Coverage Report

Created: 2025-07-18 06:08

/src/aac/libAACdec/src/rvlcconceal.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  rvlc concealment
106
  \author Josef Hoepfl
107
*/
108
109
#include "rvlcconceal.h"
110
111
#include "block.h"
112
#include "rvlc.h"
113
114
/*---------------------------------------------------------------------------------------------
115
  function:      calcRefValFwd
116
117
  description:   The function determines the scalefactor which is closed to the
118
scalefactorband conceal_min. The same is done for intensity data and noise
119
energies.
120
-----------------------------------------------------------------------------------------------
121
  output:        - reference value scf
122
                 - reference value internsity data
123
                 - reference value noise energy
124
-----------------------------------------------------------------------------------------------
125
  return:        -
126
--------------------------------------------------------------------------------------------
127
*/
128
129
static void calcRefValFwd(CErRvlcInfo *pRvlc,
130
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
131
53.1k
                          int *refIsFwd, int *refNrgFwd, int *refScfFwd) {
132
53.1k
  int band, bnds, group, startBand;
133
53.1k
  int idIs, idNrg, idScf;
134
53.1k
  int conceal_min, conceal_group_min;
135
53.1k
  int MaximumScaleFactorBands;
136
137
53.1k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
138
1.17k
    MaximumScaleFactorBands = 16;
139
51.9k
  else
140
51.9k
    MaximumScaleFactorBands = 64;
141
142
53.1k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
143
53.1k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
144
145
  /* calculate first reference value for approach in forward direction */
146
53.1k
  idIs = idNrg = idScf = 1;
147
148
  /* set reference values */
149
53.1k
  *refIsFwd = -SF_OFFSET;
150
53.1k
  *refNrgFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain -
151
53.1k
               SF_OFFSET - 90 - 256;
152
53.1k
  *refScfFwd =
153
53.1k
      pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET;
154
155
53.1k
  startBand = conceal_min - 1;
156
107k
  for (group = conceal_group_min; group >= 0; group--) {
157
73.3k
    for (band = startBand; band >= 0; band--) {
158
19.1k
      bnds = 16 * group + band;
159
19.1k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
160
2.49k
        case ZERO_HCB:
161
2.49k
          break;
162
1.15k
        case INTENSITY_HCB:
163
1.70k
        case INTENSITY_HCB2:
164
1.70k
          if (idIs) {
165
627
            *refIsFwd =
166
627
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
167
627
            idIs = 0; /* reference value has been set */
168
627
          }
169
1.70k
          break;
170
1.51k
        case NOISE_HCB:
171
1.51k
          if (idNrg) {
172
660
            *refNrgFwd =
173
660
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
174
660
            idNrg = 0; /* reference value has been set */
175
660
          }
176
1.51k
          break;
177
13.4k
        default:
178
13.4k
          if (idScf) {
179
11.4k
            *refScfFwd =
180
11.4k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
181
11.4k
            idScf = 0; /* reference value has been set */
182
11.4k
          }
183
13.4k
          break;
184
19.1k
      }
185
19.1k
    }
186
54.2k
    startBand = pRvlc->maxSfbTransmitted - 1;
187
54.2k
  }
188
53.1k
}
189
190
/*---------------------------------------------------------------------------------------------
191
  function:      calcRefValBwd
192
193
  description:   The function determines the scalefactor which is closed to the
194
scalefactorband conceal_max. The same is done for intensity data and noise
195
energies.
196
-----------------------------------------------------------------------------------------------
197
  output:        - reference value scf
198
                 - reference value internsity data
199
                 - reference value noise energy
200
-----------------------------------------------------------------------------------------------
201
  return:        -
202
--------------------------------------------------------------------------------------------
203
*/
204
205
static void calcRefValBwd(CErRvlcInfo *pRvlc,
206
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
207
53.1k
                          int *refIsBwd, int *refNrgBwd, int *refScfBwd) {
208
53.1k
  int band, bnds, group, startBand;
209
53.1k
  int idIs, idNrg, idScf;
210
53.1k
  int conceal_max, conceal_group_max;
211
53.1k
  int MaximumScaleFactorBands;
212
213
53.1k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
214
1.17k
    MaximumScaleFactorBands = 16;
215
51.9k
  else
216
51.9k
    MaximumScaleFactorBands = 64;
217
218
53.1k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
219
53.1k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
220
221
  /* calculate first reference value for approach in backward direction */
222
53.1k
  idIs = idNrg = idScf = 1;
223
224
  /* set reference values */
225
53.1k
  *refIsBwd = pRvlc->dpcm_is_last_position - SF_OFFSET;
226
53.1k
  *refNrgBwd = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position -
227
53.1k
               SF_OFFSET - 90 - 256 + pRvlc->dpcm_noise_nrg;
228
53.1k
  *refScfBwd = pRvlc->rev_global_gain - SF_OFFSET;
229
230
53.1k
  startBand = conceal_max + 1;
231
232
  /* if needed, re-set reference values */
233
109k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
234
98.5k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
235
42.1k
      bnds = 16 * group + band;
236
42.1k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
237
8.46k
        case ZERO_HCB:
238
8.46k
          break;
239
926
        case INTENSITY_HCB:
240
2.91k
        case INTENSITY_HCB2:
241
2.91k
          if (idIs) {
242
791
            *refIsBwd =
243
791
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
244
791
            idIs = 0; /* reference value has been set */
245
791
          }
246
2.91k
          break;
247
825
        case NOISE_HCB:
248
825
          if (idNrg) {
249
193
            *refNrgBwd =
250
193
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
251
193
            idNrg = 0; /* reference value has been set */
252
193
          }
253
825
          break;
254
29.9k
        default:
255
29.9k
          if (idScf) {
256
12.9k
            *refScfBwd =
257
12.9k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
258
12.9k
            idScf = 0; /* reference value has been set */
259
12.9k
          }
260
29.9k
          break;
261
42.1k
      }
262
42.1k
    }
263
56.3k
    startBand = 0;
264
56.3k
  }
265
53.1k
}
266
267
/*---------------------------------------------------------------------------------------------
268
  function:      BidirectionalEstimation_UseLowerScfOfCurrentFrame
269
270
  description:   This approach by means of bidirectional estimation is generally
271
performed when a single bit error has been detected, the bit error can be
272
isolated between 'conceal_min' and 'conceal_max' and the 'sf_concealment' flag
273
is not set. The sets of scalefactors decoded in forward and backward direction
274
are compared with each other. The smaller scalefactor will be considered as the
275
correct one respectively. The reconstruction of the scalefactors with this
276
approach archieve good results in audio quality. The strategy must be applied to
277
scalefactors, intensity data and noise energy seperately.
278
-----------------------------------------------------------------------------------------------
279
  output:        Concealed scalefactor, noise energy and intensity data between
280
conceal_min and conceal_max
281
-----------------------------------------------------------------------------------------------
282
  return:        -
283
--------------------------------------------------------------------------------------------
284
*/
285
286
void BidirectionalEstimation_UseLowerScfOfCurrentFrame(
287
62.6k
    CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
288
62.6k
  CErRvlcInfo *pRvlc =
289
62.6k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
290
62.6k
  int band, bnds, startBand, endBand, group;
291
62.6k
  int conceal_min, conceal_max;
292
62.6k
  int conceal_group_min, conceal_group_max;
293
62.6k
  int MaximumScaleFactorBands;
294
295
62.6k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
296
6.50k
    MaximumScaleFactorBands = 16;
297
56.1k
  } else {
298
56.1k
    MaximumScaleFactorBands = 64;
299
56.1k
  }
300
301
  /* If an error was detected just in forward or backward direction, set the
302
     corresponding border for concealment to a appropriate scalefactor band. The
303
     border is set to first or last sfb respectively, because the error will
304
     possibly not follow directly after the corrupt bit but just after decoding
305
     some more (wrong) scalefactors. */
306
62.6k
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
307
308
62.6k
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
309
4.78k
    pRvlc->conceal_max =
310
4.78k
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
311
312
62.6k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
313
62.6k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
314
62.6k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
315
62.6k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
316
317
62.6k
  if (pRvlc->conceal_min == pRvlc->conceal_max) {
318
53.1k
    int refIsFwd, refNrgFwd, refScfFwd;
319
53.1k
    int refIsBwd, refNrgBwd, refScfBwd;
320
321
53.1k
    bnds = pRvlc->conceal_min;
322
53.1k
    calcRefValFwd(pRvlc, pAacDecoderChannelInfo, &refIsFwd, &refNrgFwd,
323
53.1k
                  &refScfFwd);
324
53.1k
    calcRefValBwd(pRvlc, pAacDecoderChannelInfo, &refIsBwd, &refNrgBwd,
325
53.1k
                  &refScfBwd);
326
327
53.1k
    switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
328
35.9k
      case ZERO_HCB:
329
35.9k
        break;
330
483
      case INTENSITY_HCB:
331
686
      case INTENSITY_HCB2:
332
686
        if (refIsFwd < refIsBwd)
333
133
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsFwd;
334
553
        else
335
553
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsBwd;
336
686
        break;
337
756
      case NOISE_HCB:
338
756
        if (refNrgFwd < refNrgBwd)
339
243
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgFwd;
340
513
        else
341
513
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgBwd;
342
756
        break;
343
15.8k
      default:
344
15.8k
        if (refScfFwd < refScfBwd)
345
14.0k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfFwd;
346
1.71k
        else
347
1.71k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfBwd;
348
15.8k
        break;
349
53.1k
    }
350
53.1k
  } else {
351
9.51k
    pAacDecoderChannelInfo->pComData->overlay.aac
352
9.51k
        .aRvlcScfFwd[pRvlc->conceal_max] =
353
9.51k
        pAacDecoderChannelInfo->pComData->overlay.aac
354
9.51k
            .aRvlcScfBwd[pRvlc->conceal_max];
355
9.51k
    pAacDecoderChannelInfo->pComData->overlay.aac
356
9.51k
        .aRvlcScfBwd[pRvlc->conceal_min] =
357
9.51k
        pAacDecoderChannelInfo->pComData->overlay.aac
358
9.51k
            .aRvlcScfFwd[pRvlc->conceal_min];
359
360
    /* consider the smaller of the forward and backward decoded value as the
361
     * correct one */
362
9.51k
    startBand = conceal_min;
363
9.51k
    if (conceal_group_min == conceal_group_max)
364
6.04k
      endBand = conceal_max;
365
3.46k
    else
366
3.46k
      endBand = pRvlc->maxSfbTransmitted - 1;
367
368
24.7k
    for (group = conceal_group_min; group <= conceal_group_max; group++) {
369
64.2k
      for (band = startBand; band <= endBand; band++) {
370
49.0k
        bnds = 16 * group + band;
371
49.0k
        if (pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds] <
372
49.0k
            pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds])
373
19.7k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
374
19.7k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
375
29.2k
        else
376
29.2k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
377
29.2k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
378
49.0k
      }
379
15.2k
      startBand = 0;
380
15.2k
      if ((group + 1) == conceal_group_max) endBand = conceal_max;
381
15.2k
    }
382
9.51k
  }
383
384
  /* now copy all data to the output buffer which needs not to be concealed */
385
62.6k
  if (conceal_group_min == 0)
386
59.2k
    endBand = conceal_min;
387
3.45k
  else
388
3.45k
    endBand = pRvlc->maxSfbTransmitted;
389
137k
  for (group = 0; group <= conceal_group_min; group++) {
390
144k
    for (band = 0; band < endBand; band++) {
391
69.5k
      bnds = 16 * group + band;
392
69.5k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
393
69.5k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
394
69.5k
    }
395
75.0k
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
396
75.0k
  }
397
398
62.6k
  startBand = conceal_max + 1;
399
138k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
400
156k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
401
80.7k
      bnds = 16 * group + band;
402
80.7k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
403
80.7k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
404
80.7k
    }
405
75.4k
    startBand = 0;
406
75.4k
  }
407
62.6k
}
408
409
/*---------------------------------------------------------------------------------------------
410
  function:      BidirectionalEstimation_UseScfOfPrevFrameAsReference
411
412
  description:   This approach by means of bidirectional estimation is generally
413
performed when a single bit error has been detected, the bit error can be
414
isolated between 'conceal_min' and 'conceal_max', the 'sf_concealment' flag is
415
set and the previous frame has the same block type as the current frame. The
416
scalefactor decoded in forward and backward direction and the scalefactor of the
417
previous frame are compared with each other. The smaller scalefactor will be
418
considered as the correct one. At this the codebook of the previous and current
419
frame must be of the same set (scf, nrg, is) in each scalefactorband. Otherwise
420
the scalefactor of the previous frame is not considered in the minimum
421
calculation. The reconstruction of the scalefactors with this approach archieve
422
good results in audio quality. The strategy must be applied to scalefactors,
423
intensity data and noise energy seperately.
424
-----------------------------------------------------------------------------------------------
425
  output:        Concealed scalefactor, noise energy and intensity data between
426
conceal_min and conceal_max
427
-----------------------------------------------------------------------------------------------
428
  return:        -
429
--------------------------------------------------------------------------------------------
430
*/
431
432
void BidirectionalEstimation_UseScfOfPrevFrameAsReference(
433
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
434
37.9k
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
435
37.9k
  CErRvlcInfo *pRvlc =
436
37.9k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
437
37.9k
  int band, bnds, startBand, endBand, group;
438
37.9k
  int conceal_min, conceal_max;
439
37.9k
  int conceal_group_min, conceal_group_max;
440
37.9k
  int MaximumScaleFactorBands;
441
37.9k
  SHORT commonMin;
442
443
37.9k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
444
5.45k
    MaximumScaleFactorBands = 16;
445
32.4k
  } else {
446
32.4k
    MaximumScaleFactorBands = 64;
447
32.4k
  }
448
449
  /* If an error was detected just in forward or backward direction, set the
450
     corresponding border for concealment to a appropriate scalefactor band. The
451
     border is set to first or last sfb respectively, because the error will
452
     possibly not follow directly after the corrupt bit but just after decoding
453
     some more (wrong) scalefactors. */
454
37.9k
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
455
456
37.9k
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
457
4.34k
    pRvlc->conceal_max =
458
4.34k
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
459
460
37.9k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
461
37.9k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
462
37.9k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
463
37.9k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
464
465
37.9k
  pAacDecoderChannelInfo->pComData->overlay.aac
466
37.9k
      .aRvlcScfFwd[pRvlc->conceal_max] =
467
37.9k
      pAacDecoderChannelInfo->pComData->overlay.aac
468
37.9k
          .aRvlcScfBwd[pRvlc->conceal_max];
469
37.9k
  pAacDecoderChannelInfo->pComData->overlay.aac
470
37.9k
      .aRvlcScfBwd[pRvlc->conceal_min] =
471
37.9k
      pAacDecoderChannelInfo->pComData->overlay.aac
472
37.9k
          .aRvlcScfFwd[pRvlc->conceal_min];
473
474
  /* consider the smaller of the forward and backward decoded value as the
475
   * correct one */
476
37.9k
  startBand = conceal_min;
477
37.9k
  if (conceal_group_min == conceal_group_max)
478
33.3k
    endBand = conceal_max;
479
4.58k
  else
480
4.58k
    endBand = pRvlc->maxSfbTransmitted - 1;
481
482
84.2k
  for (group = conceal_group_min; group <= conceal_group_max; group++) {
483
139k
    for (band = startBand; band <= endBand; band++) {
484
93.1k
      bnds = 16 * group + band;
485
93.1k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
486
26.4k
        case ZERO_HCB:
487
26.4k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
488
26.4k
          break;
489
490
4.69k
        case INTENSITY_HCB:
491
22.7k
        case INTENSITY_HCB2:
492
22.7k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
493
22.7k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
494
22.7k
              (pAacDecoderStaticChannelInfo->concealmentInfo
495
22.6k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
496
16.8k
            commonMin = fMin(
497
16.8k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
498
16.8k
                pAacDecoderChannelInfo->pComData->overlay.aac
499
16.8k
                    .aRvlcScfBwd[bnds]);
500
16.8k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
501
16.8k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
502
16.8k
                                    .aRvlcPreviousScaleFactor[bnds]);
503
16.8k
          } else {
504
5.88k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
505
5.88k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
506
5.88k
                pAacDecoderChannelInfo->pComData->overlay.aac
507
5.88k
                    .aRvlcScfBwd[bnds]);
508
5.88k
          }
509
22.7k
          break;
510
511
4.22k
        case NOISE_HCB:
512
4.22k
          if (pAacDecoderStaticChannelInfo->concealmentInfo
513
4.22k
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
514
528
            commonMin = fMin(
515
528
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
516
528
                pAacDecoderChannelInfo->pComData->overlay.aac
517
528
                    .aRvlcScfBwd[bnds]);
518
528
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
519
528
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
520
528
                                    .aRvlcPreviousScaleFactor[bnds]);
521
3.70k
          } else {
522
3.70k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
523
3.70k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
524
3.70k
                pAacDecoderChannelInfo->pComData->overlay.aac
525
3.70k
                    .aRvlcScfBwd[bnds]);
526
3.70k
          }
527
4.22k
          break;
528
529
39.6k
        default:
530
39.6k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
531
39.6k
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
532
39.6k
              (pAacDecoderStaticChannelInfo->concealmentInfo
533
10.7k
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
534
39.6k
              (pAacDecoderStaticChannelInfo->concealmentInfo
535
10.4k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
536
39.6k
              (pAacDecoderStaticChannelInfo->concealmentInfo
537
10.3k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
538
10.2k
            commonMin = fMin(
539
10.2k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
540
10.2k
                pAacDecoderChannelInfo->pComData->overlay.aac
541
10.2k
                    .aRvlcScfBwd[bnds]);
542
10.2k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
543
10.2k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
544
10.2k
                                    .aRvlcPreviousScaleFactor[bnds]);
545
29.4k
          } else {
546
29.4k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
547
29.4k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
548
29.4k
                pAacDecoderChannelInfo->pComData->overlay.aac
549
29.4k
                    .aRvlcScfBwd[bnds]);
550
29.4k
          }
551
39.6k
          break;
552
93.1k
      }
553
93.1k
    }
554
46.3k
    startBand = 0;
555
46.3k
    if ((group + 1) == conceal_group_max) endBand = conceal_max;
556
46.3k
  }
557
558
  /* now copy all data to the output buffer which needs not to be concealed */
559
37.9k
  if (conceal_group_min == 0)
560
32.5k
    endBand = conceal_min;
561
5.41k
  else
562
5.41k
    endBand = pRvlc->maxSfbTransmitted;
563
89.2k
  for (group = 0; group <= conceal_group_min; group++) {
564
98.7k
    for (band = 0; band < endBand; band++) {
565
47.4k
      bnds = 16 * group + band;
566
47.4k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
567
47.4k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
568
47.4k
    }
569
51.3k
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
570
51.3k
  }
571
572
37.9k
  startBand = conceal_max + 1;
573
81.2k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
574
70.4k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
575
27.1k
      bnds = 16 * group + band;
576
27.1k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
577
27.1k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
578
27.1k
    }
579
43.2k
    startBand = 0;
580
43.2k
  }
581
37.9k
}
582
583
/*---------------------------------------------------------------------------------------------
584
  function:      StatisticalEstimation
585
586
  description:   This approach by means of statistical estimation is generally
587
performed when both the start value and the end value are different and no
588
further errors have been detected. Considering the forward and backward decoded
589
scalefactors, the set with the lower scalefactors in sum will be considered as
590
the correct one. The scalefactors are differentially encoded. Normally it would
591
reach to compare one pair of the forward and backward decoded scalefactors to
592
specify the lower set. But having detected no further errors does not
593
necessarily mean the absence of errors. Therefore all scalefactors decoded in
594
forward and backward direction are summed up seperately. The set with the lower
595
sum will be used. The strategy must be applied to scalefactors, intensity data
596
and noise energy seperately.
597
-----------------------------------------------------------------------------------------------
598
  output:        Concealed scalefactor, noise energy and intensity data
599
-----------------------------------------------------------------------------------------------
600
  return:        -
601
--------------------------------------------------------------------------------------------
602
*/
603
604
4.30k
void StatisticalEstimation(CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
605
4.30k
  CErRvlcInfo *pRvlc =
606
4.30k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
607
4.30k
  int band, bnds, group;
608
4.30k
  int sumIsFwd, sumIsBwd;   /* sum of intensity data forward/backward */
609
4.30k
  int sumNrgFwd, sumNrgBwd; /* sum of noise energy data forward/backward */
610
4.30k
  int sumScfFwd, sumScfBwd; /* sum of scalefactor data forward/backward */
611
4.30k
  int useIsFwd, useNrgFwd, useScfFwd; /* the flags signals the elements which
612
                                         are used for the final result */
613
614
4.30k
  sumIsFwd = sumIsBwd = sumNrgFwd = sumNrgBwd = sumScfFwd = sumScfBwd = 0;
615
4.30k
  useIsFwd = useNrgFwd = useScfFwd = 0;
616
617
  /* calculate sum of each group (scf,nrg,is) of forward and backward direction
618
   */
619
9.15k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
620
30.3k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
621
25.4k
      bnds = 16 * group + band;
622
25.4k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
623
10.5k
        case ZERO_HCB:
624
10.5k
          break;
625
626
364
        case INTENSITY_HCB:
627
1.31k
        case INTENSITY_HCB2:
628
1.31k
          sumIsFwd +=
629
1.31k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
630
1.31k
          sumIsBwd +=
631
1.31k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
632
1.31k
          break;
633
634
1.00k
        case NOISE_HCB:
635
1.00k
          sumNrgFwd +=
636
1.00k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
637
1.00k
          sumNrgBwd +=
638
1.00k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
639
1.00k
          break;
640
641
12.6k
        default:
642
12.6k
          sumScfFwd +=
643
12.6k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
644
12.6k
          sumScfBwd +=
645
12.6k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
646
12.6k
          break;
647
25.4k
      }
648
25.4k
    }
649
4.85k
  }
650
651
  /* find for each group (scf,nrg,is) the correct direction */
652
4.30k
  if (sumIsFwd < sumIsBwd) useIsFwd = 1;
653
654
4.30k
  if (sumNrgFwd < sumNrgBwd) useNrgFwd = 1;
655
656
4.30k
  if (sumScfFwd < sumScfBwd) useScfFwd = 1;
657
658
  /* conceal each group (scf,nrg,is) */
659
9.15k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
660
30.3k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
661
25.4k
      bnds = 16 * group + band;
662
25.4k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
663
10.5k
        case ZERO_HCB:
664
10.5k
          break;
665
666
364
        case INTENSITY_HCB:
667
1.31k
        case INTENSITY_HCB2:
668
1.31k
          if (useIsFwd)
669
386
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
670
386
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
671
931
          else
672
931
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
673
931
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
674
1.31k
          break;
675
676
1.00k
        case NOISE_HCB:
677
1.00k
          if (useNrgFwd)
678
279
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
679
279
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
680
726
          else
681
726
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
682
726
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
683
1.00k
          break;
684
685
12.6k
        default:
686
12.6k
          if (useScfFwd)
687
5.21k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
688
5.21k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
689
7.40k
          else
690
7.40k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
691
7.40k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
692
12.6k
          break;
693
25.4k
      }
694
25.4k
    }
695
4.85k
  }
696
4.30k
}
697
698
/*---------------------------------------------------------------------------------------------
699
  description:   Approach by means of predictive interpolation
700
                 This approach by means of predictive estimation is generally
701
performed when the error cannot be isolated between 'conceal_min' and
702
'conceal_max', the 'sf_concealment' flag is set and the previous frame has the
703
same block type as the current frame. Check for each scalefactorband if the same
704
type of data (scalefactor, internsity data, noise energies) is transmitted. If
705
so use the scalefactor (intensity data, noise energy) in the current frame.
706
Otherwise set the scalefactor (intensity data, noise energy) for this
707
scalefactorband to zero.
708
-----------------------------------------------------------------------------------------------
709
  output:        Concealed scalefactor, noise energy and intensity data
710
-----------------------------------------------------------------------------------------------
711
  return:        -
712
--------------------------------------------------------------------------------------------
713
*/
714
715
void PredictiveInterpolation(
716
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
717
7.97k
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
718
7.97k
  CErRvlcInfo *pRvlc =
719
7.97k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
720
7.97k
  int band, bnds, group;
721
7.97k
  SHORT commonMin;
722
723
16.1k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
724
36.5k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
725
28.3k
      bnds = 16 * group + band;
726
28.3k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
727
194
        case ZERO_HCB:
728
194
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
729
194
          break;
730
731
140
        case INTENSITY_HCB:
732
15.1k
        case INTENSITY_HCB2:
733
15.1k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
734
15.1k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
735
15.1k
              (pAacDecoderStaticChannelInfo->concealmentInfo
736
15.0k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
737
14.3k
            commonMin = fMin(
738
14.3k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
739
14.3k
                pAacDecoderChannelInfo->pComData->overlay.aac
740
14.3k
                    .aRvlcScfBwd[bnds]);
741
14.3k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
742
14.3k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
743
14.3k
                                    .aRvlcPreviousScaleFactor[bnds]);
744
14.3k
          } else {
745
776
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
746
776
          }
747
15.1k
          break;
748
749
1.05k
        case NOISE_HCB:
750
1.05k
          if (pAacDecoderStaticChannelInfo->concealmentInfo
751
1.05k
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
752
603
            commonMin = fMin(
753
603
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
754
603
                pAacDecoderChannelInfo->pComData->overlay.aac
755
603
                    .aRvlcScfBwd[bnds]);
756
603
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
757
603
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
758
603
                                    .aRvlcPreviousScaleFactor[bnds]);
759
603
          } else {
760
454
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
761
454
          }
762
1.05k
          break;
763
764
12.0k
        default:
765
12.0k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
766
12.0k
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
767
12.0k
              (pAacDecoderStaticChannelInfo->concealmentInfo
768
11.0k
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
769
12.0k
              (pAacDecoderStaticChannelInfo->concealmentInfo
770
10.8k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
771
12.0k
              (pAacDecoderStaticChannelInfo->concealmentInfo
772
10.8k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
773
10.7k
            commonMin = fMin(
774
10.7k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
775
10.7k
                pAacDecoderChannelInfo->pComData->overlay.aac
776
10.7k
                    .aRvlcScfBwd[bnds]);
777
10.7k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
778
10.7k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
779
10.7k
                                    .aRvlcPreviousScaleFactor[bnds]);
780
10.7k
          } else {
781
1.24k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
782
1.24k
          }
783
12.0k
          break;
784
28.3k
      }
785
28.3k
    }
786
8.12k
  }
787
7.97k
}