Coverage Report

Created: 2025-07-18 06:08

/src/aac/libSACenc/src/sacenc_dmx_tdom_enh.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/*********************** MPEG surround encoder library *************************
96
97
   Author(s):   M. Luis Valero
98
99
   Description: Enhanced Time Domain Downmix
100
101
*******************************************************************************/
102
103
/* Includes ******************************************************************/
104
#include "sacenc_dmx_tdom_enh.h"
105
106
#include "FDK_matrixCalloc.h"
107
#include "FDK_trigFcts.h"
108
#include "fixpoint_math.h"
109
110
/* Defines *******************************************************************/
111
#define PI_FLT 3.1415926535897931f
112
#define ALPHA_FLT 0.0001f
113
114
0
#define PI_E (2)
115
0
#define PI_M (FL2FXCONST_DBL(PI_FLT / (1 << PI_E)))
116
117
0
#define ALPHA_E (13)
118
0
#define ALPHA_M (FL2FXCONST_DBL(ALPHA_FLT * (1 << ALPHA_E)))
119
120
enum { L = 0, R = 1 };
121
122
/* Data Types ****************************************************************/
123
typedef struct T_ENHANCED_TIME_DOMAIN_DMX {
124
  int maxFramelength;
125
126
  int framelength;
127
128
  FIXP_DBL prev_gain_m[2];
129
  INT prev_gain_e;
130
  FIXP_DBL prev_H1_m[2];
131
  INT prev_H1_e;
132
133
  FIXP_DBL *sinusWindow_m;
134
  SCHAR sinusWindow_e;
135
136
  FIXP_DBL prev_Left_m;
137
  INT prev_Left_e;
138
  FIXP_DBL prev_Right_m;
139
  INT prev_Right_e;
140
  FIXP_DBL prev_XNrg_m;
141
  INT prev_XNrg_e;
142
143
  FIXP_DBL lin_bbCld_weight_m;
144
  INT lin_bbCld_weight_e;
145
  FIXP_DBL gain_weight_m[2];
146
  INT gain_weight_e;
147
148
} ENHANCED_TIME_DOMAIN_DMX;
149
150
/* Constants *****************************************************************/
151
152
/* Function / Class Declarations *********************************************/
153
static void calculateRatio(const FIXP_DBL sqrt_linCld_m,
154
                           const INT sqrt_linCld_e, const FIXP_DBL lin_Cld_m,
155
                           const INT lin_Cld_e, const FIXP_DBL Icc_m,
156
                           const INT Icc_e, FIXP_DBL G_m[2], INT *G_e);
157
158
static void calculateDmxGains(const FIXP_DBL lin_Cld_m, const INT lin_Cld_e,
159
                              const FIXP_DBL lin_Cld2_m, const INT lin_Cld2_e,
160
                              const FIXP_DBL Icc_m, const INT Icc_e,
161
                              const FIXP_DBL G_m[2], const INT G_e,
162
                              FIXP_DBL H1_m[2], INT *pH1_e);
163
164
/* Function / Class Definition ***********************************************/
165
static FIXP_DBL invSqrtNorm2(const FIXP_DBL op_m, const INT op_e,
166
0
                             INT *const result_e) {
167
0
  FIXP_DBL src_m = op_m;
168
0
  int src_e = op_e;
169
170
0
  if (src_e & 1) {
171
0
    src_m >>= 1;
172
0
    src_e += 1;
173
0
  }
174
175
0
  src_m = invSqrtNorm2(src_m, result_e);
176
0
  *result_e = (*result_e) - (src_e >> 1);
177
178
0
  return src_m;
179
0
}
180
181
static FIXP_DBL sqrtFixp(const FIXP_DBL op_m, const INT op_e,
182
0
                         INT *const result_e) {
183
0
  FIXP_DBL src_m = op_m;
184
0
  int src_e = op_e;
185
186
0
  if (src_e & 1) {
187
0
    src_m >>= 1;
188
0
    src_e += 1;
189
0
  }
190
191
0
  *result_e = (src_e >> 1);
192
0
  return sqrtFixp(src_m);
193
0
}
194
195
static FIXP_DBL fixpAdd(const FIXP_DBL src1_m, const INT src1_e,
196
                        const FIXP_DBL src2_m, const INT src2_e,
197
0
                        INT *const dst_e) {
198
0
  FIXP_DBL dst_m;
199
200
0
  if (src1_m == FL2FXCONST_DBL(0.f)) {
201
0
    *dst_e = src2_e;
202
0
    dst_m = src2_m;
203
0
  } else if (src2_m == FL2FXCONST_DBL(0.f)) {
204
0
    *dst_e = src1_e;
205
0
    dst_m = src1_m;
206
0
  } else {
207
0
    *dst_e = fixMax(src1_e, src2_e) + 1;
208
0
    dst_m =
209
0
        scaleValue(src1_m, fixMax((src1_e - (*dst_e)), -(DFRACT_BITS - 1))) +
210
0
        scaleValue(src2_m, fixMax((src2_e - (*dst_e)), -(DFRACT_BITS - 1)));
211
0
  }
212
0
  return dst_m;
213
0
}
214
215
/**
216
 * \brief  Sum up fixpoint values with best possible accuracy.
217
 *
218
 * \param value1        First input value.
219
 * \param q1            Scaling factor of first input value.
220
 * \param pValue2       Pointer to second input value, will be modified on
221
 * return.
222
 * \param pQ2           Pointer to second scaling factor, will be modified on
223
 * return.
224
 *
225
 * \return    void
226
 */
227
static void fixpAddNorm(const FIXP_DBL value1, const INT q1,
228
0
                        FIXP_DBL *const pValue2, INT *const pQ2) {
229
0
  const int headroom1 = fNormz(fixp_abs(value1)) - 1;
230
0
  const int headroom2 = fNormz(fixp_abs(*pValue2)) - 1;
231
0
  int resultScale = fixMax(q1 - headroom1, (*pQ2) - headroom2);
232
233
0
  if ((value1 != FL2FXCONST_DBL(0.f)) && (*pValue2 != FL2FXCONST_DBL(0.f))) {
234
0
    resultScale++;
235
0
  }
236
237
0
  *pValue2 =
238
0
      scaleValue(value1, q1 - resultScale) +
239
0
      scaleValue(*pValue2, fixMax(-(DFRACT_BITS - 1), ((*pQ2) - resultScale)));
240
0
  *pQ2 = (*pValue2 != (FIXP_DBL)0) ? resultScale : DFRACT_BITS - 1;
241
0
}
242
243
FDK_SACENC_ERROR fdk_sacenc_open_enhancedTimeDomainDmx(
244
0
    HANDLE_ENHANCED_TIME_DOMAIN_DMX *phEnhancedTimeDmx, const INT framelength) {
245
0
  FDK_SACENC_ERROR error = SACENC_OK;
246
0
  HANDLE_ENHANCED_TIME_DOMAIN_DMX hEnhancedTimeDmx = NULL;
247
248
0
  if (NULL == phEnhancedTimeDmx) {
249
0
    error = SACENC_INVALID_HANDLE;
250
0
  } else {
251
0
    FDK_ALLOCATE_MEMORY_1D(hEnhancedTimeDmx, 1, ENHANCED_TIME_DOMAIN_DMX);
252
0
    FDK_ALLOCATE_MEMORY_1D(hEnhancedTimeDmx->sinusWindow_m, 1 + framelength,
253
0
                           FIXP_DBL);
254
0
    hEnhancedTimeDmx->maxFramelength = framelength;
255
0
    *phEnhancedTimeDmx = hEnhancedTimeDmx;
256
0
  }
257
0
  return error;
258
259
0
bail:
260
0
  fdk_sacenc_close_enhancedTimeDomainDmx(&hEnhancedTimeDmx);
261
0
  return ((SACENC_OK == error) ? SACENC_MEMORY_ERROR : error);
262
0
}
263
264
FDK_SACENC_ERROR fdk_sacenc_init_enhancedTimeDomainDmx(
265
    HANDLE_ENHANCED_TIME_DOMAIN_DMX hEnhancedTimeDmx,
266
    const FIXP_DBL *const pInputGain_m, const INT inputGain_e,
267
    const FIXP_DBL outputGain_m, const INT outputGain_e,
268
0
    const INT framelength) {
269
0
  FDK_SACENC_ERROR error = SACENC_OK;
270
271
0
  if (hEnhancedTimeDmx == NULL) {
272
0
    error = SACENC_INVALID_HANDLE;
273
0
  } else {
274
0
    int smp;
275
0
    if (framelength > hEnhancedTimeDmx->maxFramelength) {
276
0
      error = SACENC_INIT_ERROR;
277
0
      goto bail;
278
0
    }
279
280
0
    hEnhancedTimeDmx->framelength = framelength;
281
282
0
    INT deltax_e;
283
0
    FIXP_DBL deltax_m;
284
285
0
    deltax_m = fDivNormHighPrec(
286
0
        PI_M, (FIXP_DBL)(2 * hEnhancedTimeDmx->framelength), &deltax_e);
287
0
    deltax_m = scaleValue(deltax_m, PI_E + deltax_e - (DFRACT_BITS - 1) - 1);
288
0
    deltax_e = 1;
289
290
0
    for (smp = 0; smp < hEnhancedTimeDmx->framelength + 1; smp++) {
291
0
      hEnhancedTimeDmx->sinusWindow_m[smp] =
292
0
          fMult(ALPHA_M, fPow2(fixp_sin(smp * deltax_m, deltax_e)));
293
0
    }
294
0
    hEnhancedTimeDmx->sinusWindow_e = -ALPHA_E;
295
296
0
    hEnhancedTimeDmx->prev_Left_m = hEnhancedTimeDmx->prev_Right_m =
297
0
        hEnhancedTimeDmx->prev_XNrg_m = FL2FXCONST_DBL(0.f);
298
0
    hEnhancedTimeDmx->prev_Left_e = hEnhancedTimeDmx->prev_Right_e =
299
0
        hEnhancedTimeDmx->prev_XNrg_e = DFRACT_BITS - 1;
300
301
0
    hEnhancedTimeDmx->lin_bbCld_weight_m =
302
0
        fDivNormHighPrec(fPow2(pInputGain_m[L]), fPow2(pInputGain_m[R]),
303
0
                         &hEnhancedTimeDmx->lin_bbCld_weight_e);
304
305
0
    hEnhancedTimeDmx->gain_weight_m[L] = fMult(pInputGain_m[L], outputGain_m);
306
0
    hEnhancedTimeDmx->gain_weight_m[R] = fMult(pInputGain_m[R], outputGain_m);
307
0
    hEnhancedTimeDmx->gain_weight_e =
308
0
        -fNorm(fixMax(hEnhancedTimeDmx->gain_weight_m[L],
309
0
                      hEnhancedTimeDmx->gain_weight_m[R]));
310
311
0
    hEnhancedTimeDmx->gain_weight_m[L] = scaleValue(
312
0
        hEnhancedTimeDmx->gain_weight_m[L], -hEnhancedTimeDmx->gain_weight_e);
313
0
    hEnhancedTimeDmx->gain_weight_m[R] = scaleValue(
314
0
        hEnhancedTimeDmx->gain_weight_m[R], -hEnhancedTimeDmx->gain_weight_e);
315
0
    hEnhancedTimeDmx->gain_weight_e += inputGain_e + outputGain_e;
316
317
0
    hEnhancedTimeDmx->prev_gain_m[L] = hEnhancedTimeDmx->gain_weight_m[L] >> 1;
318
0
    hEnhancedTimeDmx->prev_gain_m[R] = hEnhancedTimeDmx->gain_weight_m[R] >> 1;
319
0
    hEnhancedTimeDmx->prev_gain_e = hEnhancedTimeDmx->gain_weight_e + 1;
320
321
0
    hEnhancedTimeDmx->prev_H1_m[L] =
322
0
        scaleValue(hEnhancedTimeDmx->gain_weight_m[L], -4);
323
0
    hEnhancedTimeDmx->prev_H1_m[R] =
324
0
        scaleValue(hEnhancedTimeDmx->gain_weight_m[R], -4);
325
0
    hEnhancedTimeDmx->prev_H1_e = 2 + 2 + hEnhancedTimeDmx->gain_weight_e;
326
0
  }
327
0
bail:
328
0
  return error;
329
0
}
330
331
FDK_SACENC_ERROR fdk_sacenc_apply_enhancedTimeDomainDmx(
332
    HANDLE_ENHANCED_TIME_DOMAIN_DMX hEnhancedTimeDmx,
333
    const INT_PCM *const *const inputTime, INT_PCM *const outputTimeDmx,
334
0
    const INT InputDelay) {
335
0
  FDK_SACENC_ERROR error = SACENC_OK;
336
337
0
  if ((NULL == hEnhancedTimeDmx) || (NULL == inputTime) ||
338
0
      (NULL == inputTime[L]) || (NULL == inputTime[R]) ||
339
0
      (NULL == outputTimeDmx)) {
340
0
    error = SACENC_INVALID_HANDLE;
341
0
  } else {
342
0
    int smp;
343
0
    FIXP_DBL lin_bbCld_m, lin_Cld_m, bbCorr_m, sqrt_linCld_m, G_m[2], H1_m[2],
344
0
        gainLeft_m, gainRight_m;
345
0
    FIXP_DBL bbNrgLeft_m, bbNrgRight_m, bbXNrg_m, nrgLeft_m, nrgRight_m, nrgX_m;
346
0
    INT lin_bbCld_e, lin_Cld_e, bbCorr_e, sqrt_linCld_e, G_e, H1_e;
347
0
    INT bbNrgLeft_e, bbNrgRight_e, bbXNrg_e, nrgLeft_e, nrgRight_e, nrgX_e;
348
349
    /* Increase energy time resolution with shorter processing blocks. 128 is an
350
     * empiric value. */
351
0
    const int granuleLength = fixMin(128, hEnhancedTimeDmx->framelength);
352
0
    int granuleShift =
353
0
        (granuleLength > 1)
354
0
            ? ((DFRACT_BITS - 1) - fNorm((FIXP_DBL)(granuleLength - 1)))
355
0
            : 0;
356
0
    granuleShift = fixMax(
357
0
        3, granuleShift +
358
0
               1); /* one bit more headroom for worst case accumulation */
359
360
0
    smp = 0;
361
362
    /* Prevent division by zero. */
363
0
    bbNrgLeft_m = bbNrgRight_m = bbXNrg_m = (FIXP_DBL)(1);
364
0
    bbNrgLeft_e = bbNrgRight_e = bbXNrg_e = 0;
365
366
0
    do {
367
0
      const int offset = smp;
368
0
      FIXP_DBL partialL, partialR, partialX;
369
0
      partialL = partialR = partialX = FL2FXCONST_DBL(0.f);
370
371
0
      int in_margin = FDKmin(
372
0
          getScalefactorPCM(
373
0
              &inputTime[L][offset],
374
0
              fixMin(offset + granuleLength, hEnhancedTimeDmx->framelength) -
375
0
                  offset,
376
0
              1),
377
0
          getScalefactorPCM(
378
0
              &inputTime[R][offset],
379
0
              fixMin(offset + granuleLength, hEnhancedTimeDmx->framelength) -
380
0
                  offset,
381
0
              1));
382
383
      /* partial energy */
384
0
      for (smp = offset;
385
0
           smp < fixMin(offset + granuleLength, hEnhancedTimeDmx->framelength);
386
0
           smp++) {
387
0
        FIXP_PCM inputL =
388
0
            scaleValue((FIXP_PCM)inputTime[L][smp], in_margin - 1);
389
0
        FIXP_PCM inputR =
390
0
            scaleValue((FIXP_PCM)inputTime[R][smp], in_margin - 1);
391
392
0
        partialL += fPow2Div2(inputL) >> (granuleShift - 3);
393
0
        partialR += fPow2Div2(inputR) >> (granuleShift - 3);
394
0
        partialX += fMultDiv2(inputL, inputR) >> (granuleShift - 3);
395
0
      }
396
397
0
      fixpAddNorm(partialL, granuleShift - 2 * in_margin, &bbNrgLeft_m,
398
0
                  &bbNrgLeft_e);
399
0
      fixpAddNorm(partialR, granuleShift - 2 * in_margin, &bbNrgRight_m,
400
0
                  &bbNrgRight_e);
401
0
      fixpAddNorm(partialX, granuleShift - 2 * in_margin, &bbXNrg_m, &bbXNrg_e);
402
0
    } while (smp < hEnhancedTimeDmx->framelength);
403
404
0
    nrgLeft_m =
405
0
        fixpAdd(hEnhancedTimeDmx->prev_Left_m, hEnhancedTimeDmx->prev_Left_e,
406
0
                bbNrgLeft_m, bbNrgLeft_e, &nrgLeft_e);
407
0
    nrgRight_m =
408
0
        fixpAdd(hEnhancedTimeDmx->prev_Right_m, hEnhancedTimeDmx->prev_Right_e,
409
0
                bbNrgRight_m, bbNrgRight_e, &nrgRight_e);
410
0
    nrgX_m =
411
0
        fixpAdd(hEnhancedTimeDmx->prev_XNrg_m, hEnhancedTimeDmx->prev_XNrg_e,
412
0
                bbXNrg_m, bbXNrg_e, &nrgX_e);
413
414
0
    lin_bbCld_m = fMult(hEnhancedTimeDmx->lin_bbCld_weight_m,
415
0
                        fDivNorm(nrgLeft_m, nrgRight_m, &lin_bbCld_e));
416
0
    lin_bbCld_e +=
417
0
        hEnhancedTimeDmx->lin_bbCld_weight_e + nrgLeft_e - nrgRight_e;
418
419
0
    bbCorr_m = fMult(nrgX_m, invSqrtNorm2(fMult(nrgLeft_m, nrgRight_m),
420
0
                                          nrgLeft_e + nrgRight_e, &bbCorr_e));
421
0
    bbCorr_e += nrgX_e;
422
423
0
    hEnhancedTimeDmx->prev_Left_m = bbNrgLeft_m;
424
0
    hEnhancedTimeDmx->prev_Left_e = bbNrgLeft_e;
425
0
    hEnhancedTimeDmx->prev_Right_m = bbNrgRight_m;
426
0
    hEnhancedTimeDmx->prev_Right_e = bbNrgRight_e;
427
0
    hEnhancedTimeDmx->prev_XNrg_m = bbXNrg_m;
428
0
    hEnhancedTimeDmx->prev_XNrg_e = bbXNrg_e;
429
430
    /*
431
       bbCld    = 10.f*log10(lin_bbCld)
432
433
       lin_Cld  = pow(10,bbCld/20)
434
                = pow(10,10.f*log10(lin_bbCld)/20.f)
435
                = sqrt(lin_bbCld)
436
437
       lin_Cld2 = lin_Cld*lin_Cld
438
                = sqrt(lin_bbCld)*sqrt(lin_bbCld)
439
                = lin_bbCld
440
     */
441
0
    lin_Cld_m = sqrtFixp(lin_bbCld_m, lin_bbCld_e, &lin_Cld_e);
442
0
    sqrt_linCld_m = sqrtFixp(lin_Cld_m, lin_Cld_e, &sqrt_linCld_e);
443
444
    /*calculate how much right and how much left signal, to avoid signal
445
     * cancellations*/
446
0
    calculateRatio(sqrt_linCld_m, sqrt_linCld_e, lin_Cld_m, lin_Cld_e, bbCorr_m,
447
0
                   bbCorr_e, G_m, &G_e);
448
449
    /*calculate downmix gains*/
450
0
    calculateDmxGains(lin_Cld_m, lin_Cld_e, lin_bbCld_m, lin_bbCld_e, bbCorr_m,
451
0
                      bbCorr_e, G_m, G_e, H1_m, &H1_e);
452
453
    /*adapt output gains*/
454
0
    H1_m[L] = fMult(H1_m[L], hEnhancedTimeDmx->gain_weight_m[L]);
455
0
    H1_m[R] = fMult(H1_m[R], hEnhancedTimeDmx->gain_weight_m[R]);
456
0
    H1_e += hEnhancedTimeDmx->gain_weight_e;
457
458
0
    gainLeft_m = hEnhancedTimeDmx->prev_gain_m[L];
459
0
    gainRight_m = hEnhancedTimeDmx->prev_gain_m[R];
460
461
0
    INT intermediate_gain_e =
462
0
        +hEnhancedTimeDmx->sinusWindow_e + H1_e - hEnhancedTimeDmx->prev_gain_e;
463
464
0
    for (smp = 0; smp < hEnhancedTimeDmx->framelength; smp++) {
465
0
      const INT N = hEnhancedTimeDmx->framelength;
466
0
      FIXP_DBL intermediate_gainLeft_m, intermediate_gainRight_m, tmp;
467
468
0
      intermediate_gainLeft_m =
469
0
          scaleValue((fMult(hEnhancedTimeDmx->sinusWindow_m[smp], H1_m[L]) +
470
0
                      fMult(hEnhancedTimeDmx->sinusWindow_m[N - smp],
471
0
                            hEnhancedTimeDmx->prev_H1_m[L])),
472
0
                     intermediate_gain_e);
473
0
      intermediate_gainRight_m =
474
0
          scaleValue((fMult(hEnhancedTimeDmx->sinusWindow_m[smp], H1_m[R]) +
475
0
                      fMult(hEnhancedTimeDmx->sinusWindow_m[N - smp],
476
0
                            hEnhancedTimeDmx->prev_H1_m[R])),
477
0
                     intermediate_gain_e);
478
479
0
      gainLeft_m = intermediate_gainLeft_m +
480
0
                   fMult(FL2FXCONST_DBL(1.f - ALPHA_FLT), gainLeft_m);
481
0
      gainRight_m = intermediate_gainRight_m +
482
0
                    fMult(FL2FXCONST_DBL(1.f - ALPHA_FLT), gainRight_m);
483
484
0
      tmp = fMultDiv2(gainLeft_m, (FIXP_PCM)inputTime[L][smp + InputDelay]) +
485
0
            fMultDiv2(gainRight_m, (FIXP_PCM)inputTime[R][smp + InputDelay]);
486
0
      outputTimeDmx[smp] = (INT_PCM)SATURATE_SHIFT(
487
0
          tmp,
488
0
          -(hEnhancedTimeDmx->prev_gain_e + 1 - (DFRACT_BITS - SAMPLE_BITS)),
489
0
          SAMPLE_BITS);
490
0
    }
491
492
0
    hEnhancedTimeDmx->prev_gain_m[L] = gainLeft_m;
493
0
    hEnhancedTimeDmx->prev_gain_m[R] = gainRight_m;
494
495
0
    hEnhancedTimeDmx->prev_H1_m[L] = H1_m[L];
496
0
    hEnhancedTimeDmx->prev_H1_m[R] = H1_m[R];
497
0
    hEnhancedTimeDmx->prev_H1_e = H1_e;
498
0
  }
499
500
0
  return error;
501
0
}
502
503
static void calculateRatio(const FIXP_DBL sqrt_linCld_m,
504
                           const INT sqrt_linCld_e, const FIXP_DBL lin_Cld_m,
505
                           const INT lin_Cld_e, const FIXP_DBL Icc_m,
506
0
                           const INT Icc_e, FIXP_DBL G_m[2], INT *G_e) {
507
0
#define G_SCALE_FACTOR (2)
508
509
0
  if (Icc_m >= FL2FXCONST_DBL(0.f)) {
510
0
    G_m[0] = G_m[1] = FL2FXCONST_DBL(1.f / (float)(1 << G_SCALE_FACTOR));
511
0
    G_e[0] = G_SCALE_FACTOR;
512
0
  } else {
513
0
    const FIXP_DBL max_gain_factor =
514
0
        FL2FXCONST_DBL(2.f / (float)(1 << G_SCALE_FACTOR));
515
0
    FIXP_DBL tmp1_m, tmp2_m, numerator_m, denominator_m, r_m, r4_m, q;
516
0
    INT tmp1_e, tmp2_e, numerator_e, denominator_e, r_e, r4_e;
517
518
    /*  r   = (lin_Cld + 1 + 2*Icc*sqrt_linCld) / (lin_Cld + 1 -
519
     * 2*Icc*sqrt_linCld) = (tmp1 + tmp2) / (tmp1 - tmp2)
520
     */
521
0
    tmp1_m =
522
0
        fixpAdd(lin_Cld_m, lin_Cld_e, FL2FXCONST_DBL(1.f / 2.f), 1, &tmp1_e);
523
524
0
    tmp2_m = fMult(Icc_m, sqrt_linCld_m);
525
0
    tmp2_e = 1 + Icc_e + sqrt_linCld_e;
526
0
    numerator_m = fixpAdd(tmp1_m, tmp1_e, tmp2_m, tmp2_e, &numerator_e);
527
0
    denominator_m = fixpAdd(tmp1_m, tmp1_e, -tmp2_m, tmp2_e, &denominator_e);
528
529
0
    if ((numerator_m > FL2FXCONST_DBL(0.f)) &&
530
0
        (denominator_m > FL2FXCONST_DBL(0.f))) {
531
0
      r_m = fDivNorm(numerator_m, denominator_m, &r_e);
532
0
      r_e += numerator_e - denominator_e;
533
534
      /* r_4 = sqrt( sqrt( r ) ) */
535
0
      r4_m = sqrtFixp(r_m, r_e, &r4_e);
536
0
      r4_m = sqrtFixp(r4_m, r4_e, &r4_e);
537
538
0
      r4_e -= G_SCALE_FACTOR;
539
540
      /* q = min(r4_m, max_gain_factor) */
541
0
      q = ((r4_e >= 0) && (r4_m >= (max_gain_factor >> r4_e)))
542
0
              ? max_gain_factor
543
0
              : scaleValue(r4_m, r4_e);
544
0
    } else {
545
0
      q = FL2FXCONST_DBL(0.f);
546
0
    }
547
548
0
    G_m[0] = max_gain_factor - q;
549
0
    G_m[1] = q;
550
551
0
    *G_e = G_SCALE_FACTOR;
552
0
  }
553
0
}
554
555
static void calculateDmxGains(const FIXP_DBL lin_Cld_m, const INT lin_Cld_e,
556
                              const FIXP_DBL lin_Cld2_m, const INT lin_Cld2_e,
557
                              const FIXP_DBL Icc_m, const INT Icc_e,
558
                              const FIXP_DBL G_m[2], const INT G_e,
559
0
                              FIXP_DBL H1_m[2], INT *pH1_e) {
560
0
#define H1_SCALE_FACTOR (2)
561
0
  const FIXP_DBL max_gain_factor =
562
0
      FL2FXCONST_DBL(2.f / (float)(1 << H1_SCALE_FACTOR));
563
564
0
  FIXP_DBL nrgRight_m, nrgLeft_m, crossNrg_m, inv_weight_num_m,
565
0
      inv_weight_denom_m, inverse_weight_m, inverse_weight_limited;
566
0
  INT nrgRight_e, nrgLeft_e, crossNrg_e, inv_weight_num_e, inv_weight_denom_e,
567
0
      inverse_weight_e;
568
569
  /* nrgRight = sqrt(1/(lin_Cld2 + 1) */
570
0
  nrgRight_m = fixpAdd(lin_Cld2_m, lin_Cld2_e, FL2FXCONST_DBL(1.f / 2.f), 1,
571
0
                       &nrgRight_e);
572
0
  nrgRight_m = invSqrtNorm2(nrgRight_m, nrgRight_e, &nrgRight_e);
573
574
  /* nrgLeft = lin_Cld * nrgRight */
575
0
  nrgLeft_m = fMult(lin_Cld_m, nrgRight_m);
576
0
  nrgLeft_e = lin_Cld_e + nrgRight_e;
577
578
  /* crossNrg = sqrt(nrgLeft*nrgRight) */
579
0
  crossNrg_m = sqrtFixp(fMult(nrgLeft_m, nrgRight_m), nrgLeft_e + nrgRight_e,
580
0
                        &crossNrg_e);
581
582
  /* inverse_weight = sqrt((nrgLeft + nrgRight) / ( (G[0]*G[0]*nrgLeft) +
583
   * (G[1]*G[1]*nrgRight) + 2*G[0]*G[1]*Icc*crossNrg)) = sqrt(inv_weight_num /
584
   * inv_weight_denom)
585
   */
586
0
  inv_weight_num_m =
587
0
      fixpAdd(nrgRight_m, nrgRight_e, nrgLeft_m, nrgLeft_e, &inv_weight_num_e);
588
589
0
  inv_weight_denom_m =
590
0
      fixpAdd(fMult(fPow2(G_m[0]), nrgLeft_m), 2 * G_e + nrgLeft_e,
591
0
              fMult(fPow2(G_m[1]), nrgRight_m), 2 * G_e + nrgRight_e,
592
0
              &inv_weight_denom_e);
593
594
0
  inv_weight_denom_m =
595
0
      fixpAdd(fMult(fMult(fMult(G_m[0], G_m[1]), crossNrg_m), Icc_m),
596
0
              1 + 2 * G_e + crossNrg_e + Icc_e, inv_weight_denom_m,
597
0
              inv_weight_denom_e, &inv_weight_denom_e);
598
599
0
  if (inv_weight_denom_m > FL2FXCONST_DBL(0.f)) {
600
0
    inverse_weight_m =
601
0
        fDivNorm(inv_weight_num_m, inv_weight_denom_m, &inverse_weight_e);
602
0
    inverse_weight_m =
603
0
        sqrtFixp(inverse_weight_m,
604
0
                 inverse_weight_e + inv_weight_num_e - inv_weight_denom_e,
605
0
                 &inverse_weight_e);
606
0
    inverse_weight_e -= H1_SCALE_FACTOR;
607
608
    /* inverse_weight_limited = min(max_gain_factor, inverse_weight) */
609
0
    inverse_weight_limited =
610
0
        ((inverse_weight_e >= 0) &&
611
0
         (inverse_weight_m >= (max_gain_factor >> inverse_weight_e)))
612
0
            ? max_gain_factor
613
0
            : scaleValue(inverse_weight_m, inverse_weight_e);
614
0
  } else {
615
0
    inverse_weight_limited = max_gain_factor;
616
0
  }
617
618
0
  H1_m[0] = fMult(G_m[0], inverse_weight_limited);
619
0
  H1_m[1] = fMult(G_m[1], inverse_weight_limited);
620
621
0
  *pH1_e = G_e + H1_SCALE_FACTOR;
622
0
}
623
624
FDK_SACENC_ERROR fdk_sacenc_close_enhancedTimeDomainDmx(
625
0
    HANDLE_ENHANCED_TIME_DOMAIN_DMX *phEnhancedTimeDmx) {
626
0
  FDK_SACENC_ERROR error = SACENC_OK;
627
628
0
  if (phEnhancedTimeDmx == NULL) {
629
0
    error = SACENC_INVALID_HANDLE;
630
0
  } else {
631
0
    if (*phEnhancedTimeDmx != NULL) {
632
0
      if ((*phEnhancedTimeDmx)->sinusWindow_m != NULL) {
633
0
        FDK_FREE_MEMORY_1D((*phEnhancedTimeDmx)->sinusWindow_m);
634
0
      }
635
0
      FDK_FREE_MEMORY_1D(*phEnhancedTimeDmx);
636
0
    }
637
0
  }
638
0
  return error;
639
0
}