/src/aac/libFDK/src/scale.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* ----------------------------------------------------------------------------- |
2 | | Software License for The Fraunhofer FDK AAC Codec Library for Android |
3 | | |
4 | | © Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten |
5 | | Forschung e.V. All rights reserved. |
6 | | |
7 | | 1. INTRODUCTION |
8 | | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
9 | | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
10 | | scheme for digital audio. This FDK AAC Codec software is intended to be used on |
11 | | a wide variety of Android devices. |
12 | | |
13 | | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
14 | | general perceptual audio codecs. AAC-ELD is considered the best-performing |
15 | | full-bandwidth communications codec by independent studies and is widely |
16 | | deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
17 | | specifications. |
18 | | |
19 | | Patent licenses for necessary patent claims for the FDK AAC Codec (including |
20 | | those of Fraunhofer) may be obtained through Via Licensing |
21 | | (www.vialicensing.com) or through the respective patent owners individually for |
22 | | the purpose of encoding or decoding bit streams in products that are compliant |
23 | | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
24 | | Android devices already license these patent claims through Via Licensing or |
25 | | directly from the patent owners, and therefore FDK AAC Codec software may |
26 | | already be covered under those patent licenses when it is used for those |
27 | | licensed purposes only. |
28 | | |
29 | | Commercially-licensed AAC software libraries, including floating-point versions |
30 | | with enhanced sound quality, are also available from Fraunhofer. Users are |
31 | | encouraged to check the Fraunhofer website for additional applications |
32 | | information and documentation. |
33 | | |
34 | | 2. COPYRIGHT LICENSE |
35 | | |
36 | | Redistribution and use in source and binary forms, with or without modification, |
37 | | are permitted without payment of copyright license fees provided that you |
38 | | satisfy the following conditions: |
39 | | |
40 | | You must retain the complete text of this software license in redistributions of |
41 | | the FDK AAC Codec or your modifications thereto in source code form. |
42 | | |
43 | | You must retain the complete text of this software license in the documentation |
44 | | and/or other materials provided with redistributions of the FDK AAC Codec or |
45 | | your modifications thereto in binary form. You must make available free of |
46 | | charge copies of the complete source code of the FDK AAC Codec and your |
47 | | modifications thereto to recipients of copies in binary form. |
48 | | |
49 | | The name of Fraunhofer may not be used to endorse or promote products derived |
50 | | from this library without prior written permission. |
51 | | |
52 | | You may not charge copyright license fees for anyone to use, copy or distribute |
53 | | the FDK AAC Codec software or your modifications thereto. |
54 | | |
55 | | Your modified versions of the FDK AAC Codec must carry prominent notices stating |
56 | | that you changed the software and the date of any change. For modified versions |
57 | | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
58 | | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
59 | | AAC Codec Library for Android." |
60 | | |
61 | | 3. NO PATENT LICENSE |
62 | | |
63 | | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
64 | | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
65 | | Fraunhofer provides no warranty of patent non-infringement with respect to this |
66 | | software. |
67 | | |
68 | | You may use this FDK AAC Codec software or modifications thereto only for |
69 | | purposes that are authorized by appropriate patent licenses. |
70 | | |
71 | | 4. DISCLAIMER |
72 | | |
73 | | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
74 | | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
75 | | including but not limited to the implied warranties of merchantability and |
76 | | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
77 | | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
78 | | or consequential damages, including but not limited to procurement of substitute |
79 | | goods or services; loss of use, data, or profits, or business interruption, |
80 | | however caused and on any theory of liability, whether in contract, strict |
81 | | liability, or tort (including negligence), arising in any way out of the use of |
82 | | this software, even if advised of the possibility of such damage. |
83 | | |
84 | | 5. CONTACT INFORMATION |
85 | | |
86 | | Fraunhofer Institute for Integrated Circuits IIS |
87 | | Attention: Audio and Multimedia Departments - FDK AAC LL |
88 | | Am Wolfsmantel 33 |
89 | | 91058 Erlangen, Germany |
90 | | |
91 | | www.iis.fraunhofer.de/amm |
92 | | amm-info@iis.fraunhofer.de |
93 | | ----------------------------------------------------------------------------- */ |
94 | | |
95 | | /******************* Library for basic calculation routines ******************** |
96 | | |
97 | | Author(s): |
98 | | |
99 | | Description: Scaling operations |
100 | | |
101 | | *******************************************************************************/ |
102 | | |
103 | | #include "common_fix.h" |
104 | | |
105 | | #include "genericStds.h" |
106 | | |
107 | | /************************************************** |
108 | | * Inline definitions |
109 | | **************************************************/ |
110 | | |
111 | | #include "scale.h" |
112 | | |
113 | | #if defined(__mips__) |
114 | | #include "mips/scale_mips.cpp" |
115 | | |
116 | | #elif defined(__arm__) |
117 | | #include "arm/scale_arm.cpp" |
118 | | |
119 | | #endif |
120 | | |
121 | | #ifndef FUNCTION_scaleValues_SGL |
122 | | /*! |
123 | | * |
124 | | * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ |
125 | | * \param len must be larger than 4 |
126 | | * \return void |
127 | | * |
128 | | */ |
129 | | #define FUNCTION_scaleValues_SGL |
130 | | void scaleValues(FIXP_SGL *vector, /*!< Vector */ |
131 | | INT len, /*!< Length */ |
132 | | INT scalefactor /*!< Scalefactor */ |
133 | 0 | ) { |
134 | 0 | INT i; |
135 | | |
136 | | /* Return if scalefactor is Zero */ |
137 | 0 | if (scalefactor == 0) return; |
138 | | |
139 | 0 | if (scalefactor > 0) { |
140 | 0 | scalefactor = fixmin_I(scalefactor, (INT)(FRACT_BITS - 1)); |
141 | 0 | for (i = len & 3; i--;) { |
142 | 0 | *(vector++) <<= scalefactor; |
143 | 0 | } |
144 | 0 | for (i = len >> 2; i--;) { |
145 | 0 | *(vector++) <<= scalefactor; |
146 | 0 | *(vector++) <<= scalefactor; |
147 | 0 | *(vector++) <<= scalefactor; |
148 | 0 | *(vector++) <<= scalefactor; |
149 | 0 | } |
150 | 0 | } else { |
151 | 0 | INT negScalefactor = fixmin_I(-scalefactor, (INT)FRACT_BITS - 1); |
152 | 0 | for (i = len & 3; i--;) { |
153 | 0 | *(vector++) >>= negScalefactor; |
154 | 0 | } |
155 | 0 | for (i = len >> 2; i--;) { |
156 | 0 | *(vector++) >>= negScalefactor; |
157 | 0 | *(vector++) >>= negScalefactor; |
158 | 0 | *(vector++) >>= negScalefactor; |
159 | 0 | *(vector++) >>= negScalefactor; |
160 | 0 | } |
161 | 0 | } |
162 | 0 | } |
163 | | #endif |
164 | | |
165 | | #ifndef FUNCTION_scaleValues_DBL |
166 | | /*! |
167 | | * |
168 | | * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ |
169 | | * \param len must be larger than 4 |
170 | | * \return void |
171 | | * |
172 | | */ |
173 | | #define FUNCTION_scaleValues_DBL |
174 | | SCALE_INLINE |
175 | | void scaleValues(FIXP_DBL *vector, /*!< Vector */ |
176 | | INT len, /*!< Length */ |
177 | | INT scalefactor /*!< Scalefactor */ |
178 | 64.1M | ) { |
179 | 64.1M | INT i; |
180 | | |
181 | | /* Return if scalefactor is Zero */ |
182 | 64.1M | if (scalefactor == 0) return; |
183 | | |
184 | 61.1M | if (scalefactor > 0) { |
185 | 57.4M | scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1); |
186 | 82.9M | for (i = len & 3; i--;) { |
187 | 25.5M | *(vector++) <<= scalefactor; |
188 | 25.5M | } |
189 | 406M | for (i = len >> 2; i--;) { |
190 | 348M | *(vector++) <<= scalefactor; |
191 | 348M | *(vector++) <<= scalefactor; |
192 | 348M | *(vector++) <<= scalefactor; |
193 | 348M | *(vector++) <<= scalefactor; |
194 | 348M | } |
195 | 57.4M | } else { |
196 | 3.69M | INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1); |
197 | 6.01M | for (i = len & 3; i--;) { |
198 | 2.31M | *(vector++) >>= negScalefactor; |
199 | 2.31M | } |
200 | 28.5M | for (i = len >> 2; i--;) { |
201 | 24.8M | *(vector++) >>= negScalefactor; |
202 | 24.8M | *(vector++) >>= negScalefactor; |
203 | 24.8M | *(vector++) >>= negScalefactor; |
204 | 24.8M | *(vector++) >>= negScalefactor; |
205 | 24.8M | } |
206 | 3.69M | } |
207 | 61.1M | } |
208 | | #endif |
209 | | |
210 | | #ifndef FUNCTION_scaleValuesSaturate_DBL |
211 | | /*! |
212 | | * |
213 | | * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ |
214 | | * \param vector source/destination buffer |
215 | | * \param len length of vector |
216 | | * \param scalefactor amount of shifts to be applied |
217 | | * \return void |
218 | | * |
219 | | */ |
220 | | #define FUNCTION_scaleValuesSaturate_DBL |
221 | | SCALE_INLINE |
222 | | void scaleValuesSaturate(FIXP_DBL *vector, /*!< Vector */ |
223 | | INT len, /*!< Length */ |
224 | | INT scalefactor /*!< Scalefactor */ |
225 | 2.95M | ) { |
226 | 2.95M | INT i; |
227 | | |
228 | | /* Return if scalefactor is Zero */ |
229 | 2.95M | if (scalefactor == 0) return; |
230 | | |
231 | 2.94M | scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1), |
232 | 2.94M | (INT) - (DFRACT_BITS - 1)); |
233 | | |
234 | 587M | for (i = 0; i < len; i++) { |
235 | 585M | vector[i] = scaleValueSaturate(vector[i], scalefactor); |
236 | 585M | } |
237 | 2.94M | } |
238 | | #endif /* FUNCTION_scaleValuesSaturate_DBL */ |
239 | | |
240 | | #ifndef FUNCTION_scaleValuesSaturate_DBL_DBL |
241 | | /*! |
242 | | * |
243 | | * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ |
244 | | * \param dst destination buffer |
245 | | * \param src source buffer |
246 | | * \param len length of vector |
247 | | * \param scalefactor amount of shifts to be applied |
248 | | * \return void |
249 | | * |
250 | | */ |
251 | | #define FUNCTION_scaleValuesSaturate_DBL_DBL |
252 | | SCALE_INLINE |
253 | | void scaleValuesSaturate(FIXP_DBL *dst, /*!< Output */ |
254 | | const FIXP_DBL *src, /*!< Input */ |
255 | | INT len, /*!< Length */ |
256 | | INT scalefactor /*!< Scalefactor */ |
257 | 80.8M | ) { |
258 | 80.8M | INT i; |
259 | | |
260 | | /* Return if scalefactor is Zero */ |
261 | 80.8M | if (scalefactor == 0) { |
262 | 37.7M | FDKmemmove(dst, src, len * sizeof(FIXP_DBL)); |
263 | 37.7M | return; |
264 | 37.7M | } |
265 | | |
266 | 43.1M | scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1), |
267 | 43.1M | (INT) - (DFRACT_BITS - 1)); |
268 | | |
269 | 1.15G | for (i = 0; i < len; i++) { |
270 | 1.10G | dst[i] = scaleValueSaturate(src[i], scalefactor); |
271 | 1.10G | } |
272 | 43.1M | } |
273 | | #endif /* FUNCTION_scaleValuesSaturate_DBL_DBL */ |
274 | | |
275 | | #ifndef FUNCTION_scaleValuesSaturate_SGL_DBL |
276 | | /*! |
277 | | * |
278 | | * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ |
279 | | * \param dst destination buffer (FIXP_SGL) |
280 | | * \param src source buffer (FIXP_DBL) |
281 | | * \param len length of vector |
282 | | * \param scalefactor amount of shifts to be applied |
283 | | * \return void |
284 | | * |
285 | | */ |
286 | | #define FUNCTION_scaleValuesSaturate_SGL_DBL |
287 | | SCALE_INLINE |
288 | | void scaleValuesSaturate(FIXP_SGL *dst, /*!< Output */ |
289 | | const FIXP_DBL *src, /*!< Input */ |
290 | | INT len, /*!< Length */ |
291 | | INT scalefactor) /*!< Scalefactor */ |
292 | 66.1k | { |
293 | 66.1k | INT i; |
294 | 66.1k | scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1), |
295 | 66.1k | (INT) - (DFRACT_BITS - 1)); |
296 | | |
297 | 142M | for (i = 0; i < len; i++) { |
298 | 142M | dst[i] = FX_DBL2FX_SGL(fAddSaturate(scaleValueSaturate(src[i], scalefactor), |
299 | 142M | (FIXP_DBL)0x8000)); |
300 | 142M | } |
301 | 66.1k | } |
302 | | #endif /* FUNCTION_scaleValuesSaturate_SGL_DBL */ |
303 | | |
304 | | #ifndef FUNCTION_scaleValuesSaturate_SGL |
305 | | /*! |
306 | | * |
307 | | * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ |
308 | | * \param vector source/destination buffer |
309 | | * \param len length of vector |
310 | | * \param scalefactor amount of shifts to be applied |
311 | | * \return void |
312 | | * |
313 | | */ |
314 | | #define FUNCTION_scaleValuesSaturate_SGL |
315 | | SCALE_INLINE |
316 | | void scaleValuesSaturate(FIXP_SGL *vector, /*!< Vector */ |
317 | | INT len, /*!< Length */ |
318 | | INT scalefactor /*!< Scalefactor */ |
319 | 0 | ) { |
320 | 0 | INT i; |
321 | | |
322 | | /* Return if scalefactor is Zero */ |
323 | 0 | if (scalefactor == 0) return; |
324 | | |
325 | 0 | scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1), |
326 | 0 | (INT) - (DFRACT_BITS - 1)); |
327 | |
|
328 | 0 | for (i = 0; i < len; i++) { |
329 | 0 | vector[i] = FX_DBL2FX_SGL( |
330 | 0 | scaleValueSaturate(FX_SGL2FX_DBL(vector[i]), scalefactor)); |
331 | 0 | } |
332 | 0 | } |
333 | | #endif /* FUNCTION_scaleValuesSaturate_SGL */ |
334 | | |
335 | | #ifndef FUNCTION_scaleValuesSaturate_SGL_SGL |
336 | | /*! |
337 | | * |
338 | | * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ |
339 | | * \param dst destination buffer |
340 | | * \param src source buffer |
341 | | * \param len length of vector |
342 | | * \param scalefactor amount of shifts to be applied |
343 | | * \return void |
344 | | * |
345 | | */ |
346 | | #define FUNCTION_scaleValuesSaturate_SGL_SGL |
347 | | SCALE_INLINE |
348 | | void scaleValuesSaturate(FIXP_SGL *dst, /*!< Output */ |
349 | | const FIXP_SGL *src, /*!< Input */ |
350 | | INT len, /*!< Length */ |
351 | | INT scalefactor /*!< Scalefactor */ |
352 | 0 | ) { |
353 | 0 | INT i; |
354 | | |
355 | | /* Return if scalefactor is Zero */ |
356 | 0 | if (scalefactor == 0) { |
357 | 0 | FDKmemmove(dst, src, len * sizeof(FIXP_SGL)); |
358 | 0 | return; |
359 | 0 | } |
360 | | |
361 | 0 | scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1), |
362 | 0 | (INT) - (DFRACT_BITS - 1)); |
363 | |
|
364 | 0 | for (i = 0; i < len; i++) { |
365 | 0 | dst[i] = |
366 | 0 | FX_DBL2FX_SGL(scaleValueSaturate(FX_SGL2FX_DBL(src[i]), scalefactor)); |
367 | 0 | } |
368 | 0 | } |
369 | | #endif /* FUNCTION_scaleValuesSaturate_SGL_SGL */ |
370 | | |
371 | | #ifndef FUNCTION_scaleValues_DBLDBL |
372 | | /*! |
373 | | * |
374 | | * \brief Multiply input vector src by \f$ 2^{scalefactor} \f$ |
375 | | * and place result into dst |
376 | | * \param dst detination buffer |
377 | | * \param src source buffer |
378 | | * \param len must be larger than 4 |
379 | | * \param scalefactor amount of left shifts to be applied |
380 | | * \return void |
381 | | * |
382 | | */ |
383 | | #define FUNCTION_scaleValues_DBLDBL |
384 | | SCALE_INLINE |
385 | | void scaleValues(FIXP_DBL *dst, /*!< dst Vector */ |
386 | | const FIXP_DBL *src, /*!< src Vector */ |
387 | | INT len, /*!< Length */ |
388 | | INT scalefactor /*!< Scalefactor */ |
389 | 434k | ) { |
390 | 434k | INT i; |
391 | | |
392 | | /* Return if scalefactor is Zero */ |
393 | 434k | if (scalefactor == 0) { |
394 | 7.41k | if (dst != src) FDKmemmove(dst, src, len * sizeof(FIXP_DBL)); |
395 | 426k | } else { |
396 | 426k | if (scalefactor > 0) { |
397 | 30.1k | scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1); |
398 | 74.4k | for (i = len & 3; i--;) { |
399 | 44.2k | *(dst++) = *(src++) << scalefactor; |
400 | 44.2k | } |
401 | 111k | for (i = len >> 2; i--;) { |
402 | 81.8k | *(dst++) = *(src++) << scalefactor; |
403 | 81.8k | *(dst++) = *(src++) << scalefactor; |
404 | 81.8k | *(dst++) = *(src++) << scalefactor; |
405 | 81.8k | *(dst++) = *(src++) << scalefactor; |
406 | 81.8k | } |
407 | 396k | } else { |
408 | 396k | INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1); |
409 | 975k | for (i = len & 3; i--;) { |
410 | 578k | *(dst++) = *(src++) >> negScalefactor; |
411 | 578k | } |
412 | 1.00M | for (i = len >> 2; i--;) { |
413 | 609k | *(dst++) = *(src++) >> negScalefactor; |
414 | 609k | *(dst++) = *(src++) >> negScalefactor; |
415 | 609k | *(dst++) = *(src++) >> negScalefactor; |
416 | 609k | *(dst++) = *(src++) >> negScalefactor; |
417 | 609k | } |
418 | 396k | } |
419 | 426k | } |
420 | 434k | } |
421 | | #endif |
422 | | |
423 | | #if (SAMPLE_BITS == 16) |
424 | | #ifndef FUNCTION_scaleValues_PCMDBL |
425 | | /*! |
426 | | * |
427 | | * \brief Multiply input vector src by \f$ 2^{scalefactor} \f$ |
428 | | * and place result into dst |
429 | | * \param dst detination buffer |
430 | | * \param src source buffer |
431 | | * \param len must be larger than 4 |
432 | | * \param scalefactor amount of left shifts to be applied |
433 | | * \return void |
434 | | * |
435 | | */ |
436 | | #define FUNCTION_scaleValues_PCMDBL |
437 | | SCALE_INLINE |
438 | | void scaleValues(FIXP_PCM *dst, /*!< dst Vector */ |
439 | | const FIXP_DBL *src, /*!< src Vector */ |
440 | | INT len, /*!< Length */ |
441 | | INT scalefactor /*!< Scalefactor */ |
442 | 0 | ) { |
443 | 0 | INT i; |
444 | |
|
445 | 0 | scalefactor -= DFRACT_BITS - SAMPLE_BITS; |
446 | | |
447 | | /* Return if scalefactor is Zero */ |
448 | 0 | { |
449 | 0 | if (scalefactor > 0) { |
450 | 0 | scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1); |
451 | 0 | for (i = len & 3; i--;) { |
452 | 0 | *(dst++) = (FIXP_PCM)(*(src++) << scalefactor); |
453 | 0 | } |
454 | 0 | for (i = len >> 2; i--;) { |
455 | 0 | *(dst++) = (FIXP_PCM)(*(src++) << scalefactor); |
456 | 0 | *(dst++) = (FIXP_PCM)(*(src++) << scalefactor); |
457 | 0 | *(dst++) = (FIXP_PCM)(*(src++) << scalefactor); |
458 | 0 | *(dst++) = (FIXP_PCM)(*(src++) << scalefactor); |
459 | 0 | } |
460 | 0 | } else { |
461 | 0 | INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1); |
462 | 0 | for (i = len & 3; i--;) { |
463 | 0 | *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor); |
464 | 0 | } |
465 | 0 | for (i = len >> 2; i--;) { |
466 | 0 | *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor); |
467 | 0 | *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor); |
468 | 0 | *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor); |
469 | 0 | *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor); |
470 | 0 | } |
471 | 0 | } |
472 | 0 | } |
473 | 0 | } |
474 | | #endif |
475 | | #endif /* (SAMPLE_BITS == 16) */ |
476 | | |
477 | | #ifndef FUNCTION_scaleValues_SGLSGL |
478 | | /*! |
479 | | * |
480 | | * \brief Multiply input vector src by \f$ 2^{scalefactor} \f$ |
481 | | * and place result into dst |
482 | | * \param dst detination buffer |
483 | | * \param src source buffer |
484 | | * \param len must be larger than 4 |
485 | | * \param scalefactor amount of left shifts to be applied |
486 | | * \return void |
487 | | * |
488 | | */ |
489 | | #define FUNCTION_scaleValues_SGLSGL |
490 | | SCALE_INLINE |
491 | | void scaleValues(FIXP_SGL *dst, /*!< dst Vector */ |
492 | | const FIXP_SGL *src, /*!< src Vector */ |
493 | | INT len, /*!< Length */ |
494 | | INT scalefactor /*!< Scalefactor */ |
495 | 0 | ) { |
496 | 0 | INT i; |
497 | | |
498 | | /* Return if scalefactor is Zero */ |
499 | 0 | if (scalefactor == 0) { |
500 | 0 | if (dst != src) FDKmemmove(dst, src, len * sizeof(FIXP_DBL)); |
501 | 0 | } else { |
502 | 0 | if (scalefactor > 0) { |
503 | 0 | scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1); |
504 | 0 | for (i = len & 3; i--;) { |
505 | 0 | *(dst++) = *(src++) << scalefactor; |
506 | 0 | } |
507 | 0 | for (i = len >> 2; i--;) { |
508 | 0 | *(dst++) = *(src++) << scalefactor; |
509 | 0 | *(dst++) = *(src++) << scalefactor; |
510 | 0 | *(dst++) = *(src++) << scalefactor; |
511 | 0 | *(dst++) = *(src++) << scalefactor; |
512 | 0 | } |
513 | 0 | } else { |
514 | 0 | INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1); |
515 | 0 | for (i = len & 3; i--;) { |
516 | 0 | *(dst++) = *(src++) >> negScalefactor; |
517 | 0 | } |
518 | 0 | for (i = len >> 2; i--;) { |
519 | 0 | *(dst++) = *(src++) >> negScalefactor; |
520 | 0 | *(dst++) = *(src++) >> negScalefactor; |
521 | 0 | *(dst++) = *(src++) >> negScalefactor; |
522 | 0 | *(dst++) = *(src++) >> negScalefactor; |
523 | 0 | } |
524 | 0 | } |
525 | 0 | } |
526 | 0 | } |
527 | | #endif |
528 | | |
529 | | #ifndef FUNCTION_scaleValuesWithFactor_DBL |
530 | | /*! |
531 | | * |
532 | | * \brief Multiply input vector by \f$ 2^{scalefactor} \f$ |
533 | | * \param len must be larger than 4 |
534 | | * \return void |
535 | | * |
536 | | */ |
537 | | #define FUNCTION_scaleValuesWithFactor_DBL |
538 | | SCALE_INLINE |
539 | | void scaleValuesWithFactor(FIXP_DBL *vector, FIXP_DBL factor, INT len, |
540 | 0 | INT scalefactor) { |
541 | 0 | INT i; |
542 | | |
543 | | /* Compensate fMultDiv2 */ |
544 | 0 | scalefactor++; |
545 | |
|
546 | 0 | if (scalefactor > 0) { |
547 | 0 | scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1); |
548 | 0 | for (i = len & 3; i--;) { |
549 | 0 | *vector = fMultDiv2(*vector, factor) << scalefactor; |
550 | 0 | vector++; |
551 | 0 | } |
552 | 0 | for (i = len >> 2; i--;) { |
553 | 0 | *vector = fMultDiv2(*vector, factor) << scalefactor; |
554 | 0 | vector++; |
555 | 0 | *vector = fMultDiv2(*vector, factor) << scalefactor; |
556 | 0 | vector++; |
557 | 0 | *vector = fMultDiv2(*vector, factor) << scalefactor; |
558 | 0 | vector++; |
559 | 0 | *vector = fMultDiv2(*vector, factor) << scalefactor; |
560 | 0 | vector++; |
561 | 0 | } |
562 | 0 | } else { |
563 | 0 | INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1); |
564 | 0 | for (i = len & 3; i--;) { |
565 | 0 | *vector = fMultDiv2(*vector, factor) >> negScalefactor; |
566 | 0 | vector++; |
567 | 0 | } |
568 | 0 | for (i = len >> 2; i--;) { |
569 | 0 | *vector = fMultDiv2(*vector, factor) >> negScalefactor; |
570 | 0 | vector++; |
571 | 0 | *vector = fMultDiv2(*vector, factor) >> negScalefactor; |
572 | 0 | vector++; |
573 | 0 | *vector = fMultDiv2(*vector, factor) >> negScalefactor; |
574 | 0 | vector++; |
575 | 0 | *vector = fMultDiv2(*vector, factor) >> negScalefactor; |
576 | 0 | vector++; |
577 | 0 | } |
578 | 0 | } |
579 | 0 | } |
580 | | #endif /* FUNCTION_scaleValuesWithFactor_DBL */ |
581 | | |
582 | | /******************************************* |
583 | | |
584 | | IMPORTANT NOTE for usage of getScalefactor() |
585 | | |
586 | | If the input array contains negative values too, then these functions may |
587 | | sometimes return the actual maximum value minus 1, due to the nature of the |
588 | | applied algorithm. So be careful with possible fractional -1 values that may |
589 | | lead to overflows when being fPow2()'ed. |
590 | | |
591 | | ********************************************/ |
592 | | |
593 | | #ifndef FUNCTION_getScalefactorShort |
594 | | /*! |
595 | | * |
596 | | * \brief Calculate max possible scale factor for input vector of shorts |
597 | | * |
598 | | * \return Maximum scale factor / possible left shift |
599 | | * |
600 | | */ |
601 | | #define FUNCTION_getScalefactorShort |
602 | | SCALE_INLINE |
603 | | INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */ |
604 | | INT len /*!< Length of input vector */ |
605 | 0 | ) { |
606 | 0 | INT i; |
607 | 0 | SHORT temp, maxVal = 0; |
608 | |
|
609 | 0 | for (i = len; i != 0; i--) { |
610 | 0 | temp = (SHORT)(*vector++); |
611 | 0 | maxVal |= (temp ^ (temp >> (SHORT_BITS - 1))); |
612 | 0 | } |
613 | |
|
614 | 0 | return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 - |
615 | 0 | (INT)(DFRACT_BITS - SHORT_BITS))); |
616 | 0 | } |
617 | | #endif |
618 | | |
619 | | #ifndef FUNCTION_getScalefactorPCM |
620 | | /*! |
621 | | * |
622 | | * \brief Calculate max possible scale factor for input vector of shorts |
623 | | * |
624 | | * \return Maximum scale factor |
625 | | * |
626 | | */ |
627 | | #define FUNCTION_getScalefactorPCM |
628 | | SCALE_INLINE |
629 | | INT getScalefactorPCM(const INT_PCM *vector, /*!< Pointer to input vector */ |
630 | | INT len, /*!< Length of input vector */ |
631 | 0 | INT stride) { |
632 | 0 | INT i; |
633 | 0 | INT_PCM temp, maxVal = 0; |
634 | |
|
635 | 0 | for (i = len; i != 0; i--) { |
636 | 0 | temp = (INT_PCM)(*vector); |
637 | 0 | vector += stride; |
638 | 0 | maxVal |= (temp ^ (temp >> ((sizeof(INT_PCM) * 8) - 1))); |
639 | 0 | } |
640 | 0 | return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 - |
641 | 0 | (INT)(DFRACT_BITS - SAMPLE_BITS))); |
642 | 0 | } |
643 | | #endif |
644 | | |
645 | | #ifndef FUNCTION_getScalefactorShort |
646 | | /*! |
647 | | * |
648 | | * \brief Calculate max possible scale factor for input vector of shorts |
649 | | * \param stride, item increment between vector members. |
650 | | * \return Maximum scale factor |
651 | | * |
652 | | */ |
653 | | #define FUNCTION_getScalefactorShort |
654 | | SCALE_INLINE |
655 | | INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */ |
656 | | INT len, /*!< Length of input vector */ |
657 | | INT stride) { |
658 | | INT i; |
659 | | SHORT temp, maxVal = 0; |
660 | | |
661 | | for (i = len; i != 0; i--) { |
662 | | temp = (SHORT)(*vector); |
663 | | vector += stride; |
664 | | maxVal |= (temp ^ (temp >> (SHORT_BITS - 1))); |
665 | | } |
666 | | |
667 | | return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 - |
668 | | (INT)(DFRACT_BITS - SHORT_BITS))); |
669 | | } |
670 | | #endif |
671 | | |
672 | | #ifndef FUNCTION_getScalefactor_DBL |
673 | | /*! |
674 | | * |
675 | | * \brief Calculate max possible scale factor for input vector |
676 | | * |
677 | | * \return Maximum scale factor |
678 | | * |
679 | | * This function can constitute a significant amount of computational |
680 | | * complexity - very much depending on the bitrate. Since it is a rather small |
681 | | * function, effective assembler optimization might be possible. |
682 | | * |
683 | | * If all data is 0xFFFF.FFFF or 0x0000.0000 function returns 31 |
684 | | * Note: You can skip data normalization only if return value is 0 |
685 | | * |
686 | | */ |
687 | | #define FUNCTION_getScalefactor_DBL |
688 | | SCALE_INLINE |
689 | | INT getScalefactor(const FIXP_DBL *vector, /*!< Pointer to input vector */ |
690 | | INT len) /*!< Length of input vector */ |
691 | 63.7M | { |
692 | 63.7M | INT i; |
693 | 63.7M | FIXP_DBL temp, maxVal = (FIXP_DBL)0; |
694 | | |
695 | 2.44G | for (i = len; i != 0; i--) { |
696 | 2.37G | temp = (LONG)(*vector++); |
697 | 2.37G | maxVal |= (FIXP_DBL)((LONG)temp ^ (LONG)(temp >> (DFRACT_BITS - 1))); |
698 | 2.37G | } |
699 | | |
700 | 63.7M | return fixmax_I((INT)0, (INT)(fixnormz_D(maxVal) - 1)); |
701 | 63.7M | } |
702 | | #endif |
703 | | |
704 | | #ifndef FUNCTION_getScalefactor_SGL |
705 | | #define FUNCTION_getScalefactor_SGL |
706 | | SCALE_INLINE |
707 | | INT getScalefactor(const FIXP_SGL *vector, /*!< Pointer to input vector */ |
708 | | INT len) /*!< Length of input vector */ |
709 | 0 | { |
710 | 0 | INT i; |
711 | 0 | SHORT temp, maxVal = (FIXP_SGL)0; |
712 | |
|
713 | 0 | for (i = len; i != 0; i--) { |
714 | 0 | temp = (SHORT)(*vector++); |
715 | 0 | maxVal |= (temp ^ (temp >> (FRACT_BITS - 1))); |
716 | 0 | } |
717 | |
|
718 | 0 | return fixmax_I((INT)0, (INT)(fixnormz_S((FIXP_SGL)maxVal)) - 1); |
719 | 0 | } |
720 | | #endif |