltm[1], real));
201
1.08G
    sta[2] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[3]), p_flt[3], imag));
202
1.08G
    sta[3] =
203
1.08G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[4]), p_fltm[2], real));
204
1.08G
    sta[4] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[5]), p_flt[2], imag));
205
1.08G
    sta[5] =
206
1.08G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[6]), p_fltm[3], real));
207
1.08G
    sta[6] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[7]), p_flt[1], imag));
208
1.08G
    sta[7] =
209
1.08G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[8]), p_fltm[4], real));
210
1.08G
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
211
1.08G
    p_flt += (p_stride * QMF_NO_POLY);
212
1.08G
    p_fltm -= (p_stride * QMF_NO_POLY);
213
1.08G
    sta += 9;  // = (2*QMF_NO_POLY-1);
214
1.08G
  }
215
21.5M
}
Unexecuted instantiation: qmfSynPrototypeFirSlot(QMF_FILTER_BANK*, int*, int*, short*, int)
qmfSynPrototypeFirSlot(QMF_FILTER_BANK*, int*, int*, int*, int)
Line
Count
Source
137
21.5M
    int stride) {
138
21.5M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
139
21.5M
  int no_channels = qmf->no_channels;
140
21.5M
  const FIXP_PFT *p_Filter = qmf->p_filter;
141
21.5M
  int p_stride = qmf->p_stride;
142
21.5M
  int j;
143
21.5M
  FIXP_QSS *RESTRICT sta = FilterStates;
144
21.5M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
145
21.5M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
146
21.5M
              qmf->outGain_e;
147
148
21.5M
  p_flt =
149
21.5M
      p_Filter + p_stride * QMF_NO_POLY; /*                     5th of 330 */
150
21.5M
  p_fltm = p_Filter + (qmf->FilterSize / 2) -
151
21.5M
           p_stride * QMF_NO_POLY; /* 5 + (320 - 2*5) = 315th of 330 */
152
153
21.5M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
154
155
21.5M
  FIXP_DBL rnd_val = 0;
156
157
21.5M
  if (scale > 0) {
158
0
    if (scale < (DFRACT_BITS - 1))
159
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
160
0
    else
161
0
      scale = (DFRACT_BITS - 1);
162
21.5M
  } else {
163
21.5M
    scale = fMax(scale, -(DFRACT_BITS - 1));
164
21.5M
  }
165
166
1.10G
  for (j = no_channels - 1; j >= 0; j--) {
167
1.08G
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
168
1.08G
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
169
1.08G
    {
170
1.08G
      INT_PCM_QMFOUT tmp;
171
1.08G
      FIXP_DBL Are = fMultAddDiv2(FX_QSS2FX_DBL(sta[0]), p_fltm[0], real);
172
173
      /* This PCM formatting performs:
174
         - multiplication with 16-bit gain, if not -1.0f
175
         - rounding, if shift right is applied
176
         - apply shift left (or right) with saturation to 32 (or 16) bits
177
         - store output with --stride in 32 (or 16) bit format
178
      */
179
1.08G
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
180
0
      {
181
0
        Are = fMult(Are, gain);
182
0
      }
183
1.08G
      if (scale >= 0) {
184
55.4k
        FDK_ASSERT(
185
55.4k
            Are <=
186
55.4k
            (Are + rnd_val)); /* Round-addition must not overflow, might be
187
                                 equal for rnd_val=0 */
188
55.4k
        tmp = (INT_PCM_QMFOUT)(
189
55.4k
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
190
1.08G
      } else {
191
1.08G
        tmp = (INT_PCM_QMFOUT)(
192
1.08G
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
193
1.08G
      }
194
195
1.08G
      { timeOut[(j)*stride] = tmp; }
196
1.08G
    }
197
198
1.08G
    sta[0] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[1]), p_flt[4], imag));
199
1.08G
    sta[1] =
200
1.08G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[2]), p_fltm[1], real));
201
1.08G
    sta[2] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[3]), p_flt[3], imag));
202
1.08G
    sta[3] =
203
1.08G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[4]), p_fltm[2], real));
204
1.08G
    sta[4] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[5]), p_flt[2], imag));
205
1.08G
    sta[5] =
206
1.08G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[6]), p_fltm[3], real));
207
1.08G
    sta[6] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[7]), p_flt[1], imag));
208
1.08G
    sta[7] =
209
1.08G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[8]), p_fltm[4], real));
210
1.08G
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
211
1.08G
    p_flt += (p_stride * QMF_NO_POLY);
212
1.08G
    p_fltm -= (p_stride * QMF_NO_POLY);
213
1.08G
    sta += 9;  // = (2*QMF_NO_POLY-1);
214
1.08G
  }
215
21.5M
}
216
217
#ifndef FUNCTION_qmfSynPrototypeFirSlot_NonSymmetric
218
/*!
219
  \brief Perform Synthesis Prototype Filtering on a single slot of input data.
220
221
  The filter takes 2 * qmf->no_channels of input data and
222
  generates qmf->no_channels time domain output samples.
223
*/
224
static void qmfSynPrototypeFirSlot_NonSymmetric(
225
    HANDLE_QMF_FILTER_BANK qmf,
226
    FIXP_DBL *RESTRICT realSlot,      /*!< Input: Pointer to real Slot */
227
    FIXP_DBL *RESTRICT imagSlot,      /*!< Input: Pointer to imag Slot */
228
    INT_PCM_QMFOUT *RESTRICT timeOut, /*!< Time domain data */
229
3.24M
    int stride) {
230
3.24M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
231
3.24M
  int no_channels = qmf->no_channels;
232
3.24M
  const FIXP_PFT *p_Filter = qmf->p_filter;
233
3.24M
  int p_stride = qmf->p_stride;
234
3.24M
  int j;
235
3.24M
  FIXP_QSS *RESTRICT sta = FilterStates;
236
3.24M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
237
3.24M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
238
3.24M
              qmf->outGain_e;
239
240
3.24M
  p_flt = p_Filter; /*!< Pointer to first half of filter coefficients */
241
3.24M
  p_fltm =
242
3.24M
      &p_flt[qmf->FilterSize / 2]; /* at index 320, overall 640 coefficients */
243
244
3.24M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
245
246
3.24M
  FIXP_DBL rnd_val = (FIXP_DBL)0;
247
248
3.24M
  if (scale > 0) {
249
0
    if (scale < (DFRACT_BITS - 1))
250
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
251
0
    else
252
0
      scale = (DFRACT_BITS - 1);
253
3.24M
  } else {
254
3.24M
    scale = fMax(scale, -(DFRACT_BITS - 1));
255
3.24M
  }
256
257
161M
  for (j = no_channels - 1; j >= 0; j--) {
258
158M
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
259
158M
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
260
158M
    {
261
158M
      INT_PCM_QMFOUT tmp;
262
158M
      FIXP_DBL Are = sta[0] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[4], real));
263
264
      /* This PCM formatting performs:
265
         - multiplication with 16-bit gain, if not -1.0f
266
         - rounding, if shift right is applied
267
         - apply shift left (or right) with saturation to 32 (or 16) bits
268
         - store output with --stride in 32 (or 16) bit format
269
      */
270
158M
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
271
0
      {
272
0
        Are = fMult(Are, gain);
273
0
      }
274
158M
      if (scale > 0) {
275
0
        FDK_ASSERT(Are <
276
0
                   (Are + rnd_val)); /* Round-addition must not overflow */
277
0
        tmp = (INT_PCM_QMFOUT)(
278
0
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
279
158M
      } else {
280
158M
        tmp = (INT_PCM_QMFOUT)(
281
158M
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
282
158M
      }
283
158M
      timeOut[j * stride] = tmp;
284
158M
    }
285
286
158M
    sta[0] = sta[1] + FX_DBL2FX_QSS(fMultDiv2(p_flt[4], imag));
287
158M
    sta[1] = sta[2] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[3], real));
288
158M
    sta[2] = sta[3] + FX_DBL2FX_QSS(fMultDiv2(p_flt[3], imag));
289
290
158M
    sta[3] = sta[4] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[2], real));
291
158M
    sta[4] = sta[5] + FX_DBL2FX_QSS(fMultDiv2(p_flt[2], imag));
292
158M
    sta[5] = sta[6] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[1], real));
293
158M
    sta[6] = sta[7] + FX_DBL2FX_QSS(fMultDiv2(p_flt[1], imag));
294
295
158M
    sta[7] = sta[8] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[0], real));
296
158M
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
297
298
158M
    p_flt += (p_stride * QMF_NO_POLY);
299
158M
    p_fltm += (p_stride * QMF_NO_POLY);
300
158M
    sta += 9;  // = (2*QMF_NO_POLY-1);
301
158M
  }
302
3.24M
}
Unexecuted instantiation: qmf.cpp:qmfSynPrototypeFirSlot_NonSymmetric(QMF_FILTER_BANK*, int*, int*, short*, int)
qmf.cpp:qmfSynPrototypeFirSlot_NonSymmetric(QMF_FILTER_BANK*, int*, int*, int*, int)
Line
Count
Source
229
3.24M
    int stride) {
230
3.24M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
231
3.24M
  int no_channels = qmf->no_channels;
232
3.24M
  const FIXP_PFT *p_Filter = qmf->p_filter;
233
3.24M
  int p_stride = qmf->p_stride;
234
3.24M
  int j;
235
3.24M
  FIXP_QSS *RESTRICT sta = FilterStates;
236
3.24M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
237
3.24M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
238
3.24M
              qmf->outGain_e;
239
240
3.24M
  p_flt = p_Filter; /*!< Pointer to first half of filter coefficients */
241
3.24M
  p_fltm =
242
3.24M
      &p_flt[qmf->FilterSize / 2]; /* at index 320, overall 640 coefficients */
243
244
3.24M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
245
246
3.24M
  FIXP_DBL rnd_val = (FIXP_DBL)0;
247
248
3.24M
  if (scale > 0) {
249
0
    if (scale < (DFRACT_BITS - 1))
250
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
251
0
    else
252
0
      scale = (DFRACT_BITS - 1);
253
3.24M
  } else {
254
3.24M
    scale = fMax(scale, -(DFRACT_BITS - 1));
255
3.24M
  }
256
257
161M
  for (j = no_channels - 1; j >= 0; j--) {
258
158M
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
259
158M
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
260
158M
    {
261
158M
      INT_PCM_QMFOUT tmp;
262
158M
      FIXP_DBL Are = sta[0] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[4], real));
263
264
      /* This PCM formatting performs:
265
         - multiplication with 16-bit gain, if not -1.0f
266
         - rounding, if shift right is applied
267
         - apply shift left (or right) with saturation to 32 (or 16) bits
268
         - store output with --stride in 32 (or 16) bit format
269
      */
270
158M
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
271
0
      {
272
0
        Are = fMult(Are, gain);
273
0
      }
274
158M
      if (scale > 0) {
275
0
        FDK_ASSERT(Are <
276
0
                   (Are + rnd_val)); /* Round-addition must not overflow */
277
0
        tmp = (INT_PCM_QMFOUT)(
278
0
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
279
158M
      } else {
280
158M
        tmp = (INT_PCM_QMFOUT)(
281
158M
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
282
158M
      }
283
158M
      timeOut[j * stride] = tmp;
284
158M
    }
285
286
158M
    sta[0] = sta[1] + FX_DBL2FX_QSS(fMultDiv2(p_flt[4], imag));
287
158M
    sta[1] = sta[2] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[3], real));
288
158M
    sta[2] = sta[3] + FX_DBL2FX_QSS(fMultDiv2(p_flt[3], imag));
289
290
158M
    sta[3] = sta[4] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[2], real));
291
158M
    sta[4] = sta[5] + FX_DBL2FX_QSS(fMultDiv2(p_flt[2], imag));
292
158M
    sta[5] = sta[6] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[1], real));
293
158M
    sta[6] = sta[7] + FX_DBL2FX_QSS(fMultDiv2(p_flt[1], imag));
294
295
158M
    sta[7] = sta[8] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[0], real));
296
158M
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
297
298
158M
    p_flt += (p_stride * QMF_NO_POLY);
299
158M
    p_fltm += (p_stride * QMF_NO_POLY);
300
158M
    sta += 9;  // = (2*QMF_NO_POLY-1);
301
158M
  }
302
3.24M
}
303
#endif /* FUNCTION_qmfSynPrototypeFirSlot_NonSymmetric */
304
305
void qmfSynthesisFilteringSlot(HANDLE_QMF_FILTER_BANK synQmf,
306
                               const FIXP_DBL *realSlot,
307
                               const FIXP_DBL *imagSlot,
308
                               const int scaleFactorLowBand,
309
                               const int scaleFactorHighBand,
310
                               INT_PCM_QMFOUT *timeOut, const int stride,
311
24.7M
                               FIXP_DBL *pWorkBuffer) {
312
24.7M
  if (!(synQmf->flags & QMF_FLAG_LP))
313
15.5M
    qmfInverseModulationHQ(synQmf, realSlot, imagSlot, scaleFactorLowBand,
314
15.5M
                           scaleFactorHighBand, pWorkBuffer);
315
9.23M
  else {
316
9.23M
    if (synQmf->flags & QMF_FLAG_CLDFB) {
317
2.22M
      qmfInverseModulationLP_odd(synQmf, realSlot, scaleFactorLowBand,
318
2.22M
                                 scaleFactorHighBand, pWorkBuffer);
319
7.01M
    } else {
320
7.01M
      qmfInverseModulationLP_even(synQmf, realSlot, scaleFactorLowBand,
321
7.01M
                                  scaleFactorHighBand, pWorkBuffer);
322
7.01M
    }
323
9.23M
  }
324
325
24.7M
  if (synQmf->flags & QMF_FLAG_NONSYMMETRIC) {
326
3.24M
    qmfSynPrototypeFirSlot_NonSymmetric(synQmf, pWorkBuffer,
327
3.24M
                                        pWorkBuffer + synQmf->no_channels,
328
3.24M
                                        timeOut, stride);
329
21.5M
  } else {
330
21.5M
    qmfSynPrototypeFirSlot(synQmf, pWorkBuffer,
331
21.5M
                           pWorkBuffer + synQmf->no_channels, timeOut, stride);
332
21.5M
  }
333
24.7M
}
Unexecuted instantiation: qmfSynthesisFilteringSlot(QMF_FILTER_BANK*, int const*, int const*, int, int, short*, int, int*)
qmfSynthesisFilteringSlot(QMF_FILTER_BANK*, int const*, int const*, int, int, int*, int, int*)
Line
Count
Source
311
24.7M
                               FIXP_DBL *pWorkBuffer) {
312
24.7M
  if (!(synQmf->flags & QMF_FLAG_LP))
313
15.5M
    qmfInverseModulationHQ(synQmf, realSlot, imagSlot, scaleFactorLowBand,
314
15.5M
                           scaleFactorHighBand, pWorkBuffer);
315
9.23M
  else {
316
9.23M
    if (synQmf->flags & QMF_FLAG_CLDFB) {
317
2.22M
      qmfInverseModulationLP_odd(synQmf, realSlot, scaleFactorLowBand,
318
2.22M
                                 scaleFactorHighBand, pWorkBuffer);
319
7.01M
    } else {
320
7.01M
      qmfInverseModulationLP_even(synQmf, realSlot, scaleFactorLowBand,
321
7.01M
                                  scaleFactorHighBand, pWorkBuffer);
322
7.01M
    }
323
9.23M
  }
324
325
24.7M
  if (synQmf->flags & QMF_FLAG_NONSYMMETRIC) {
326
3.24M
    qmfSynPrototypeFirSlot_NonSymmetric(synQmf, pWorkBuffer,
327
3.24M
                                        pWorkBuffer + synQmf->no_channels,
328
3.24M
                                        timeOut, stride);
329
21.5M
  } else {
330
21.5M
    qmfSynPrototypeFirSlot(synQmf, pWorkBuffer,
331
21.5M
                           pWorkBuffer + synQmf->no_channels, timeOut, stride);
332
21.5M
  }
333
24.7M
}
334
335
/*!
336
 *
337
 * \brief Perform complex-valued subband synthesis of the
338
 *        low band and the high band and store the
339
 *        time domain data in timeOut
340
 *
341
 * First step: Calculate the proper scaling factor of current
342
 * spectral data in qmfReal/qmfImag, old spectral data in the overlap
343
 * range and filter states.
344
 *
345
 * Second step: Perform Frequency-to-Time mapping with inverse
346
 * Modulation slot-wise.
347
 *
348
 * Third step: Perform FIR-filter slot-wise. To save space for filter
349
 * states, the MAC operations are executed directly on the filter states
350
 * instead of accumulating several products in the accumulator. The
351
 * buffer shift at the end of the function should be replaced by a
352
 * modulo operation, which is available on some DSPs.
353
 *
354
 * Last step: Copy the upper part of the spectral data to the overlap buffer.
355
 *
356
 * The qmf coefficient table is symmetric. The symmetry is exploited by
357
 * shrinking the coefficient table to half the size. The addressing mode
358
 * takes care of the symmetries.  If the #define #QMFTABLE_FULL is set,
359
 * coefficient addressing works on the full table size. The code will be
360
 * slightly faster and slightly more compact.
361
 *
362
 * Workbuffer requirement: 2 x sizeof(**QmfBufferReal) * synQmf->no_channels
363
 * The workbuffer must be aligned
364
 */
365
void qmfSynthesisFiltering(
366
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */
367
    FIXP_DBL **QmfBufferReal,      /*!< Low and High band, real */
368
    FIXP_DBL **QmfBufferImag,      /*!< Low and High band, imag */
369
    const QMF_SCALE_FACTOR *scaleFactor,
370
    const INT ov_len,        /*!< split Slot of overlap and actual slots */
371
    INT_PCM_QMFOUT *timeOut, /*!< Pointer to output */
372
    const INT stride,        /*!< stride factor of output */
373
    FIXP_DBL *pWorkBuffer    /*!< pointer to temporal working buffer */
374
371k
) {
375
371k
  int i;
376
371k
  int L = synQmf->no_channels;
377
371k
  int scaleFactorHighBand;
378
371k
  int scaleFactorLowBand_ov, scaleFactorLowBand_no_ov;
379
380
371k
  FDK_ASSERT(synQmf->no_channels >= synQmf->lsb);
381
371k
  FDK_ASSERT(synQmf->no_channels >= synQmf->usb);
382
383
  /* adapt scaling */
384
371k
  scaleFactorHighBand = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
385
371k
                        scaleFactor->hb_scale - synQmf->filterScale;
386
371k
  scaleFactorLowBand_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
387
371k
                          scaleFactor->ov_lb_scale - synQmf->filterScale;
388
371k
  scaleFactorLowBand_no_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
389
371k
                             scaleFactor->lb_scale - synQmf->filterScale;
390
391
11.4M
  for (i = 0; i < synQmf->no_col; i++) /* ----- no_col loop ----- */
392
11.0M
  {
393
11.0M
    const FIXP_DBL *QmfBufferImagSlot = NULL;
394
395
11.0M
    int scaleFactorLowBand =
396
11.0M
        (i < ov_len) ? scaleFactorLowBand_ov : scaleFactorLowBand_no_ov;
397
398
11.0M
    if (!(synQmf->flags & QMF_FLAG_LP)) QmfBufferImagSlot = QmfBufferImag[i];
399
400
11.0M
    qmfSynthesisFilteringSlot(synQmf, QmfBufferReal[i], QmfBufferImagSlot,
401
11.0M
                              scaleFactorLowBand, scaleFactorHighBand,
402
11.0M
                              timeOut + (i * L * stride), stride, pWorkBuffer);
403
11.0M
  } /* no_col loop  i  */
404
371k
}
Unexecuted instantiation: qmfSynthesisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR const*, int, short*, int, int*)
qmfSynthesisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR const*, int, int*, int, int*)
Line
Count
Source
374
371k
) {
375
371k
  int i;
376
371k
  int L = synQmf->no_channels;
377
371k
  int scaleFactorHighBand;
378
371k
  int scaleFactorLowBand_ov, scaleFactorLowBand_no_ov;
379
380
371k
  FDK_ASSERT(synQmf->no_channels >= synQmf->lsb);
381
371k
  FDK_ASSERT(synQmf->no_channels >= synQmf->usb);
382
383
  /* adapt scaling */
384
371k
  scaleFactorHighBand = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
385
371k
                        scaleFactor->hb_scale - synQmf->filterScale;
386
371k
  scaleFactorLowBand_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
387
371k
                          scaleFactor->ov_lb_scale - synQmf->filterScale;
388
371k
  scaleFactorLowBand_no_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
389
371k
                             scaleFactor->lb_scale - synQmf->filterScale;
390
391
11.4M
  for (i = 0; i < synQmf->no_col; i++) /* ----- no_col loop ----- */
392
11.0M
  {
393
11.0M
    const FIXP_DBL *QmfBufferImagSlot = NULL;
394
395
11.0M
    int scaleFactorLowBand =
396
11.0M
        (i < ov_len) ? scaleFactorLowBand_ov : scaleFactorLowBand_no_ov;
397
398
11.0M
    if (!(synQmf->flags & QMF_FLAG_LP)) QmfBufferImagSlot = QmfBufferImag[i];
399
400
11.0M
    qmfSynthesisFilteringSlot(synQmf, QmfBufferReal[i], QmfBufferImagSlot,
401
11.0M
                              scaleFactorLowBand, scaleFactorHighBand,
402
11.0M
                              timeOut + (i * L * stride), stride, pWorkBuffer);
403
11.0M
  } /* no_col loop  i  */
404
371k
}
405
406
/*!
407
 *
408
 * \brief Create QMF filter bank instance
409
 *
410
 *
411
 * \return 0 if successful
412
 *
413
 */
414
int qmfInitAnalysisFilterBank(
415
    HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Returns handle */
416
    FIXP_QAS *pFilterStates,      /*!< Handle to filter states */
417
    int noCols,                   /*!< Number of timeslots per frame */
418
    int lsb,                      /*!< lower end of QMF */
419
    int usb,                      /*!< upper end of QMF */
420
    int no_channels,              /*!< Number of channels (bands) */
421
    int flags)                    /*!< Low Power flag */
422
138k
{
423
138k
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
424
138k
                              no_channels, flags, 0);
425
138k
  if (!(flags & QMF_FLAG_KEEP_STATES) && (h_Qmf->FilterStates != NULL)) {
426
94.2k
    FDKmemclear(h_Qmf->FilterStates,
427
94.2k
                (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QAS));
428
94.2k
  }
429
430
138k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
431
432
138k
  return err;
433
138k
}
Unexecuted instantiation: qmfInitAnalysisFilterBank(QMF_FILTER_BANK*, short*, int, int, int, int, int)
qmfInitAnalysisFilterBank(QMF_FILTER_BANK*, int*, int, int, int, int, int)
Line
Count
Source
422
138k
{
423
138k
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
424
138k
                              no_channels, flags, 0);
425
138k
  if (!(flags & QMF_FLAG_KEEP_STATES) && (h_Qmf->FilterStates != NULL)) {
426
94.2k
    FDKmemclear(h_Qmf->FilterStates,
427
94.2k
                (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QAS));
428
94.2k
  }
429
430
138k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
431
432
138k
  return err;
433
138k
}
434
435
#ifndef FUNCTION_qmfAnaPrototypeFirSlot
436
/*!
437
  \brief Perform Analysis Prototype Filtering on a single slot of input data.
438
*/
439
static void qmfAnaPrototypeFirSlot(
440
    FIXP_DBL *analysisBuffer,
441
    INT no_channels, /*!< Number channels of analysis filter */
442
    const FIXP_PFT *p_filter, INT p_stride, /*!< Stride of analysis filter    */
443
15.2M
    FIXP_QAS *RESTRICT pFilterStates) {
444
15.2M
  INT k;
445
446
15.2M
  FIXP_DBL accu;
447
15.2M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
448
15.2M
  FIXP_DBL *RESTRICT pData_0 = analysisBuffer + 2 * no_channels - 1;
449
15.2M
  FIXP_DBL *RESTRICT pData_1 = analysisBuffer;
450
451
15.2M
  FIXP_QAS *RESTRICT sta_0 = (FIXP_QAS *)pFilterStates;
452
15.2M
  FIXP_QAS *RESTRICT sta_1 =
453
15.2M
      (FIXP_QAS *)pFilterStates + (2 * QMF_NO_POLY * no_channels) - 1;
454
15.2M
  INT pfltStep = QMF_NO_POLY * (p_stride);
455
15.2M
  INT staStep1 = no_channels << 1;
456
15.2M
  INT staStep2 = (no_channels << 3) - 1; /* Rewind one less */
457
458
  /* FIR filters 127..64 0..63 */
459
396M
  for (k = 0; k < no_channels; k++) {
460
381M
    accu = fMultDiv2(p_flt[0], *sta_1);
461
381M
    sta_1 -= staStep1;
462
381M
    accu += fMultDiv2(p_flt[1], *sta_1);
463
381M
    sta_1 -= staStep1;
464
381M
    accu += fMultDiv2(p_flt[2], *sta_1);
465
381M
    sta_1 -= staStep1;
466
381M
    accu += fMultDiv2(p_flt[3], *sta_1);
467
381M
    sta_1 -= staStep1;
468
381M
    accu += fMultDiv2(p_flt[4], *sta_1);
469
381M
    *pData_1++ = (accu << 1);
470
381M
    sta_1 += staStep2;
471
472
381M
    p_flt += pfltStep;
473
381M
    accu = fMultDiv2(p_flt[0], *sta_0);
474
381M
    sta_0 += staStep1;
475
381M
    accu += fMultDiv2(p_flt[1], *sta_0);
476
381M
    sta_0 += staStep1;
477
381M
    accu += fMultDiv2(p_flt[2], *sta_0);
478
381M
    sta_0 += staStep1;
479
381M
    accu += fMultDiv2(p_flt[3], *sta_0);
480
381M
    sta_0 += staStep1;
481
381M
    accu += fMultDiv2(p_flt[4], *sta_0);
482
381M
    *pData_0-- = (accu << 1);
483
381M
    sta_0 -= staStep2;
484
381M
  }
485
15.2M
}
Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot(int*, int, short const*, int, short*)
qmf.cpp:qmfAnaPrototypeFirSlot(int*, int, short const*, int, int*)
Line
Count
Source
443
15.2M
    FIXP_QAS *RESTRICT pFilterStates) {
444
15.2M
  INT k;
445
446
15.2M
  FIXP_DBL accu;
447
15.2M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
448
15.2M
  FIXP_DBL *RESTRICT pData_0 = analysisBuffer + 2 * no_channels - 1;
449
15.2M
  FIXP_DBL *RESTRICT pData_1 = analysisBuffer;
450
451
15.2M
  FIXP_QAS *RESTRICT sta_0 = (FIXP_QAS *)pFilterStates;
452
15.2M
  FIXP_QAS *RESTRICT sta_1 =
453
15.2M
      (FIXP_QAS *)pFilterStates + (2 * QMF_NO_POLY * no_channels) - 1;
454
15.2M
  INT pfltStep = QMF_NO_POLY * (p_stride);
455
15.2M
  INT staStep1 = no_channels << 1;
456
15.2M
  INT staStep2 = (no_channels << 3) - 1; /* Rewind one less */
457
458
  /* FIR filters 127..64 0..63 */
459
396M
  for (k = 0; k < no_channels; k++) {
460
381M
    accu = fMultDiv2(p_flt[0], *sta_1);
461
381M
    sta_1 -= staStep1;
462
381M
    accu += fMultDiv2(p_flt[1], *sta_1);
463
381M
    sta_1 -= staStep1;
464
381M
    accu += fMultDiv2(p_flt[2], *sta_1);
465
381M
    sta_1 -= staStep1;
466
381M
    accu += fMultDiv2(p_flt[3], *sta_1);
467
381M
    sta_1 -= staStep1;
468
381M
    accu += fMultDiv2(p_flt[4], *sta_1);
469
381M
    *pData_1++ = (accu << 1);
470
381M
    sta_1 += staStep2;
471
472
381M
    p_flt += pfltStep;
473
381M
    accu = fMultDiv2(p_flt[0], *sta_0);
474
381M
    sta_0 += staStep1;
475
381M
    accu += fMultDiv2(p_flt[1], *sta_0);
476
381M
    sta_0 += staStep1;
477
381M
    accu += fMultDiv2(p_flt[2], *sta_0);
478
381M
    sta_0 += staStep1;
479
381M
    accu += fMultDiv2(p_flt[3], *sta_0);
480
381M
    sta_0 += staStep1;
481
381M
    accu += fMultDiv2(p_flt[4], *sta_0);
482
381M
    *pData_0-- = (accu << 1);
483
381M
    sta_0 -= staStep2;
484
381M
  }
485
15.2M
}
486
#endif /* !defined(FUNCTION_qmfAnaPrototypeFirSlot) */
487
488
#ifndef FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric
489
/*!
490
  \brief Perform Analysis Prototype Filtering on a single slot of input data.
491
*/
492
static void qmfAnaPrototypeFirSlot_NonSymmetric(
493
    FIXP_DBL *analysisBuffer,
494
    int no_channels, /*!< Number channels of analysis filter */
495
    const FIXP_PFT *p_filter, int p_stride, /*!< Stride of analysis filter    */
496
2.75M
    FIXP_QAS *RESTRICT pFilterStates) {
497
2.75M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
498
2.75M
  int p, k;
499
500
176M
  for (k = 0; k < 2 * no_channels; k++) {
501
174M
    FIXP_DBL accu = (FIXP_DBL)0;
502
503
174M
    p_flt += QMF_NO_POLY * (p_stride - 1);
504
505
    /*
506
      Perform FIR-Filter
507
    */
508
1.04G
    for (p = 0; p < QMF_NO_POLY; p++) {
509
870M
      accu += fMultDiv2(*p_flt++, pFilterStates[2 * no_channels * p]);
510
870M
    }
511
174M
    analysisBuffer[2 * no_channels - 1 - k] = (accu << 1);
512
174M
    pFilterStates++;
513
174M
  }
514
2.75M
}
Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot_NonSymmetric(int*, int, short const*, int, short*)
qmf.cpp:qmfAnaPrototypeFirSlot_NonSymmetric(int*, int, short const*, int, int*)
Line
Count
Source
496
2.75M
    FIXP_QAS *RESTRICT pFilterStates) {
497
2.75M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
498
2.75M
  int p, k;
499
500
176M
  for (k = 0; k < 2 * no_channels; k++) {
501
174M
    FIXP_DBL accu = (FIXP_DBL)0;
502
503
174M
    p_flt += QMF_NO_POLY * (p_stride - 1);
504
505
    /*
506
      Perform FIR-Filter
507
    */
508
1.04G
    for (p = 0; p < QMF_NO_POLY; p++) {
509
870M
      accu += fMultDiv2(*p_flt++, pFilterStates[2 * no_channels * p]);
510
870M
    }
511
174M
    analysisBuffer[2 * no_channels - 1 - k] = (accu << 1);
512
174M
    pFilterStates++;
513
174M
  }
514
2.75M
}
515
#endif /* FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric */
516
517
/*
518
 * \brief Perform one QMF slot analysis of the time domain data of timeIn
519
 *        with specified stride and stores the real part of the subband
520
 *        samples in rSubband, and the imaginary part in iSubband
521
 *
522
 *        Note: anaQmf->lsb can be greater than anaQmf->no_channels in case
523
 *        of implicit resampling (USAC with reduced 3/4 core frame length).
524
 */
525
void qmfAnalysisFilteringSlot(
526
    HANDLE_QMF_FILTER_BANK anaQmf,        /*!< Handle of Qmf Synthesis Bank  */
527
    FIXP_DBL *qmfReal,                    /*!< Low and High band, real */
528
    FIXP_DBL *qmfImag,                    /*!< Low and High band, imag */
529
    const INT_PCM_QMFIN *RESTRICT timeIn, /*!< Pointer to input */
530
    const int stride,                     /*!< stride factor of input */
531
    FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
532
17.9M
) {
533
17.9M
  int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);
534
  /*
535
    Feed time signal into oldest anaQmf->no_channels states
536
  */
537
17.9M
  {
538
17.9M
    FIXP_QAS *FilterStatesAnaTmp = ((FIXP_QAS *)anaQmf->FilterStates) + offset;
539
540
    /* Feed and scale actual time in slot */
541
252M
    for (int i = anaQmf->no_channels >> 1; i != 0; i--) {
542
      /* Place INT_PCM value left aligned in scaledTimeIn */
543
234M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
544
234M
      timeIn += stride;
545
234M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
546
234M
      timeIn += stride;
547
234M
    }
548
17.9M
  }
549
550
17.9M
  if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) {
551
2.75M
    qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,
552
2.75M
                                        anaQmf->p_filter, anaQmf->p_stride,
553
2.75M
                                        (FIXP_QAS *)anaQmf->FilterStates);
554
15.2M
  } else {
555
15.2M
    qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,
556
15.2M
                           anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);
557
15.2M
  }
558
559
17.9M
  if (anaQmf->flags & QMF_FLAG_LP) {
560
3.62M
    if (anaQmf->flags & QMF_FLAG_CLDFB)
561
2.22M
      qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);
562
1.40M
    else
563
1.40M
      qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);
564
565
14.3M
  } else {
566
14.3M
    qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);
567
14.3M
  }
568
  /*
569
    Shift filter states
570
571
    Should be realized with modulo addressing on a DSP instead of a true buffer
572
    shift
573
  */
574
17.9M
  FDKmemmove(anaQmf->FilterStates,
575
17.9M
             (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,
576
17.9M
             offset * sizeof(FIXP_QAS));
577
17.9M
}
Unexecuted instantiation: qmfAnalysisFilteringSlot(QMF_FILTER_BANK*, int*, int*, short const*, int, int*)
qmfAnalysisFilteringSlot(QMF_FILTER_BANK*, int*, int*, int const*, int, int*)
Line
Count
Source
532
17.9M
) {
533
17.9M
  int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);
534
  /*
535
    Feed time signal into oldest anaQmf->no_channels states
536
  */
537
17.9M
  {
538
17.9M
    FIXP_QAS *FilterStatesAnaTmp = ((FIXP_QAS *)anaQmf->FilterStates) + offset;
539
540
    /* Feed and scale actual time in slot */
541
252M
    for (int i = anaQmf->no_channels >> 1; i != 0; i--) {
542
      /* Place INT_PCM value left aligned in scaledTimeIn */
543
234M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
544
234M
      timeIn += stride;
545
234M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
546
234M
      timeIn += stride;
547
234M
    }
548
17.9M
  }
549
550
17.9M
  if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) {
551
2.75M
    qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,
552
2.75M
                                        anaQmf->p_filter, anaQmf->p_stride,
553
2.75M
                                        (FIXP_QAS *)anaQmf->FilterStates);
554
15.2M
  } else {
555
15.2M
    qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,
556
15.2M
                           anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);
557
15.2M
  }
558
559
17.9M
  if (anaQmf->flags & QMF_FLAG_LP) {
560
3.62M
    if (anaQmf->flags & QMF_FLAG_CLDFB)
561
2.22M
      qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);
562
1.40M
    else
563
1.40M
      qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);
564
565
14.3M
  } else {
566
14.3M
    qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);
567
14.3M
  }
568
  /*
569
    Shift filter states
570
571
    Should be realized with modulo addressing on a DSP instead of a true buffer
572
    shift
573
  */
574
17.9M
  FDKmemmove(anaQmf->FilterStates,
575
17.9M
             (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,
576
17.9M
             offset * sizeof(FIXP_QAS));
577
17.9M
}
578
579
/*!
580
 *
581
 * \brief Perform complex-valued subband filtering of the time domain
582
 *        data of timeIn and stores the real part of the subband
583
 *        samples in rAnalysis, and the imaginary part in iAnalysis
584
 * The qmf coefficient table is symmetric. The symmetry is expoited by
585
 * shrinking the coefficient table to half the size. The addressing mode
586
 * takes care of the symmetries.
587
 *
588
 *
589
 * \sa PolyphaseFiltering
590
 */
591
void qmfAnalysisFiltering(
592
    HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */
593
    FIXP_DBL **qmfReal,            /*!< Pointer to real subband slots */
594
    FIXP_DBL **qmfImag,            /*!< Pointer to imag subband slots */
595
    QMF_SCALE_FACTOR *scaleFactor,
596
    const INT_PCM_QMFIN *timeIn, /*!< Time signal */
597
    const int timeIn_e, const int stride,
598
    FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
599
440k
) {
600
440k
  int i;
601
440k
  int no_channels = anaQmf->no_channels;
602
603
440k
  scaleFactor->lb_scale =
604
440k
      -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;
605
440k
  scaleFactor->lb_scale -= anaQmf->filterScale;
606
607
12.5M
  for (i = 0; i < anaQmf->no_col; i++) {
608
12.1M
    FIXP_DBL *qmfImagSlot = NULL;
609
610
12.1M
    if (!(anaQmf->flags & QMF_FLAG_LP)) {
611
8.50M
      qmfImagSlot = qmfImag[i];
612
8.50M
    }
613
614
12.1M
    qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,
615
12.1M
                             pWorkBuffer);
616
617
12.1M
    timeIn += no_channels * stride;
618
619
12.1M
  } /* no_col loop  i  */
620
440k
}
Unexecuted instantiation: qmfAnalysisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR*, short const*, int, int, int*)
qmfAnalysisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR*, int const*, int, int, int*)
Line
Count
Source
599
440k
) {
600
440k
  int i;
601
440k
  int no_channels = anaQmf->no_channels;
602
603
440k
  scaleFactor->lb_scale =
604
440k
      -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;
605
440k
  scaleFactor->lb_scale -= anaQmf->filterScale;
606
607
12.5M
  for (i = 0; i < anaQmf->no_col; i++) {
608
12.1M
    FIXP_DBL *qmfImagSlot = NULL;
609
610
12.1M
    if (!(anaQmf->flags & QMF_FLAG_LP)) {
611
8.50M
      qmfImagSlot = qmfImag[i];
612
8.50M
    }
613
614
12.1M
    qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,
615
12.1M
                             pWorkBuffer);
616
617
12.1M
    timeIn += no_channels * stride;
618
619
12.1M
  } /* no_col loop  i  */
620
440k
}
621
#endif /* QMF_PCM_H */