Coverage Report

Created: 2025-07-12 07:06

/src/aac/libSBRdec/src/env_dec.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** SBR decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  envelope decoding
106
  This module provides envelope decoding and error concealment algorithms. The
107
  main entry point is decodeSbrData().
108
109
  \sa decodeSbrData(),\ref documentationOverview
110
*/
111
112
#include "env_dec.h"
113
114
#include "env_extr.h"
115
#include "transcendent.h"
116
117
#include "genericStds.h"
118
119
static void decodeEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
120
                           HANDLE_SBR_FRAME_DATA h_sbr_data,
121
                           HANDLE_SBR_PREV_FRAME_DATA h_prev_data,
122
                           HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel);
123
static void sbr_envelope_unmapping(HANDLE_SBR_HEADER_DATA hHeaderData,
124
                                   HANDLE_SBR_FRAME_DATA h_data_left,
125
                                   HANDLE_SBR_FRAME_DATA h_data_right);
126
static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
127
                                   int ampResolution);
128
static void deltaToLinearPcmEnvelopeDecoding(
129
    HANDLE_SBR_HEADER_DATA hHeaderData, HANDLE_SBR_FRAME_DATA h_sbr_data,
130
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
131
static void decodeNoiseFloorlevels(HANDLE_SBR_HEADER_DATA hHeaderData,
132
                                   HANDLE_SBR_FRAME_DATA h_sbr_data,
133
                                   HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
134
static void timeCompensateFirstEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
135
                                        HANDLE_SBR_FRAME_DATA h_sbr_data,
136
                                        HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
137
static int checkEnvelopeData(HANDLE_SBR_HEADER_DATA hHeaderData,
138
                             HANDLE_SBR_FRAME_DATA h_sbr_data,
139
                             HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
140
141
39.4k
#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT)
142
125k
#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT)
143
144
93.3k
#define DECAY (1 << ENV_EXP_FRACT)
145
146
#if ENV_EXP_FRACT
147
#define DECAY_COUPLING \
148
  (1 << (ENV_EXP_FRACT - 1)) /*!< corresponds to a value of 0.5 */
149
#else
150
#define DECAY_COUPLING \
151
19.7k
  1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */
152
#endif
153
154
/*!
155
  \brief  Convert table index
156
*/
157
static int indexLow2High(int offset, /*!< mapping factor */
158
                         int index,  /*!< index to scalefactor band */
159
                         int res)    /*!< frequency resolution */
160
1.63M
{
161
1.63M
  if (res == 0) {
162
75.2k
    if (offset >= 0) {
163
75.2k
      if (index < offset)
164
9.03k
        return (index);
165
66.2k
      else
166
66.2k
        return (2 * index - offset);
167
75.2k
    } else {
168
0
      offset = -offset;
169
0
      if (index < offset)
170
0
        return (2 * index + index);
171
0
      else
172
0
        return (2 * index + offset);
173
0
    }
174
75.2k
  } else
175
1.55M
    return (index);
176
1.63M
}
177
178
/*!
179
  \brief  Update previous envelope value for delta-coding
180
181
  The current envelope values needs to be stored for delta-coding
182
  in the next frame.  The stored envelope is always represented with
183
  the high frequency resolution.  If the current envelope uses the
184
  low frequency resolution, the energy value will be mapped to the
185
  corresponding high-res bands.
186
*/
187
static void mapLowResEnergyVal(
188
    FIXP_SGL currVal,   /*!< current energy value */
189
    FIXP_SGL *prevData, /*!< pointer to previous data vector */
190
    int offset,         /*!< mapping factor */
191
    int index,          /*!< index to scalefactor band */
192
    int res)            /*!< frequeny resolution */
193
2.76M
{
194
2.76M
  if (res == 0) {
195
761k
    if (offset >= 0) {
196
761k
      if (index < offset)
197
49.9k
        prevData[index] = currVal;
198
711k
      else {
199
711k
        prevData[2 * index - offset] = currVal;
200
711k
        prevData[2 * index + 1 - offset] = currVal;
201
711k
      }
202
761k
    } else {
203
0
      offset = -offset;
204
0
      if (index < offset) {
205
0
        prevData[3 * index] = currVal;
206
0
        prevData[3 * index + 1] = currVal;
207
0
        prevData[3 * index + 2] = currVal;
208
0
      } else {
209
0
        prevData[2 * index + offset] = currVal;
210
0
        prevData[2 * index + 1 + offset] = currVal;
211
0
      }
212
0
    }
213
761k
  } else
214
2.00M
    prevData[index] = currVal;
215
2.76M
}
216
217
/*!
218
  \brief    Convert raw envelope and noisefloor data to energy levels
219
220
  This function is being called by sbrDecoder_ParseElement() and provides two
221
  important algorithms:
222
223
  First the function decodes envelopes and noise floor levels as described in
224
  requantizeEnvelopeData() and sbr_envelope_unmapping(). The function also
225
  implements concealment algorithms in case there are errors within the sbr
226
  data. For both operations fractional arithmetic is used. Therefore you might
227
  encounter different output values on your target system compared to the
228
  reference implementation.
229
*/
230
void decodeSbrData(
231
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
232
    HANDLE_SBR_FRAME_DATA
233
        h_data_left, /*!< pointer to left channel frame data */
234
    HANDLE_SBR_PREV_FRAME_DATA
235
        h_prev_data_left, /*!< pointer to left channel previous frame data */
236
    HANDLE_SBR_FRAME_DATA
237
        h_data_right, /*!< pointer to right channel frame data */
238
    HANDLE_SBR_PREV_FRAME_DATA
239
        h_prev_data_right) /*!< pointer to right channel previous frame data */
240
246k
{
241
246k
  FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
242
246k
  int errLeft;
243
244
  /* Save previous energy values to be able to reuse them later for concealment.
245
   */
246
246k
  FDKmemcpy(tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev,
247
246k
            MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
248
249
246k
  if (hHeaderData->frameErrorFlag || hHeaderData->bs_info.pvc_mode == 0) {
250
123k
    decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
251
123k
                   h_prev_data_right);
252
123k
  } else {
253
122k
    FDK_ASSERT(h_data_right == NULL);
254
122k
  }
255
246k
  decodeNoiseFloorlevels(hHeaderData, h_data_left, h_prev_data_left);
256
257
246k
  if (h_data_right != NULL) {
258
82.4k
    errLeft = hHeaderData->frameErrorFlag;
259
82.4k
    decodeEnvelope(hHeaderData, h_data_right, h_prev_data_right,
260
82.4k
                   h_prev_data_left);
261
82.4k
    decodeNoiseFloorlevels(hHeaderData, h_data_right, h_prev_data_right);
262
263
82.4k
    if (!errLeft && hHeaderData->frameErrorFlag) {
264
      /* If an error occurs in the right channel where the left channel seemed
265
         ok, we apply concealment also on the left channel. This ensures that
266
         the coupling modes of both channels match and that we have the same
267
         number of envelopes in coupling mode. However, as the left channel has
268
         already been processed before, the resulting energy levels are not the
269
         same as if the left channel had been concealed during the first call of
270
         decodeEnvelope().
271
      */
272
      /* Restore previous energy values for concealment, because the values have
273
         been overwritten by the first call of decodeEnvelope(). */
274
6.79k
      FDKmemcpy(h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev,
275
6.79k
                MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
276
      /* Do concealment */
277
6.79k
      decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
278
6.79k
                     h_prev_data_right);
279
6.79k
    }
280
281
82.4k
    if (h_data_left->coupling) {
282
33.1k
      sbr_envelope_unmapping(hHeaderData, h_data_left, h_data_right);
283
33.1k
    }
284
82.4k
  }
285
286
  /* Display the data for debugging: */
287
246k
}
288
289
/*!
290
  \brief   Convert from coupled channels to independent L/R data
291
*/
292
static void sbr_envelope_unmapping(
293
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
294
    HANDLE_SBR_FRAME_DATA h_data_left,  /*!< pointer to left channel */
295
    HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */
296
33.1k
{
297
33.1k
  int i;
298
33.1k
  FIXP_SGL tempL_m, tempR_m, tempRplus1_m, newL_m, newR_m;
299
33.1k
  SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e;
300
301
  /* 1. Unmap (already dequantized) coupled envelope energies */
302
303
425k
  for (i = 0; i < h_data_left->nScaleFactors; i++) {
304
392k
    tempR_m = (FIXP_SGL)((LONG)h_data_right->iEnvelope[i] & MASK_M);
305
392k
    tempR_e = (SCHAR)((LONG)h_data_right->iEnvelope[i] & MASK_E);
306
307
392k
    tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE /
308
                                         h_data_right->nChannels) */
309
392k
    tempL_m = (FIXP_SGL)((LONG)h_data_left->iEnvelope[i] & MASK_M);
310
392k
    tempL_e = (SCHAR)((LONG)h_data_left->iEnvelope[i] & MASK_E);
311
312
392k
    tempL_e -= NRG_EXP_OFFSET;
313
314
    /* Calculate tempRight+1 */
315
392k
    FDK_add_MantExp(tempR_m, tempR_e, FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
316
392k
                    &tempRplus1_m, &tempRplus1_e);
317
318
392k
    FDK_divide_MantExp(tempL_m, tempL_e + 1, /*  2 * tempLeft */
319
392k
                       tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
320
321
392k
    if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
322
435
      newR_m >>= 1;
323
435
      newR_e += 1;
324
435
    }
325
326
392k
    newL_m = FX_DBL2FX_SGL(fMult(tempR_m, newR_m));
327
392k
    newL_e = tempR_e + newR_e;
328
329
392k
    h_data_right->iEnvelope[i] =
330
392k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
331
392k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E);
332
392k
    h_data_left->iEnvelope[i] =
333
392k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
334
392k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E);
335
392k
  }
336
337
  /* 2. Dequantize and unmap coupled noise floor levels */
338
339
136k
  for (i = 0; i < hHeaderData->freqBandData.nNfb *
340
136k
                      h_data_left->frameInfo.nNoiseEnvelopes;
341
103k
       i++) {
342
103k
    tempL_e = (SCHAR)(6 - (LONG)h_data_left->sbrNoiseFloorLevel[i]);
343
103k
    tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] -
344
103k
                      12) /*SBR_ENERGY_PAN_OFFSET*/;
345
346
    /* Calculate tempR+1 */
347
103k
    FDK_add_MantExp(FL2FXCONST_SGL(0.5f), 1 + tempR_e, /* tempR */
348
103k
                    FL2FXCONST_SGL(0.5f), 1,           /*  1.0  */
349
103k
                    &tempRplus1_m, &tempRplus1_e);
350
351
    /* Calculate 2*tempLeft/(tempR+1) */
352
103k
    FDK_divide_MantExp(FL2FXCONST_SGL(0.5f), tempL_e + 2, /*  2 * tempLeft */
353
103k
                       tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
354
355
    /* if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
356
      newR_m >>= 1;
357
      newR_e += 1;
358
    } */
359
360
    /* L = tempR * R */
361
103k
    newL_m = newR_m;
362
103k
    newL_e = newR_e + tempR_e;
363
103k
    h_data_right->sbrNoiseFloorLevel[i] =
364
103k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
365
103k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E);
366
103k
    h_data_left->sbrNoiseFloorLevel[i] =
367
103k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
368
103k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E);
369
103k
  }
370
33.1k
}
371
372
/*!
373
  \brief    Simple alternative to the real SBR concealment
374
375
  If the real frameInfo is not available due to a frame loss, a replacement will
376
  be constructed with 1 envelope spanning the whole frame (FIX-FIX).
377
  The delta-coded energies are set to negative values, resulting in a fade-down.
378
  In case of coupling, the balance-channel will move towards the center.
379
*/
380
static void leanSbrConcealment(
381
    HANDLE_SBR_HEADER_DATA hHeaderData,    /*!< Static control data */
382
    HANDLE_SBR_FRAME_DATA h_sbr_data,      /*!< pointer to current data */
383
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
384
113k
) {
385
113k
  FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */
386
113k
  FIXP_SGL step;   /* speed of fade */
387
113k
  int i;
388
389
113k
  int currentStartPos =
390
113k
      fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
391
113k
  int currentStopPos = hHeaderData->numberTimeSlots;
392
393
  /* Use some settings of the previous frame */
394
113k
  h_sbr_data->ampResolutionCurrentFrame = h_prev_data->ampRes;
395
113k
  h_sbr_data->coupling = h_prev_data->coupling;
396
678k
  for (i = 0; i < MAX_INVF_BANDS; i++)
397
565k
    h_sbr_data->sbr_invf_mode[i] = h_prev_data->sbr_invf_mode[i];
398
399
  /* Generate concealing control data */
400
401
113k
  h_sbr_data->frameInfo.nEnvelopes = 1;
402
113k
  h_sbr_data->frameInfo.borders[0] = currentStartPos;
403
113k
  h_sbr_data->frameInfo.borders[1] = currentStopPos;
404
113k
  h_sbr_data->frameInfo.freqRes[0] = 1;
405
113k
  h_sbr_data->frameInfo.tranEnv = -1; /* no transient */
406
113k
  h_sbr_data->frameInfo.nNoiseEnvelopes = 1;
407
113k
  h_sbr_data->frameInfo.bordersNoise[0] = currentStartPos;
408
113k
  h_sbr_data->frameInfo.bordersNoise[1] = currentStopPos;
409
410
113k
  h_sbr_data->nScaleFactors = hHeaderData->freqBandData.nSfb[1];
411
412
  /* Generate fake envelope data */
413
414
113k
  h_sbr_data->domain_vec[0] = 1;
415
416
113k
  if (h_sbr_data->coupling == COUPLING_BAL) {
417
19.7k
    target = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
418
19.7k
    step = (FIXP_SGL)DECAY_COUPLING;
419
93.3k
  } else {
420
93.3k
    target = FL2FXCONST_SGL(0.0f);
421
93.3k
    step = (FIXP_SGL)DECAY;
422
93.3k
  }
423
113k
  if (hHeaderData->bs_info.ampResolution == 0) {
424
57.2k
    target <<= 1;
425
57.2k
    step <<= 1;
426
57.2k
  }
427
428
1.36M
  for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
429
1.25M
    if (h_prev_data->sfb_nrg_prev[i] > target)
430
642k
      h_sbr_data->iEnvelope[i] = -step;
431
610k
    else
432
610k
      h_sbr_data->iEnvelope[i] = step;
433
1.25M
  }
434
435
  /* Noisefloor levels are always cleared ... */
436
437
113k
  h_sbr_data->domain_vec_noise[0] = 1;
438
113k
  FDKmemclear(h_sbr_data->sbrNoiseFloorLevel,
439
113k
              sizeof(h_sbr_data->sbrNoiseFloorLevel));
440
441
  /* ... and so are the sines */
442
113k
  FDKmemclear(h_sbr_data->addHarmonics,
443
113k
              sizeof(ULONG) * ADD_HARMONICS_FLAGS_SIZE);
444
113k
}
445
446
/*!
447
  \brief   Build reference energies and noise levels from bitstream elements
448
*/
449
static void decodeEnvelope(
450
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
451
    HANDLE_SBR_FRAME_DATA h_sbr_data,   /*!< pointer to current data */
452
    HANDLE_SBR_PREV_FRAME_DATA
453
        h_prev_data, /*!< pointer to data of last frame */
454
    HANDLE_SBR_PREV_FRAME_DATA
455
        otherChannel /*!< other channel's last frame data */
456
238k
) {
457
238k
  int i;
458
238k
  int fFrameError = hHeaderData->frameErrorFlag;
459
238k
  FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
460
461
238k
  if (!fFrameError) {
462
    /*
463
      To avoid distortions after bad frames, set the error flag if delta coding
464
      in time occurs. However, SBR can take a little longer to come up again.
465
    */
466
146k
    if (h_prev_data->frameErrorFlag) {
467
68.7k
      if (h_sbr_data->domain_vec[0] != 0) {
468
7.49k
        fFrameError = 1;
469
7.49k
      }
470
77.6k
    } else {
471
      /* Check that the previous stop position and the current start position
472
         match. (Could be done in checkFrameInfo(), but the previous frame data
473
         is not available there) */
474
77.6k
      if (h_sbr_data->frameInfo.borders[0] !=
475
77.6k
          h_prev_data->stopPos - hHeaderData->numberTimeSlots) {
476
        /* Both the previous as well as the current frame are flagged to be ok,
477
         * but they do not match! */
478
13.2k
        if (h_sbr_data->domain_vec[0] == 1) {
479
          /* Prefer concealment over delta-time coding between the mismatching
480
           * frames */
481
64
          fFrameError = 1;
482
13.1k
        } else {
483
          /* Close the gap in time by triggering timeCompensateFirstEnvelope()
484
           */
485
13.1k
          fFrameError = 1;
486
13.1k
        }
487
13.2k
      }
488
77.6k
    }
489
146k
  }
490
491
238k
  if (fFrameError) /* Error is detected */
492
113k
  {
493
113k
    leanSbrConcealment(hHeaderData, h_sbr_data, h_prev_data);
494
495
    /* decode the envelope data to linear PCM */
496
113k
    deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
497
113k
  } else /*Do a temporary dummy decoding and check that the envelope values are
498
            within limits */
499
125k
  {
500
125k
    if (h_prev_data->frameErrorFlag) {
501
61.2k
      timeCompensateFirstEnvelope(hHeaderData, h_sbr_data, h_prev_data);
502
61.2k
      if (h_sbr_data->coupling != h_prev_data->coupling) {
503
        /*
504
          Coupling mode has changed during concealment.
505
           The stored energy levels need to be converted.
506
         */
507
157k
        for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
508
          /* Former Level-Channel will be used for both channels */
509
148k
          if (h_prev_data->coupling == COUPLING_BAL) {
510
8.26k
            h_prev_data->sfb_nrg_prev[i] =
511
8.26k
                (otherChannel != NULL) ? otherChannel->sfb_nrg_prev[i]
512
8.26k
                                       : (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
513
8.26k
          }
514
          /* Former L/R will be combined as the new Level-Channel */
515
139k
          else if (h_sbr_data->coupling == COUPLING_LEVEL &&
516
139k
                   otherChannel != NULL) {
517
17.8k
            h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] +
518
17.8k
                                            otherChannel->sfb_nrg_prev[i]) >>
519
17.8k
                                           1;
520
122k
          } else if (h_sbr_data->coupling == COUPLING_BAL) {
521
11.4k
            h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
522
11.4k
          }
523
148k
        }
524
9.19k
      }
525
61.2k
    }
526
125k
    FDKmemcpy(tempSfbNrgPrev, h_prev_data->sfb_nrg_prev,
527
125k
              MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
528
529
125k
    deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
530
531
125k
    fFrameError = checkEnvelopeData(hHeaderData, h_sbr_data, h_prev_data);
532
533
125k
    if (fFrameError) {
534
25.8k
      hHeaderData->frameErrorFlag = 1;
535
25.8k
      FDKmemcpy(h_prev_data->sfb_nrg_prev, tempSfbNrgPrev,
536
25.8k
                MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
537
25.8k
      decodeEnvelope(hHeaderData, h_sbr_data, h_prev_data, otherChannel);
538
25.8k
      return;
539
25.8k
    }
540
125k
  }
541
542
212k
  requantizeEnvelopeData(h_sbr_data, h_sbr_data->ampResolutionCurrentFrame);
543
544
212k
  hHeaderData->frameErrorFlag = fFrameError;
545
212k
}
546
547
/*!
548
  \brief   Verify that envelope energies are within the allowed range
549
  \return  0 if all is fine, 1 if an envelope value was too high
550
*/
551
static int checkEnvelopeData(
552
    HANDLE_SBR_HEADER_DATA hHeaderData,    /*!< Static control data */
553
    HANDLE_SBR_FRAME_DATA h_sbr_data,      /*!< pointer to current data */
554
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
555
125k
) {
556
125k
  FIXP_SGL *iEnvelope = h_sbr_data->iEnvelope;
557
125k
  FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
558
125k
  int i = 0, errorFlag = 0;
559
125k
  FIXP_SGL sbr_max_energy = (h_sbr_data->ampResolutionCurrentFrame == 1)
560
125k
                                ? SBR_MAX_ENERGY
561
125k
                                : (SBR_MAX_ENERGY << 1);
562
563
  /*
564
    Range check for current energies
565
  */
566
1.63M
  for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
567
1.51M
    if (iEnvelope[i] > sbr_max_energy) {
568
92.9k
      errorFlag = 1;
569
92.9k
    }
570
1.51M
    if (iEnvelope[i] < FL2FXCONST_SGL(0.0f)) {
571
86.5k
      errorFlag = 1;
572
      /* iEnvelope[i] = FL2FXCONST_SGL(0.0f); */
573
86.5k
    }
574
1.51M
  }
575
576
  /*
577
    Range check for previous energies
578
  */
579
1.62M
  for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
580
1.50M
    sfb_nrg_prev[i] = fixMax(sfb_nrg_prev[i], FL2FXCONST_SGL(0.0f));
581
1.50M
    sfb_nrg_prev[i] = fixMin(sfb_nrg_prev[i], sbr_max_energy);
582
1.50M
  }
583
584
125k
  return (errorFlag);
585
125k
}
586
587
/*!
588
  \brief   Verify that the noise levels are within the allowed range
589
590
  The function is equivalent to checkEnvelopeData().
591
  When the noise-levels are being decoded, it is already too late for
592
  concealment. Therefore the noise levels are simply limited here.
593
*/
594
static void limitNoiseLevels(
595
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
596
    HANDLE_SBR_FRAME_DATA h_sbr_data)   /*!< pointer to current data */
597
328k
{
598
328k
  int i;
599
328k
  int nNfb = hHeaderData->freqBandData.nNfb;
600
601
/*
602
  Set range limits. The exact values depend on the coupling mode.
603
  However this limitation is primarily intended to avoid unlimited
604
  accumulation of the delta-coded noise levels.
605
*/
606
328k
#define lowerLimit \
607
328k
  ((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */
608
328k
#define upperLimit \
609
328k
  ((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */
610
611
  /*
612
    Range check for current noise levels
613
  */
614
1.44M
  for (i = 0; i < h_sbr_data->frameInfo.nNoiseEnvelopes * nNfb; i++) {
615
1.11M
    h_sbr_data->sbrNoiseFloorLevel[i] =
616
1.11M
        fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit);
617
1.11M
    h_sbr_data->sbrNoiseFloorLevel[i] =
618
1.11M
        fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit);
619
1.11M
  }
620
328k
}
621
622
/*!
623
  \brief   Compensate for the wrong timing that might occur after a frame error.
624
*/
625
static void timeCompensateFirstEnvelope(
626
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
627
    HANDLE_SBR_FRAME_DATA h_sbr_data,   /*!< pointer to actual data */
628
    HANDLE_SBR_PREV_FRAME_DATA
629
        h_prev_data) /*!< pointer to data of last frame */
630
61.2k
{
631
61.2k
  int i, nScalefactors;
632
61.2k
  FRAME_INFO *pFrameInfo = &h_sbr_data->frameInfo;
633
61.2k
  UCHAR *nSfb = hHeaderData->freqBandData.nSfb;
634
61.2k
  int estimatedStartPos =
635
61.2k
      fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
636
61.2k
  int refLen, newLen, shift;
637
61.2k
  FIXP_SGL deltaExp;
638
639
  /* Original length of first envelope according to bitstream */
640
61.2k
  refLen = pFrameInfo->borders[1] - pFrameInfo->borders[0];
641
  /* Corrected length of first envelope (concealing can make the first envelope
642
   * longer) */
643
61.2k
  newLen = pFrameInfo->borders[1] - estimatedStartPos;
644
645
61.2k
  if (newLen <= 0) {
646
    /* An envelope length of <= 0 would not work, so we don't use it.
647
       May occur if the previous frame was flagged bad due to a mismatch
648
       of the old and new frame infos. */
649
23
    newLen = refLen;
650
23
    estimatedStartPos = pFrameInfo->borders[0];
651
23
  }
652
653
61.2k
  deltaExp = FDK_getNumOctavesDiv8(newLen, refLen);
654
655
  /* Shift by -3 to rescale ld-table, ampRes-1 to enable coarser steps */
656
61.2k
  shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 +
657
61.2k
           h_sbr_data->ampResolutionCurrentFrame - 3);
658
61.2k
  deltaExp = deltaExp >> shift;
659
61.2k
  pFrameInfo->borders[0] = estimatedStartPos;
660
61.2k
  pFrameInfo->bordersNoise[0] = estimatedStartPos;
661
662
61.2k
  if (h_sbr_data->coupling != COUPLING_BAL) {
663
49.0k
    nScalefactors = (pFrameInfo->freqRes[0]) ? nSfb[1] : nSfb[0];
664
665
425k
    for (i = 0; i < nScalefactors; i++)
666
376k
      h_sbr_data->iEnvelope[i] = h_sbr_data->iEnvelope[i] + deltaExp;
667
49.0k
  }
668
61.2k
}
669
670
/*!
671
  \brief   Convert each envelope value from logarithmic to linear domain
672
673
  Energy levels are transmitted in powers of 2, i.e. only the exponent
674
  is extracted from the bitstream.
675
  Therefore, normally only integer exponents can occur. However during
676
  fading (in case of a corrupt bitstream), a fractional part can also
677
  occur. The data in the array iEnvelope is shifted left by ENV_EXP_FRACT
678
  compared to an integer representation so that numbers smaller than 1
679
  can be represented.
680
681
  This function calculates a mantissa corresponding to the fractional
682
  part of the exponent for each reference energy. The array iEnvelope
683
  is converted in place to save memory. Input and output data must
684
  be interpreted differently, as shown in the below figure:
685
686
  \image html  EnvelopeData.png
687
688
  The data is then used in calculateSbrEnvelope().
689
*/
690
static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
691
212k
                                   int ampResolution) {
692
212k
  int i;
693
212k
  FIXP_SGL mantissa;
694
212k
  int ampShift = 1 - ampResolution;
695
212k
  int exponent;
696
697
  /* In case that ENV_EXP_FRACT is changed to something else but 0 or 8,
698
     the initialization of this array has to be adapted!
699
  */
700
#if ENV_EXP_FRACT
701
  static const FIXP_SGL pow2[ENV_EXP_FRACT] = {
702
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */
703
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */
704
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))),
705
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))),
706
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))),
707
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))),
708
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))),
709
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */
710
  };
711
712
  int bit, mask;
713
#endif
714
715
2.60M
  for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
716
2.39M
    exponent = (LONG)h_sbr_data->iEnvelope[i];
717
718
#if ENV_EXP_FRACT
719
720
    exponent = exponent >> ampShift;
721
    mantissa = 0.5f;
722
723
    /* Amplify mantissa according to the fractional part of the
724
       exponent (result will be between 0.500000 and 0.999999)
725
    */
726
    mask = 1; /* begin with lowest bit of exponent */
727
728
    for (bit = ENV_EXP_FRACT - 1; bit >= 0; bit--) {
729
      if (exponent & mask) {
730
        /* The current bit of the exponent is set,
731
           multiply mantissa with the corresponding factor: */
732
        mantissa = (FIXP_SGL)((mantissa * pow2[bit]) << 1);
733
      }
734
      /* Advance to next bit */
735
      mask = mask << 1;
736
    }
737
738
    /* Make integer part of exponent right aligned */
739
    exponent = exponent >> ENV_EXP_FRACT;
740
741
#else
742
    /* In case of the high amplitude resolution, 1 bit of the exponent gets lost
743
       by the shift. This will be compensated by a mantissa of 0.5*sqrt(2)
744
       instead of 0.5 if that bit is 1. */
745
2.39M
    mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f)
746
2.39M
                                     : FL2FXCONST_SGL(0.5f);
747
2.39M
    exponent = exponent >> ampShift;
748
2.39M
#endif
749
750
    /*
751
      Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by
752
      1). Multiply by L=nChannels=64 by increasing exponent by another 6.
753
      => Increase exponent by 7
754
    */
755
2.39M
    exponent += 7 + NRG_EXP_OFFSET;
756
757
    /* Combine mantissa and exponent and write back the result */
758
2.39M
    h_sbr_data->iEnvelope[i] =
759
2.39M
        ((FIXP_SGL)((SHORT)(FIXP_SGL)mantissa & MASK_M)) +
760
2.39M
        (FIXP_SGL)((SHORT)(FIXP_SGL)exponent & MASK_E);
761
2.39M
  }
762
212k
}
763
764
/*!
765
  \brief   Build new reference energies from old ones and delta coded data
766
*/
767
static void deltaToLinearPcmEnvelopeDecoding(
768
    HANDLE_SBR_HEADER_DATA hHeaderData,     /*!< Static control data */
769
    HANDLE_SBR_FRAME_DATA h_sbr_data,       /*!< pointer to current data */
770
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
771
238k
{
772
238k
  int i, domain, no_of_bands, band, freqRes;
773
774
238k
  FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
775
238k
  FIXP_SGL *ptr_nrg = h_sbr_data->iEnvelope;
776
777
238k
  int offset =
778
238k
      2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1];
779
780
547k
  for (i = 0; i < h_sbr_data->frameInfo.nEnvelopes; i++) {
781
308k
    domain = h_sbr_data->domain_vec[i];
782
308k
    freqRes = h_sbr_data->frameInfo.freqRes[i];
783
784
308k
    FDK_ASSERT(freqRes >= 0 && freqRes <= 1);
785
786
308k
    no_of_bands = hHeaderData->freqBandData.nSfb[freqRes];
787
788
308k
    FDK_ASSERT(no_of_bands < (64));
789
790
308k
    if (domain == 0) {
791
158k
      mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, 0, freqRes);
792
158k
      ptr_nrg++;
793
1.13M
      for (band = 1; band < no_of_bands; band++) {
794
978k
        *ptr_nrg = *ptr_nrg + *(ptr_nrg - 1);
795
978k
        mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
796
978k
        ptr_nrg++;
797
978k
      }
798
158k
    } else {
799
1.78M
      for (band = 0; band < no_of_bands; band++) {
800
1.63M
        *ptr_nrg =
801
1.63M
            *ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)];
802
1.63M
        mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
803
1.63M
        ptr_nrg++;
804
1.63M
      }
805
150k
    }
806
308k
  }
807
238k
}
808
809
/*!
810
  \brief   Build new noise levels from old ones and delta coded data
811
*/
812
static void decodeNoiseFloorlevels(
813
    HANDLE_SBR_HEADER_DATA hHeaderData,     /*!< Static control data */
814
    HANDLE_SBR_FRAME_DATA h_sbr_data,       /*!< pointer to current data */
815
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
816
328k
{
817
328k
  int i;
818
328k
  int nNfb = hHeaderData->freqBandData.nNfb;
819
328k
  int nNoiseFloorEnvelopes = h_sbr_data->frameInfo.nNoiseEnvelopes;
820
821
  /* Decode first noise envelope */
822
823
328k
  if (h_sbr_data->domain_vec_noise[0] == 0) {
824
217k
    FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[0];
825
534k
    for (i = 1; i < nNfb; i++) {
826
317k
      noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
827
317k
      h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
828
317k
    }
829
217k
  } else {
830
339k
    for (i = 0; i < nNfb; i++) {
831
228k
      h_sbr_data->sbrNoiseFloorLevel[i] += h_prev_data->prevNoiseLevel[i];
832
228k
    }
833
111k
  }
834
835
  /* If present, decode the second noise envelope
836
     Note:  nNoiseFloorEnvelopes can only be 1 or 2 */
837
838
328k
  if (nNoiseFloorEnvelopes > 1) {
839
148k
    if (h_sbr_data->domain_vec_noise[1] == 0) {
840
42.7k
      FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[nNfb];
841
139k
      for (i = nNfb + 1; i < 2 * nNfb; i++) {
842
96.2k
        noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
843
96.2k
        h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
844
96.2k
      }
845
105k
    } else {
846
318k
      for (i = 0; i < nNfb; i++) {
847
212k
        h_sbr_data->sbrNoiseFloorLevel[i + nNfb] +=
848
212k
            h_sbr_data->sbrNoiseFloorLevel[i];
849
212k
      }
850
105k
    }
851
148k
  }
852
853
328k
  limitNoiseLevels(hHeaderData, h_sbr_data);
854
855
  /* Update prevNoiseLevel with the last noise envelope */
856
1.09M
  for (i = 0; i < nNfb; i++)
857
763k
    h_prev_data->prevNoiseLevel[i] =
858
763k
        h_sbr_data->sbrNoiseFloorLevel[i + nNfb * (nNoiseFloorEnvelopes - 1)];
859
860
  /* Requantize the noise floor levels in COUPLING_OFF-mode */
861
328k
  if (!h_sbr_data->coupling) {
862
261k
    int nf_e;
863
864
1.16M
    for (i = 0; i < nNoiseFloorEnvelopes * nNfb; i++) {
865
903k
      nf_e = 6 - (LONG)h_sbr_data->sbrNoiseFloorLevel[i] + 1 + NOISE_EXP_OFFSET;
866
      /* +1 to compensate for a mantissa of 0.5 instead of 1.0 */
867
868
903k
      h_sbr_data->sbrNoiseFloorLevel[i] =
869
903k
          (FIXP_SGL)(((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */
870
903k
                     (nf_e & MASK_E));              /* exponent */
871
903k
    }
872
261k
  }
873
328k
}