/src/aac/libAACenc/src/adj_thr.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* ----------------------------------------------------------------------------- |
2 | | Software License for The Fraunhofer FDK AAC Codec Library for Android |
3 | | |
4 | | © Copyright 1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten |
5 | | Forschung e.V. All rights reserved. |
6 | | |
7 | | 1. INTRODUCTION |
8 | | The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
9 | | that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
10 | | scheme for digital audio. This FDK AAC Codec software is intended to be used on |
11 | | a wide variety of Android devices. |
12 | | |
13 | | AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
14 | | general perceptual audio codecs. AAC-ELD is considered the best-performing |
15 | | full-bandwidth communications codec by independent studies and is widely |
16 | | deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
17 | | specifications. |
18 | | |
19 | | Patent licenses for necessary patent claims for the FDK AAC Codec (including |
20 | | those of Fraunhofer) may be obtained through Via Licensing |
21 | | (www.vialicensing.com) or through the respective patent owners individually for |
22 | | the purpose of encoding or decoding bit streams in products that are compliant |
23 | | with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
24 | | Android devices already license these patent claims through Via Licensing or |
25 | | directly from the patent owners, and therefore FDK AAC Codec software may |
26 | | already be covered under those patent licenses when it is used for those |
27 | | licensed purposes only. |
28 | | |
29 | | Commercially-licensed AAC software libraries, including floating-point versions |
30 | | with enhanced sound quality, are also available from Fraunhofer. Users are |
31 | | encouraged to check the Fraunhofer website for additional applications |
32 | | information and documentation. |
33 | | |
34 | | 2. COPYRIGHT LICENSE |
35 | | |
36 | | Redistribution and use in source and binary forms, with or without modification, |
37 | | are permitted without payment of copyright license fees provided that you |
38 | | satisfy the following conditions: |
39 | | |
40 | | You must retain the complete text of this software license in redistributions of |
41 | | the FDK AAC Codec or your modifications thereto in source code form. |
42 | | |
43 | | You must retain the complete text of this software license in the documentation |
44 | | and/or other materials provided with redistributions of the FDK AAC Codec or |
45 | | your modifications thereto in binary form. You must make available free of |
46 | | charge copies of the complete source code of the FDK AAC Codec and your |
47 | | modifications thereto to recipients of copies in binary form. |
48 | | |
49 | | The name of Fraunhofer may not be used to endorse or promote products derived |
50 | | from this library without prior written permission. |
51 | | |
52 | | You may not charge copyright license fees for anyone to use, copy or distribute |
53 | | the FDK AAC Codec software or your modifications thereto. |
54 | | |
55 | | Your modified versions of the FDK AAC Codec must carry prominent notices stating |
56 | | that you changed the software and the date of any change. For modified versions |
57 | | of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
58 | | must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
59 | | AAC Codec Library for Android." |
60 | | |
61 | | 3. NO PATENT LICENSE |
62 | | |
63 | | NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
64 | | limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
65 | | Fraunhofer provides no warranty of patent non-infringement with respect to this |
66 | | software. |
67 | | |
68 | | You may use this FDK AAC Codec software or modifications thereto only for |
69 | | purposes that are authorized by appropriate patent licenses. |
70 | | |
71 | | 4. DISCLAIMER |
72 | | |
73 | | This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
74 | | holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
75 | | including but not limited to the implied warranties of merchantability and |
76 | | fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
77 | | CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
78 | | or consequential damages, including but not limited to procurement of substitute |
79 | | goods or services; loss of use, data, or profits, or business interruption, |
80 | | however caused and on any theory of liability, whether in contract, strict |
81 | | liability, or tort (including negligence), arising in any way out of the use of |
82 | | this software, even if advised of the possibility of such damage. |
83 | | |
84 | | 5. CONTACT INFORMATION |
85 | | |
86 | | Fraunhofer Institute for Integrated Circuits IIS |
87 | | Attention: Audio and Multimedia Departments - FDK AAC LL |
88 | | Am Wolfsmantel 33 |
89 | | 91058 Erlangen, Germany |
90 | | |
91 | | www.iis.fraunhofer.de/amm |
92 | | amm-info@iis.fraunhofer.de |
93 | | ----------------------------------------------------------------------------- */ |
94 | | |
95 | | /**************************** AAC encoder library ****************************** |
96 | | |
97 | | Author(s): M. Werner |
98 | | |
99 | | Description: Threshold compensation |
100 | | |
101 | | *******************************************************************************/ |
102 | | |
103 | | #include "adj_thr.h" |
104 | | #include "sf_estim.h" |
105 | | #include "aacEnc_ram.h" |
106 | | |
107 | 0 | #define NUM_NRG_LEVS (8) |
108 | | #define INV_INT_TAB_SIZE (8) |
109 | | static const FIXP_DBL invInt[INV_INT_TAB_SIZE] = { |
110 | | 0x7fffffff, 0x7fffffff, 0x40000000, 0x2aaaaaaa, |
111 | | 0x20000000, 0x19999999, 0x15555555, 0x12492492}; |
112 | | |
113 | | #define INV_SQRT4_TAB_SIZE (8) |
114 | | static const FIXP_DBL invSqrt4[INV_SQRT4_TAB_SIZE] = { |
115 | | 0x7fffffff, 0x7fffffff, 0x6ba27e65, 0x61424bb5, |
116 | | 0x5a827999, 0x55994845, 0x51c8e33c, 0x4eb160d1}; |
117 | | |
118 | | /*static const INT invRedExp = 4;*/ |
119 | | static const FIXP_DBL SnrLdMin1 = |
120 | | (FIXP_DBL)0xfcad0ddf; /*FL2FXCONST_DBL(FDKlog(0.316)/FDKlog(2.0)/LD_DATA_SCALING);*/ |
121 | | static const FIXP_DBL SnrLdMin2 = |
122 | | (FIXP_DBL)0x0351e1a2; /*FL2FXCONST_DBL(FDKlog(3.16) |
123 | | /FDKlog(2.0)/LD_DATA_SCALING);*/ |
124 | | static const FIXP_DBL SnrLdFac = |
125 | | (FIXP_DBL)0xff5b2c3e; /*FL2FXCONST_DBL(FDKlog(0.8) |
126 | | /FDKlog(2.0)/LD_DATA_SCALING);*/ |
127 | | |
128 | | static const FIXP_DBL SnrLdMin3 = |
129 | | (FIXP_DBL)0xfe000000; /*FL2FXCONST_DBL(FDKlog(0.5) |
130 | | /FDKlog(2.0)/LD_DATA_SCALING);*/ |
131 | | static const FIXP_DBL SnrLdMin4 = |
132 | | (FIXP_DBL)0x02000000; /*FL2FXCONST_DBL(FDKlog(2.0) |
133 | | /FDKlog(2.0)/LD_DATA_SCALING);*/ |
134 | | static const FIXP_DBL SnrLdMin5 = |
135 | | (FIXP_DBL)0xfc000000; /*FL2FXCONST_DBL(FDKlog(0.25) |
136 | | /FDKlog(2.0)/LD_DATA_SCALING);*/ |
137 | | |
138 | | /* |
139 | | The bits2Pe factors are choosen for the case that some times |
140 | | the crash recovery strategy will be activated once. |
141 | | */ |
142 | | #define AFTERBURNER_STATI 2 |
143 | | #define MAX_ALLOWED_EL_CHANNELS 2 |
144 | | |
145 | | typedef struct { |
146 | | INT bitrate; |
147 | | FIXP_DBL bits2PeFactor[AFTERBURNER_STATI][MAX_ALLOWED_EL_CHANNELS]; |
148 | | } BIT_PE_SFAC; |
149 | | |
150 | | typedef struct { |
151 | | INT sampleRate; |
152 | | const BIT_PE_SFAC *pPeTab; |
153 | | INT nEntries; |
154 | | |
155 | | } BITS2PE_CFG_TAB; |
156 | | |
157 | | #define FL2B2PE(value) FL2FXCONST_DBL((value) / (1 << 2)) |
158 | | |
159 | | static const BIT_PE_SFAC S_Bits2PeTab16000[] = { |
160 | | /* bitrate| afterburner off | afterburner on | | nCh=1 |
161 | | | nCh=2 | nCh=1 | nCh=2 */ |
162 | | {10000, |
163 | | {{FL2B2PE(1.60f), FL2B2PE(0.00f)}, {FL2B2PE(1.40f), FL2B2PE(0.00f)}}}, |
164 | | {24000, |
165 | | {{FL2B2PE(1.80f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}}, |
166 | | {32000, |
167 | | {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
168 | | {48000, |
169 | | {{FL2B2PE(1.60f), FL2B2PE(1.80f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}}, |
170 | | {64000, |
171 | | {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(1.20f), FL2B2PE(1.60f)}}}, |
172 | | {96000, |
173 | | {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.60f)}}}, |
174 | | {128000, |
175 | | {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.80f)}}}, |
176 | | {148000, |
177 | | {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.40f)}}}}; |
178 | | |
179 | | static const BIT_PE_SFAC S_Bits2PeTab22050[] = { |
180 | | /* bitrate| afterburner off | afterburner on | | nCh=1 |
181 | | | nCh=2 | nCh=1 | nCh=2 */ |
182 | | {16000, |
183 | | {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.20f), FL2B2PE(0.80f)}}}, |
184 | | {24000, |
185 | | {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.40f), FL2B2PE(1.00f)}}}, |
186 | | {32000, |
187 | | {{FL2B2PE(1.40f), FL2B2PE(1.40f)}, {FL2B2PE(1.40f), FL2B2PE(1.20f)}}}, |
188 | | {48000, |
189 | | {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(1.20f), FL2B2PE(1.40f)}}}, |
190 | | {64000, |
191 | | {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
192 | | {96000, |
193 | | {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}}, |
194 | | {128000, |
195 | | {{FL2B2PE(1.80f), FL2B2PE(1.80f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}}, |
196 | | {148000, |
197 | | {{FL2B2PE(1.40f), FL2B2PE(1.80f)}, {FL2B2PE(1.40f), FL2B2PE(1.60f)}}}}; |
198 | | |
199 | | static const BIT_PE_SFAC S_Bits2PeTab24000[] = { |
200 | | /* bitrate| afterburner off | afterburner on | | nCh=1 |
201 | | | nCh=2 | nCh=1 | nCh=2 */ |
202 | | {16000, |
203 | | {{FL2B2PE(1.40f), FL2B2PE(1.40f)}, {FL2B2PE(1.20f), FL2B2PE(0.80f)}}}, |
204 | | {24000, |
205 | | {{FL2B2PE(1.60f), FL2B2PE(1.20f)}, {FL2B2PE(1.40f), FL2B2PE(1.00f)}}}, |
206 | | {32000, |
207 | | {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.40f), FL2B2PE(0.80f)}}}, |
208 | | {48000, |
209 | | {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.40f), FL2B2PE(1.40f)}}}, |
210 | | {64000, |
211 | | {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
212 | | {96000, |
213 | | {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}}, |
214 | | {128000, |
215 | | {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.80f)}}}, |
216 | | {148000, |
217 | | {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.40f), FL2B2PE(1.80f)}}}}; |
218 | | |
219 | | static const BIT_PE_SFAC S_Bits2PeTab32000[] = { |
220 | | /* bitrate| afterburner off | afterburner on | | nCh=1 |
221 | | | nCh=2 | nCh=1 | nCh=2 */ |
222 | | {16000, |
223 | | {{FL2B2PE(1.20f), FL2B2PE(1.40f)}, {FL2B2PE(0.80f), FL2B2PE(0.80f)}}}, |
224 | | {24000, |
225 | | {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.60f)}}}, |
226 | | {32000, |
227 | | {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.80f)}}}, |
228 | | {48000, |
229 | | {{FL2B2PE(1.40f), FL2B2PE(1.40f)}, {FL2B2PE(1.20f), FL2B2PE(1.20f)}}}, |
230 | | {64000, |
231 | | {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}}, |
232 | | {96000, |
233 | | {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
234 | | {128000, |
235 | | {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}}, |
236 | | {148000, |
237 | | {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}}, |
238 | | {160000, |
239 | | {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.80f), FL2B2PE(1.60f)}}}, |
240 | | {200000, |
241 | | {{FL2B2PE(1.40f), FL2B2PE(1.60f)}, {FL2B2PE(1.40f), FL2B2PE(1.60f)}}}, |
242 | | {320000, |
243 | | {{FL2B2PE(3.20f), FL2B2PE(1.80f)}, {FL2B2PE(3.20f), FL2B2PE(1.80f)}}}}; |
244 | | |
245 | | static const BIT_PE_SFAC S_Bits2PeTab44100[] = { |
246 | | /* bitrate| afterburner off | afterburner on | | nCh=1 |
247 | | | nCh=2 | nCh=1 | nCh=2 */ |
248 | | {16000, |
249 | | {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(0.80f), FL2B2PE(1.00f)}}}, |
250 | | {24000, |
251 | | {{FL2B2PE(1.00f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.80f)}}}, |
252 | | {32000, |
253 | | {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(0.80f), FL2B2PE(0.60f)}}}, |
254 | | {48000, |
255 | | {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(1.20f), FL2B2PE(0.80f)}}}, |
256 | | {64000, |
257 | | {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.20f), FL2B2PE(1.00f)}}}, |
258 | | {96000, |
259 | | {{FL2B2PE(1.60f), FL2B2PE(1.20f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}}, |
260 | | {128000, |
261 | | {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
262 | | {148000, |
263 | | {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}}, |
264 | | {160000, |
265 | | {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}}, |
266 | | {200000, |
267 | | {{FL2B2PE(1.80f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.60f)}}}, |
268 | | {320000, |
269 | | {{FL2B2PE(3.20f), FL2B2PE(1.60f)}, {FL2B2PE(3.20f), FL2B2PE(1.60f)}}}}; |
270 | | |
271 | | static const BIT_PE_SFAC S_Bits2PeTab48000[] = { |
272 | | /* bitrate| afterburner off | afterburner on | | nCh=1 |
273 | | | nCh=2 | nCh=1 | nCh=2 */ |
274 | | {16000, |
275 | | {{FL2B2PE(1.40f), FL2B2PE(0.00f)}, {FL2B2PE(0.80f), FL2B2PE(0.00f)}}}, |
276 | | {24000, |
277 | | {{FL2B2PE(1.40f), FL2B2PE(1.20f)}, {FL2B2PE(1.00f), FL2B2PE(0.80f)}}}, |
278 | | {32000, |
279 | | {{FL2B2PE(1.00f), FL2B2PE(1.20f)}, {FL2B2PE(0.60f), FL2B2PE(0.80f)}}}, |
280 | | {48000, |
281 | | {{FL2B2PE(1.20f), FL2B2PE(1.00f)}, {FL2B2PE(0.80f), FL2B2PE(0.80f)}}}, |
282 | | {64000, |
283 | | {{FL2B2PE(1.20f), FL2B2PE(1.20f)}, {FL2B2PE(1.20f), FL2B2PE(1.00f)}}}, |
284 | | {96000, |
285 | | {{FL2B2PE(1.60f), FL2B2PE(1.40f)}, {FL2B2PE(1.60f), FL2B2PE(1.20f)}}}, |
286 | | {128000, |
287 | | {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
288 | | {148000, |
289 | | {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
290 | | {160000, |
291 | | {{FL2B2PE(1.60f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
292 | | {200000, |
293 | | {{FL2B2PE(1.20f), FL2B2PE(1.60f)}, {FL2B2PE(1.60f), FL2B2PE(1.40f)}}}, |
294 | | {320000, |
295 | | {{FL2B2PE(3.20f), FL2B2PE(1.60f)}, {FL2B2PE(3.20f), FL2B2PE(1.60f)}}}}; |
296 | | |
297 | | static const BITS2PE_CFG_TAB bits2PeConfigTab[] = { |
298 | | {16000, S_Bits2PeTab16000, sizeof(S_Bits2PeTab16000) / sizeof(BIT_PE_SFAC)}, |
299 | | {22050, S_Bits2PeTab22050, sizeof(S_Bits2PeTab22050) / sizeof(BIT_PE_SFAC)}, |
300 | | {24000, S_Bits2PeTab24000, sizeof(S_Bits2PeTab24000) / sizeof(BIT_PE_SFAC)}, |
301 | | {32000, S_Bits2PeTab32000, sizeof(S_Bits2PeTab32000) / sizeof(BIT_PE_SFAC)}, |
302 | | {44100, S_Bits2PeTab44100, sizeof(S_Bits2PeTab44100) / sizeof(BIT_PE_SFAC)}, |
303 | | {48000, S_Bits2PeTab48000, |
304 | | sizeof(S_Bits2PeTab48000) / sizeof(BIT_PE_SFAC)}}; |
305 | | |
306 | | /* values for avoid hole flag */ |
307 | | enum _avoid_hole_state { NO_AH = 0, AH_INACTIVE = 1, AH_ACTIVE = 2 }; |
308 | | |
309 | | /* Q format definitions */ |
310 | | #define Q_BITFAC \ |
311 | | (24) /* Q scaling used in FDKaacEnc_bitresCalcBitFac() calculation */ |
312 | 0 | #define Q_AVGBITS (17) /* scale bit values */ |
313 | | |
314 | | /***************************************************************************** |
315 | | functionname: FDKaacEnc_InitBits2PeFactor |
316 | | description: retrieve bits2PeFactor from table |
317 | | *****************************************************************************/ |
318 | | static void FDKaacEnc_InitBits2PeFactor( |
319 | | FIXP_DBL *bits2PeFactor_m, INT *bits2PeFactor_e, const INT bitRate, |
320 | | const INT nChannels, const INT sampleRate, const INT advancedBitsToPe, |
321 | 0 | const INT dZoneQuantEnable, const INT invQuant) { |
322 | | /**** 1) Set default bits2pe factor ****/ |
323 | 0 | FIXP_DBL bit2PE_m = FL2FXCONST_DBL(1.18f / (1 << (1))); |
324 | 0 | INT bit2PE_e = 1; |
325 | | |
326 | | /**** 2) For AAC-(E)LD, make use of advanced bits to pe factor table ****/ |
327 | 0 | if (advancedBitsToPe && nChannels <= (2)) { |
328 | 0 | int i; |
329 | 0 | const BIT_PE_SFAC *peTab = NULL; |
330 | 0 | INT size = 0; |
331 | | |
332 | | /*** 2.1) Get correct table entry ***/ |
333 | 0 | for (i = 0; i < (INT)(sizeof(bits2PeConfigTab) / sizeof(BITS2PE_CFG_TAB)); |
334 | 0 | i++) { |
335 | 0 | if (sampleRate >= bits2PeConfigTab[i].sampleRate) { |
336 | 0 | peTab = bits2PeConfigTab[i].pPeTab; |
337 | 0 | size = bits2PeConfigTab[i].nEntries; |
338 | 0 | } |
339 | 0 | } |
340 | |
|
341 | 0 | if ((peTab != NULL) && (size != 0)) { |
342 | 0 | INT startB = -1; /* bitrate entry in table that is the next-lower to |
343 | | actual bitrate */ |
344 | 0 | INT stopB = -1; /* bitrate entry in table that is the next-higher to |
345 | | actual bitrate */ |
346 | 0 | FIXP_DBL startPF = |
347 | 0 | FL2FXCONST_DBL(0.0f); /* bits2PE factor entry in table that is the |
348 | | next-lower to actual bits2PE factor */ |
349 | 0 | FIXP_DBL stopPF = FL2FXCONST_DBL(0.0f); /* bits2PE factor entry in table |
350 | | that is the next-higher to |
351 | | actual bits2PE factor */ |
352 | 0 | FIXP_DBL slope = FL2FXCONST_DBL( |
353 | 0 | 0.0f); /* the slope from the start bits2Pe entry to the next one */ |
354 | 0 | const int qualityIdx = (invQuant == 0) ? 0 : 1; |
355 | |
|
356 | 0 | if (bitRate >= peTab[size - 1].bitrate) { |
357 | | /* Chosen bitrate is higher than the highest bitrate in table. |
358 | | The slope for extrapolating the bits2PE factor must be zero. |
359 | | Values are set accordingly. */ |
360 | 0 | startB = peTab[size - 1].bitrate; |
361 | 0 | stopB = |
362 | 0 | bitRate + |
363 | 0 | 1; /* Can be an arbitrary value greater than startB and bitrate. */ |
364 | 0 | startPF = peTab[size - 1].bits2PeFactor[qualityIdx][nChannels - 1]; |
365 | 0 | stopPF = peTab[size - 1].bits2PeFactor[qualityIdx][nChannels - 1]; |
366 | 0 | } else { |
367 | 0 | for (i = 0; i < size - 1; i++) { |
368 | 0 | if ((peTab[i].bitrate <= bitRate) && |
369 | 0 | (peTab[i + 1].bitrate > bitRate)) { |
370 | 0 | startB = peTab[i].bitrate; |
371 | 0 | stopB = peTab[i + 1].bitrate; |
372 | 0 | startPF = peTab[i].bits2PeFactor[qualityIdx][nChannels - 1]; |
373 | 0 | stopPF = peTab[i + 1].bits2PeFactor[qualityIdx][nChannels - 1]; |
374 | 0 | break; |
375 | 0 | } |
376 | 0 | } |
377 | 0 | } |
378 | | |
379 | | /*** 2.2) Configuration available? ***/ |
380 | 0 | if (startB != -1) { |
381 | | /** 2.2.1) linear interpolate to actual PEfactor **/ |
382 | 0 | FIXP_DBL bit2PE = 0; |
383 | |
|
384 | 0 | const FIXP_DBL maxBit2PE = FL2FXCONST_DBL(3.f / 4.f); |
385 | | |
386 | | /* bit2PE = ((stopPF-startPF)/(stopB-startB))*(bitRate-startB)+startPF; |
387 | | */ |
388 | 0 | slope = fDivNorm(bitRate - startB, stopB - startB); |
389 | 0 | bit2PE = fMult(slope, stopPF - startPF) + startPF; |
390 | |
|
391 | 0 | bit2PE = fMin(maxBit2PE, bit2PE); |
392 | | |
393 | | /** 2.2.2) sanity check if bits2pe value is high enough **/ |
394 | 0 | if (bit2PE >= (FL2FXCONST_DBL(0.35f) >> 2)) { |
395 | 0 | bit2PE_m = bit2PE; |
396 | 0 | bit2PE_e = 2; /* table is fixed scaled */ |
397 | 0 | } |
398 | 0 | } /* br */ |
399 | 0 | } /* sr */ |
400 | 0 | } /* advancedBitsToPe */ |
401 | |
|
402 | 0 | if (dZoneQuantEnable) { |
403 | 0 | if (bit2PE_m >= (FL2FXCONST_DBL(0.6f)) >> bit2PE_e) { |
404 | | /* Additional headroom for addition */ |
405 | 0 | bit2PE_m >>= 1; |
406 | 0 | bit2PE_e += 1; |
407 | 0 | } |
408 | | |
409 | | /* the quantTendencyCompensator compensates a lower bit consumption due to |
410 | | * increasing the tendency to quantize low spectral values to the lower |
411 | | * quantizer border for bitrates below a certain bitrate threshold --> see |
412 | | * also function calcSfbDistLD in quantize.c */ |
413 | 0 | if ((bitRate / nChannels > 32000) && (bitRate / nChannels <= 40000)) { |
414 | 0 | bit2PE_m += (FL2FXCONST_DBL(0.4f)) >> bit2PE_e; |
415 | 0 | } else if (bitRate / nChannels > 20000) { |
416 | 0 | bit2PE_m += (FL2FXCONST_DBL(0.3f)) >> bit2PE_e; |
417 | 0 | } else if (bitRate / nChannels >= 16000) { |
418 | 0 | bit2PE_m += (FL2FXCONST_DBL(0.3f)) >> bit2PE_e; |
419 | 0 | } else { |
420 | 0 | bit2PE_m += (FL2FXCONST_DBL(0.0f)) >> bit2PE_e; |
421 | 0 | } |
422 | 0 | } |
423 | | |
424 | | /***** 3.) Return bits2pe factor *****/ |
425 | 0 | *bits2PeFactor_m = bit2PE_m; |
426 | 0 | *bits2PeFactor_e = bit2PE_e; |
427 | 0 | } |
428 | | |
429 | | /***************************************************************************** |
430 | | functionname: FDKaacEnc_bits2pe2 |
431 | | description: convert from bits to pe |
432 | | *****************************************************************************/ |
433 | | FDK_INLINE INT FDKaacEnc_bits2pe2(const INT bits, const FIXP_DBL factor_m, |
434 | 0 | const INT factor_e) { |
435 | 0 | return (INT)(fMult(factor_m, (FIXP_DBL)(bits << Q_AVGBITS)) >> |
436 | 0 | (Q_AVGBITS - factor_e)); |
437 | 0 | } |
438 | | |
439 | | /***************************************************************************** |
440 | | functionname: FDKaacEnc_calcThreshExp |
441 | | description: loudness calculation (threshold to the power of redExp) |
442 | | *****************************************************************************/ |
443 | | static void FDKaacEnc_calcThreshExp( |
444 | | FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB], |
445 | | const QC_OUT_CHANNEL *const qcOutChannel[(2)], |
446 | 0 | const PSY_OUT_CHANNEL *const psyOutChannel[(2)], const INT nChannels) { |
447 | 0 | INT ch, sfb, sfbGrp; |
448 | 0 | FIXP_DBL thrExpLdData; |
449 | |
|
450 | 0 | for (ch = 0; ch < nChannels; ch++) { |
451 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
452 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
453 | 0 | for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
454 | 0 | thrExpLdData = psyOutChannel[ch]->sfbThresholdLdData[sfbGrp + sfb] >> 2; |
455 | 0 | thrExp[ch][sfbGrp + sfb] = CalcInvLdData(thrExpLdData); |
456 | 0 | } |
457 | 0 | } |
458 | 0 | } |
459 | 0 | } |
460 | | |
461 | | /***************************************************************************** |
462 | | functionname: FDKaacEnc_adaptMinSnr |
463 | | description: reduce minSnr requirements for bands with relative low |
464 | | energies |
465 | | *****************************************************************************/ |
466 | | static void FDKaacEnc_adaptMinSnr( |
467 | | QC_OUT_CHANNEL *const qcOutChannel[(2)], |
468 | | const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
469 | 0 | const MINSNR_ADAPT_PARAM *const msaParam, const INT nChannels) { |
470 | 0 | INT ch, sfb, sfbGrp, nSfb; |
471 | 0 | FIXP_DBL avgEnLD64, dbRatio, minSnrRed; |
472 | 0 | FIXP_DBL minSnrLimitLD64 = |
473 | 0 | FL2FXCONST_DBL(-0.00503012648262f); /* ld64(0.8f) */ |
474 | 0 | FIXP_DBL nSfbLD64; |
475 | 0 | FIXP_DBL accu; |
476 | |
|
477 | 0 | FIXP_DBL msaParam_maxRed = msaParam->maxRed; |
478 | 0 | FIXP_DBL msaParam_startRatio = msaParam->startRatio; |
479 | 0 | FIXP_DBL msaParam_redRatioFac = |
480 | 0 | fMult(msaParam->redRatioFac, FL2FXCONST_DBL(0.3010299956f)); |
481 | 0 | FIXP_DBL msaParam_redOffs = msaParam->redOffs; |
482 | |
|
483 | 0 | for (ch = 0; ch < nChannels; ch++) { |
484 | | /* calc average energy per scalefactor band */ |
485 | 0 | nSfb = 0; |
486 | 0 | accu = FL2FXCONST_DBL(0.0f); |
487 | |
|
488 | 0 | DWORD_ALIGNED(psyOutChannel[ch]->sfbEnergy); |
489 | |
|
490 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
491 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
492 | 0 | int maxSfbPerGroup = psyOutChannel[ch]->maxSfbPerGroup; |
493 | 0 | nSfb += maxSfbPerGroup; |
494 | 0 | for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { |
495 | 0 | accu += psyOutChannel[ch]->sfbEnergy[sfbGrp + sfb] >> 6; |
496 | 0 | } |
497 | 0 | } |
498 | |
|
499 | 0 | if ((accu == FL2FXCONST_DBL(0.0f)) || (nSfb == 0)) { |
500 | 0 | avgEnLD64 = FL2FXCONST_DBL(-1.0f); |
501 | 0 | } else { |
502 | 0 | nSfbLD64 = CalcLdInt(nSfb); |
503 | 0 | avgEnLD64 = CalcLdData(accu); |
504 | 0 | avgEnLD64 = avgEnLD64 + FL2FXCONST_DBL(0.09375f) - |
505 | 0 | nSfbLD64; /* 0.09375f: compensate shift with 6 */ |
506 | 0 | } |
507 | | |
508 | | /* reduce minSnr requirement by minSnr^minSnrRed dependent on avgEn/sfbEn */ |
509 | 0 | int maxSfbPerGroup = psyOutChannel[ch]->maxSfbPerGroup; |
510 | 0 | int sfbCnt = psyOutChannel[ch]->sfbCnt; |
511 | 0 | int sfbPerGroup = psyOutChannel[ch]->sfbPerGroup; |
512 | |
|
513 | 0 | for (sfbGrp = 0; sfbGrp < sfbCnt; sfbGrp += sfbPerGroup) { |
514 | 0 | FIXP_DBL *RESTRICT psfbEnergyLdData = |
515 | 0 | &qcOutChannel[ch]->sfbEnergyLdData[sfbGrp]; |
516 | 0 | FIXP_DBL *RESTRICT psfbMinSnrLdData = |
517 | 0 | &qcOutChannel[ch]->sfbMinSnrLdData[sfbGrp]; |
518 | 0 | for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { |
519 | 0 | FIXP_DBL sfbEnergyLdData = *psfbEnergyLdData++; |
520 | 0 | FIXP_DBL sfbMinSnrLdData = *psfbMinSnrLdData; |
521 | 0 | dbRatio = avgEnLD64 - sfbEnergyLdData; |
522 | 0 | int update = (msaParam_startRatio < dbRatio) ? 1 : 0; |
523 | 0 | minSnrRed = msaParam_redOffs + fMult(msaParam_redRatioFac, |
524 | 0 | dbRatio); /* scaled by 1.0f/64.0f*/ |
525 | 0 | minSnrRed = |
526 | 0 | fixMax(minSnrRed, msaParam_maxRed); /* scaled by 1.0f/64.0f*/ |
527 | 0 | minSnrRed = (fMult(sfbMinSnrLdData, minSnrRed)) << 6; |
528 | 0 | minSnrRed = fixMin(minSnrLimitLD64, minSnrRed); |
529 | 0 | *psfbMinSnrLdData++ = update ? minSnrRed : sfbMinSnrLdData; |
530 | 0 | } |
531 | 0 | } |
532 | 0 | } |
533 | 0 | } |
534 | | |
535 | | /***************************************************************************** |
536 | | functionname: FDKaacEnc_initAvoidHoleFlag |
537 | | description: determine bands where avoid hole is not necessary resp. possible |
538 | | *****************************************************************************/ |
539 | | static void FDKaacEnc_initAvoidHoleFlag( |
540 | | QC_OUT_CHANNEL *const qcOutChannel[(2)], |
541 | | const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
542 | | UCHAR ahFlag[(2)][MAX_GROUPED_SFB], const struct TOOLSINFO *const toolsInfo, |
543 | 0 | const INT nChannels, const AH_PARAM *const ahParam) { |
544 | 0 | INT ch, sfb, sfbGrp; |
545 | 0 | FIXP_DBL sfbEn, sfbEnm1; |
546 | 0 | FIXP_DBL sfbEnLdData; |
547 | 0 | FIXP_DBL avgEnLdData; |
548 | | |
549 | | /* decrease spread energy by 3dB for long blocks, resp. 2dB for shorts |
550 | | (avoid more holes in long blocks) */ |
551 | 0 | for (ch = 0; ch < nChannels; ch++) { |
552 | 0 | QC_OUT_CHANNEL *const qcOutChan = qcOutChannel[ch]; |
553 | |
|
554 | 0 | if (psyOutChannel[ch]->lastWindowSequence != SHORT_WINDOW) { |
555 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
556 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) |
557 | 0 | for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) |
558 | 0 | qcOutChan->sfbSpreadEnergy[sfbGrp + sfb] >>= 1; |
559 | 0 | } else { |
560 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
561 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) |
562 | 0 | for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) |
563 | 0 | qcOutChan->sfbSpreadEnergy[sfbGrp + sfb] = fMult( |
564 | 0 | FL2FXCONST_DBL(0.63f), qcOutChan->sfbSpreadEnergy[sfbGrp + sfb]); |
565 | 0 | } |
566 | 0 | } |
567 | | |
568 | | /* increase minSnr for local peaks, decrease it for valleys */ |
569 | 0 | if (ahParam->modifyMinSnr) { |
570 | 0 | for (ch = 0; ch < nChannels; ch++) { |
571 | 0 | QC_OUT_CHANNEL *const qcOutChan = qcOutChannel[ch]; |
572 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
573 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
574 | 0 | for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
575 | 0 | FIXP_DBL sfbEnp1, avgEn; |
576 | 0 | if (sfb > 0) |
577 | 0 | sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp + sfb - 1]; |
578 | 0 | else |
579 | 0 | sfbEnm1 = qcOutChan->sfbEnergy[sfbGrp + sfb]; |
580 | |
|
581 | 0 | if (sfb < psyOutChannel[ch]->maxSfbPerGroup - 1) |
582 | 0 | sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp + sfb + 1]; |
583 | 0 | else |
584 | 0 | sfbEnp1 = qcOutChan->sfbEnergy[sfbGrp + sfb]; |
585 | |
|
586 | 0 | avgEn = (sfbEnm1 >> 1) + (sfbEnp1 >> 1); |
587 | 0 | avgEnLdData = CalcLdData(avgEn); |
588 | 0 | sfbEn = qcOutChan->sfbEnergy[sfbGrp + sfb]; |
589 | 0 | sfbEnLdData = qcOutChan->sfbEnergyLdData[sfbGrp + sfb]; |
590 | | /* peak ? */ |
591 | 0 | if (sfbEn > avgEn) { |
592 | 0 | FIXP_DBL tmpMinSnrLdData; |
593 | 0 | if (psyOutChannel[ch]->lastWindowSequence == LONG_WINDOW) |
594 | 0 | tmpMinSnrLdData = SnrLdFac + fixMax(avgEnLdData - sfbEnLdData, |
595 | 0 | SnrLdMin1 - SnrLdFac); |
596 | 0 | else |
597 | 0 | tmpMinSnrLdData = SnrLdFac + fixMax(avgEnLdData - sfbEnLdData, |
598 | 0 | SnrLdMin3 - SnrLdFac); |
599 | |
|
600 | 0 | qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] = fixMin( |
601 | 0 | qcOutChan->sfbMinSnrLdData[sfbGrp + sfb], tmpMinSnrLdData); |
602 | 0 | } |
603 | | /* valley ? */ |
604 | 0 | if (((sfbEnLdData + (FIXP_DBL)SnrLdMin4) < (FIXP_DBL)avgEnLdData) && |
605 | 0 | (sfbEn > FL2FXCONST_DBL(0.0))) { |
606 | 0 | FIXP_DBL tmpMinSnrLdData = avgEnLdData - sfbEnLdData - |
607 | 0 | (FIXP_DBL)SnrLdMin4 + |
608 | 0 | qcOutChan->sfbMinSnrLdData[sfbGrp + sfb]; |
609 | 0 | tmpMinSnrLdData = fixMin((FIXP_DBL)SnrLdFac, tmpMinSnrLdData); |
610 | 0 | qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] = |
611 | 0 | fixMin(tmpMinSnrLdData, |
612 | 0 | (FIXP_DBL)(qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + |
613 | 0 | SnrLdMin2)); |
614 | 0 | } |
615 | 0 | } |
616 | 0 | } |
617 | 0 | } |
618 | 0 | } |
619 | | |
620 | | /* stereo: adapt the minimum requirements sfbMinSnr of mid and |
621 | | side channels to avoid spending unnoticable bits */ |
622 | 0 | if (nChannels == 2) { |
623 | 0 | QC_OUT_CHANNEL *qcOutChanM = qcOutChannel[0]; |
624 | 0 | QC_OUT_CHANNEL *qcOutChanS = qcOutChannel[1]; |
625 | 0 | const PSY_OUT_CHANNEL *const psyOutChanM = psyOutChannel[0]; |
626 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChanM->sfbCnt; |
627 | 0 | sfbGrp += psyOutChanM->sfbPerGroup) { |
628 | 0 | for (sfb = 0; sfb < psyOutChanM->maxSfbPerGroup; sfb++) { |
629 | 0 | if (toolsInfo->msMask[sfbGrp + sfb]) { |
630 | 0 | FIXP_DBL maxSfbEnLd = |
631 | 0 | fixMax(qcOutChanM->sfbEnergyLdData[sfbGrp + sfb], |
632 | 0 | qcOutChanS->sfbEnergyLdData[sfbGrp + sfb]); |
633 | 0 | FIXP_DBL maxThrLd, sfbMinSnrTmpLd; |
634 | |
|
635 | 0 | if (((SnrLdMin5 >> 1) + (maxSfbEnLd >> 1) + |
636 | 0 | (qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] >> 1)) <= |
637 | 0 | FL2FXCONST_DBL(-0.5f)) |
638 | 0 | maxThrLd = FL2FXCONST_DBL(-1.0f); |
639 | 0 | else |
640 | 0 | maxThrLd = SnrLdMin5 + maxSfbEnLd + |
641 | 0 | qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb]; |
642 | |
|
643 | 0 | if (qcOutChanM->sfbEnergy[sfbGrp + sfb] > FL2FXCONST_DBL(0.0f)) |
644 | 0 | sfbMinSnrTmpLd = |
645 | 0 | maxThrLd - qcOutChanM->sfbEnergyLdData[sfbGrp + sfb]; |
646 | 0 | else |
647 | 0 | sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f); |
648 | |
|
649 | 0 | qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] = |
650 | 0 | fixMax(qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb], sfbMinSnrTmpLd); |
651 | |
|
652 | 0 | if (qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] <= FL2FXCONST_DBL(0.0f)) |
653 | 0 | qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb] = fixMin( |
654 | 0 | qcOutChanM->sfbMinSnrLdData[sfbGrp + sfb], (FIXP_DBL)SnrLdFac); |
655 | |
|
656 | 0 | if (qcOutChanS->sfbEnergy[sfbGrp + sfb] > FL2FXCONST_DBL(0.0f)) |
657 | 0 | sfbMinSnrTmpLd = |
658 | 0 | maxThrLd - qcOutChanS->sfbEnergyLdData[sfbGrp + sfb]; |
659 | 0 | else |
660 | 0 | sfbMinSnrTmpLd = FL2FXCONST_DBL(0.0f); |
661 | |
|
662 | 0 | qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb] = |
663 | 0 | fixMax(qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb], sfbMinSnrTmpLd); |
664 | |
|
665 | 0 | if (qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb] <= FL2FXCONST_DBL(0.0f)) |
666 | 0 | qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb] = fixMin( |
667 | 0 | qcOutChanS->sfbMinSnrLdData[sfbGrp + sfb], (FIXP_DBL)SnrLdFac); |
668 | |
|
669 | 0 | if (qcOutChanM->sfbEnergy[sfbGrp + sfb] > |
670 | 0 | qcOutChanM->sfbSpreadEnergy[sfbGrp + sfb]) |
671 | 0 | qcOutChanS->sfbSpreadEnergy[sfbGrp + sfb] = fMult( |
672 | 0 | qcOutChanS->sfbEnergy[sfbGrp + sfb], FL2FXCONST_DBL(0.9f)); |
673 | |
|
674 | 0 | if (qcOutChanS->sfbEnergy[sfbGrp + sfb] > |
675 | 0 | qcOutChanS->sfbSpreadEnergy[sfbGrp + sfb]) |
676 | 0 | qcOutChanM->sfbSpreadEnergy[sfbGrp + sfb] = fMult( |
677 | 0 | qcOutChanM->sfbEnergy[sfbGrp + sfb], FL2FXCONST_DBL(0.9f)); |
678 | |
|
679 | 0 | } /* if (toolsInfo->msMask[sfbGrp+sfb]) */ |
680 | 0 | } /* sfb */ |
681 | 0 | } /* sfbGrp */ |
682 | 0 | } /* nChannels==2 */ |
683 | | |
684 | | /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */ |
685 | 0 | for (ch = 0; ch < nChannels; ch++) { |
686 | 0 | QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch]; |
687 | 0 | const PSY_OUT_CHANNEL *const psyOutChan = psyOutChannel[ch]; |
688 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; |
689 | 0 | sfbGrp += psyOutChan->sfbPerGroup) { |
690 | 0 | for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) { |
691 | 0 | if ((qcOutChan->sfbSpreadEnergy[sfbGrp + sfb] > |
692 | 0 | qcOutChan->sfbEnergy[sfbGrp + sfb]) || |
693 | 0 | (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] > FL2FXCONST_DBL(0.0f))) { |
694 | 0 | ahFlag[ch][sfbGrp + sfb] = NO_AH; |
695 | 0 | } else { |
696 | 0 | ahFlag[ch][sfbGrp + sfb] = AH_INACTIVE; |
697 | 0 | } |
698 | 0 | } |
699 | 0 | } |
700 | 0 | } |
701 | 0 | } |
702 | | |
703 | | /** |
704 | | * \brief Calculate constants that do not change during successive pe |
705 | | * calculations. |
706 | | * |
707 | | * \param peData Pointer to structure containing PE data of |
708 | | * current element. |
709 | | * \param psyOutChannel Pointer to PSY_OUT_CHANNEL struct holding |
710 | | * nChannels elements. |
711 | | * \param qcOutChannel Pointer to QC_OUT_CHANNEL struct holding |
712 | | * nChannels elements. |
713 | | * \param nChannels Number of channels in element. |
714 | | * \param peOffset Fixed PE offset defined while |
715 | | * FDKaacEnc_AdjThrInit() depending on bitrate. |
716 | | * |
717 | | * \return void |
718 | | */ |
719 | | static void FDKaacEnc_preparePe(PE_DATA *const peData, |
720 | | const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
721 | | const QC_OUT_CHANNEL *const qcOutChannel[(2)], |
722 | 0 | const INT nChannels, const INT peOffset) { |
723 | 0 | INT ch; |
724 | |
|
725 | 0 | for (ch = 0; ch < nChannels; ch++) { |
726 | 0 | const PSY_OUT_CHANNEL *const psyOutChan = psyOutChannel[ch]; |
727 | 0 | FDKaacEnc_prepareSfbPe( |
728 | 0 | &peData->peChannelData[ch], psyOutChan->sfbEnergyLdData, |
729 | 0 | psyOutChan->sfbThresholdLdData, qcOutChannel[ch]->sfbFormFactorLdData, |
730 | 0 | psyOutChan->sfbOffsets, psyOutChan->sfbCnt, psyOutChan->sfbPerGroup, |
731 | 0 | psyOutChan->maxSfbPerGroup); |
732 | 0 | } |
733 | 0 | peData->offset = peOffset; |
734 | 0 | } |
735 | | |
736 | | /** |
737 | | * \brief Calculate weighting factor for threshold adjustment. |
738 | | * |
739 | | * Calculate weighting factor to be applied at energies and thresholds in ld64 |
740 | | * format. |
741 | | * |
742 | | * \param peData, Pointer to PE data in current element. |
743 | | * \param psyOutChannel Pointer to PSY_OUT_CHANNEL struct holding |
744 | | * nChannels elements. |
745 | | * \param qcOutChannel Pointer to QC_OUT_CHANNEL struct holding |
746 | | * nChannels elements. |
747 | | * \param toolsInfo Pointer to tools info struct of current element. |
748 | | * \param adjThrStateElement Pointer to ATS_ELEMENT holding enFacPatch |
749 | | * states. |
750 | | * \param nChannels Number of channels in element. |
751 | | * \param usePatchTool Apply the weighting tool 0 (no) else (yes). |
752 | | * |
753 | | * \return void |
754 | | */ |
755 | | static void FDKaacEnc_calcWeighting( |
756 | | const PE_DATA *const peData, |
757 | | const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
758 | | QC_OUT_CHANNEL *const qcOutChannel[(2)], |
759 | | const struct TOOLSINFO *const toolsInfo, |
760 | | ATS_ELEMENT *const adjThrStateElement, const INT nChannels, |
761 | 0 | const INT usePatchTool) { |
762 | 0 | int ch, noShortWindowInFrame = TRUE; |
763 | 0 | INT exePatchM = 0; |
764 | |
|
765 | 0 | for (ch = 0; ch < nChannels; ch++) { |
766 | 0 | if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) { |
767 | 0 | noShortWindowInFrame = FALSE; |
768 | 0 | } |
769 | 0 | FDKmemclear(qcOutChannel[ch]->sfbEnFacLd, |
770 | 0 | MAX_GROUPED_SFB * sizeof(FIXP_DBL)); |
771 | 0 | } |
772 | |
|
773 | 0 | if (usePatchTool == 0) { |
774 | 0 | return; /* tool is disabled */ |
775 | 0 | } |
776 | | |
777 | 0 | for (ch = 0; ch < nChannels; ch++) { |
778 | 0 | const PSY_OUT_CHANNEL *const psyOutChan = psyOutChannel[ch]; |
779 | |
|
780 | 0 | if (noShortWindowInFrame) { /* retain energy ratio between blocks of |
781 | | different length */ |
782 | |
|
783 | 0 | FIXP_DBL nrgSum14, nrgSum12, nrgSum34, nrgTotal; |
784 | 0 | FIXP_DBL nrgFacLd_14, nrgFacLd_12, nrgFacLd_34; |
785 | 0 | INT usePatch, exePatch; |
786 | 0 | int sfb, sfbGrp, nLinesSum = 0; |
787 | |
|
788 | 0 | nrgSum14 = nrgSum12 = nrgSum34 = nrgTotal = FL2FXCONST_DBL(0.f); |
789 | | |
790 | | /* calculate flatness of audible spectrum, i.e. spectrum above masking |
791 | | * threshold. */ |
792 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
793 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
794 | 0 | for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
795 | 0 | FIXP_DBL nrgFac12 = CalcInvLdData( |
796 | 0 | psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 1); /* nrg^(1/2) */ |
797 | 0 | FIXP_DBL nrgFac14 = CalcInvLdData( |
798 | 0 | psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 2); /* nrg^(1/4) */ |
799 | | |
800 | | /* maximal number of bands is 64, results scaling factor 6 */ |
801 | 0 | nLinesSum += peData->peChannelData[ch] |
802 | 0 | .sfbNLines[sfbGrp + sfb]; /* relevant lines */ |
803 | 0 | nrgTotal += |
804 | 0 | (psyOutChan->sfbEnergy[sfbGrp + sfb] >> 6); /* sum up nrg */ |
805 | 0 | nrgSum12 += (nrgFac12 >> 6); /* sum up nrg^(2/4) */ |
806 | 0 | nrgSum14 += (nrgFac14 >> 6); /* sum up nrg^(1/4) */ |
807 | 0 | nrgSum34 += (fMult(nrgFac14, nrgFac12) >> 6); /* sum up nrg^(3/4) */ |
808 | 0 | } |
809 | 0 | } |
810 | |
|
811 | 0 | nrgTotal = CalcLdData(nrgTotal); /* get ld64 of total nrg */ |
812 | |
|
813 | 0 | nrgFacLd_14 = |
814 | 0 | CalcLdData(nrgSum14) - nrgTotal; /* ld64(nrgSum14/nrgTotal) */ |
815 | 0 | nrgFacLd_12 = |
816 | 0 | CalcLdData(nrgSum12) - nrgTotal; /* ld64(nrgSum12/nrgTotal) */ |
817 | 0 | nrgFacLd_34 = |
818 | 0 | CalcLdData(nrgSum34) - nrgTotal; /* ld64(nrgSum34/nrgTotal) */ |
819 | | |
820 | | /* Note: nLinesSum cannot be larger than the number of total lines, thats |
821 | | * taken care of in line_pe.cpp FDKaacEnc_prepareSfbPe() */ |
822 | 0 | adjThrStateElement->chaosMeasureEnFac[ch] = |
823 | 0 | fMax(FL2FXCONST_DBL(0.1875f), |
824 | 0 | fDivNorm(nLinesSum, psyOutChan->sfbOffsets[psyOutChan->sfbCnt])); |
825 | |
|
826 | 0 | usePatch = (adjThrStateElement->chaosMeasureEnFac[ch] > |
827 | 0 | FL2FXCONST_DBL(0.78125f)); |
828 | 0 | exePatch = ((usePatch) && (adjThrStateElement->lastEnFacPatch[ch])); |
829 | |
|
830 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
831 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
832 | 0 | for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
833 | 0 | INT sfbExePatch; |
834 | | /* for MS coupled SFBs, also execute patch in side channel if done in |
835 | | * mid channel */ |
836 | 0 | if ((ch == 1) && (toolsInfo->msMask[sfbGrp + sfb])) { |
837 | 0 | sfbExePatch = exePatchM; |
838 | 0 | } else { |
839 | 0 | sfbExePatch = exePatch; |
840 | 0 | } |
841 | |
|
842 | 0 | if ((sfbExePatch) && |
843 | 0 | (psyOutChan->sfbEnergy[sfbGrp + sfb] > FL2FXCONST_DBL(0.f))) { |
844 | | /* execute patch based on spectral flatness calculated above */ |
845 | 0 | if (adjThrStateElement->chaosMeasureEnFac[ch] > |
846 | 0 | FL2FXCONST_DBL(0.8125f)) { |
847 | 0 | qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] = |
848 | 0 | ((nrgFacLd_14 + |
849 | 0 | (psyOutChan->sfbEnergyLdData[sfbGrp + sfb] + |
850 | 0 | (psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 1))) >> |
851 | 0 | 1); /* sfbEnergy^(3/4) */ |
852 | 0 | } else if (adjThrStateElement->chaosMeasureEnFac[ch] > |
853 | 0 | FL2FXCONST_DBL(0.796875f)) { |
854 | 0 | qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] = |
855 | 0 | ((nrgFacLd_12 + psyOutChan->sfbEnergyLdData[sfbGrp + sfb]) >> |
856 | 0 | 1); /* sfbEnergy^(2/4) */ |
857 | 0 | } else { |
858 | 0 | qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] = |
859 | 0 | ((nrgFacLd_34 + |
860 | 0 | (psyOutChan->sfbEnergyLdData[sfbGrp + sfb] >> 1)) >> |
861 | 0 | 1); /* sfbEnergy^(1/4) */ |
862 | 0 | } |
863 | 0 | qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb] = |
864 | 0 | fixMin(qcOutChannel[ch]->sfbEnFacLd[sfbGrp + sfb], (FIXP_DBL)0); |
865 | 0 | } |
866 | 0 | } |
867 | 0 | } /* sfb loop */ |
868 | |
|
869 | 0 | adjThrStateElement->lastEnFacPatch[ch] = usePatch; |
870 | 0 | exePatchM = exePatch; |
871 | 0 | } else { |
872 | | /* !noShortWindowInFrame */ |
873 | 0 | adjThrStateElement->chaosMeasureEnFac[ch] = FL2FXCONST_DBL(0.75f); |
874 | 0 | adjThrStateElement->lastEnFacPatch[ch] = |
875 | 0 | TRUE; /* allow use of sfbEnFac patch in upcoming frame */ |
876 | 0 | } |
877 | |
|
878 | 0 | } /* ch loop */ |
879 | 0 | } |
880 | | |
881 | | /***************************************************************************** |
882 | | functionname: FDKaacEnc_calcPe |
883 | | description: calculate pe for both channels |
884 | | *****************************************************************************/ |
885 | | static void FDKaacEnc_calcPe(const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
886 | | const QC_OUT_CHANNEL *const qcOutChannel[(2)], |
887 | 0 | PE_DATA *const peData, const INT nChannels) { |
888 | 0 | INT ch; |
889 | |
|
890 | 0 | peData->pe = peData->offset; |
891 | 0 | peData->constPart = 0; |
892 | 0 | peData->nActiveLines = 0; |
893 | 0 | for (ch = 0; ch < nChannels; ch++) { |
894 | 0 | PE_CHANNEL_DATA *peChanData = &peData->peChannelData[ch]; |
895 | |
|
896 | 0 | FDKaacEnc_calcSfbPe( |
897 | 0 | peChanData, qcOutChannel[ch]->sfbWeightedEnergyLdData, |
898 | 0 | qcOutChannel[ch]->sfbThresholdLdData, psyOutChannel[ch]->sfbCnt, |
899 | 0 | psyOutChannel[ch]->sfbPerGroup, psyOutChannel[ch]->maxSfbPerGroup, |
900 | 0 | psyOutChannel[ch]->isBook, psyOutChannel[ch]->isScale); |
901 | |
|
902 | 0 | peData->pe += peChanData->pe; |
903 | 0 | peData->constPart += peChanData->constPart; |
904 | 0 | peData->nActiveLines += peChanData->nActiveLines; |
905 | 0 | } |
906 | 0 | } |
907 | | |
908 | | void FDKaacEnc_peCalculation(PE_DATA *const peData, |
909 | | const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
910 | | QC_OUT_CHANNEL *const qcOutChannel[(2)], |
911 | | const struct TOOLSINFO *const toolsInfo, |
912 | | ATS_ELEMENT *const adjThrStateElement, |
913 | 0 | const INT nChannels) { |
914 | | /* constants that will not change during successive pe calculations */ |
915 | 0 | FDKaacEnc_preparePe(peData, psyOutChannel, qcOutChannel, nChannels, |
916 | 0 | adjThrStateElement->peOffset); |
917 | | |
918 | | /* calculate weighting factor for threshold adjustment */ |
919 | 0 | FDKaacEnc_calcWeighting(peData, psyOutChannel, qcOutChannel, toolsInfo, |
920 | 0 | adjThrStateElement, nChannels, 1); |
921 | 0 | { |
922 | | /* no weighting of threholds and energies for mlout */ |
923 | | /* weight energies and thresholds */ |
924 | 0 | int ch; |
925 | 0 | for (ch = 0; ch < nChannels; ch++) { |
926 | 0 | int sfb, sfbGrp; |
927 | 0 | QC_OUT_CHANNEL *pQcOutCh = qcOutChannel[ch]; |
928 | |
|
929 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
930 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
931 | 0 | for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
932 | 0 | pQcOutCh->sfbWeightedEnergyLdData[sfb + sfbGrp] = |
933 | 0 | pQcOutCh->sfbEnergyLdData[sfb + sfbGrp] - |
934 | 0 | pQcOutCh->sfbEnFacLd[sfb + sfbGrp]; |
935 | 0 | pQcOutCh->sfbThresholdLdData[sfb + sfbGrp] -= |
936 | 0 | pQcOutCh->sfbEnFacLd[sfb + sfbGrp]; |
937 | 0 | } |
938 | 0 | } |
939 | 0 | } |
940 | 0 | } |
941 | | |
942 | | /* pe without reduction */ |
943 | 0 | FDKaacEnc_calcPe(psyOutChannel, qcOutChannel, peData, nChannels); |
944 | 0 | } |
945 | | |
946 | | /***************************************************************************** |
947 | | functionname: FDKaacEnc_FDKaacEnc_calcPeNoAH |
948 | | description: sum the pe data only for bands where avoid hole is inactive |
949 | | *****************************************************************************/ |
950 | 0 | #define CONSTPART_HEADROOM 4 |
951 | | static void FDKaacEnc_FDKaacEnc_calcPeNoAH( |
952 | | INT *const pe, INT *const constPart, INT *const nActiveLines, |
953 | | const PE_DATA *const peData, const UCHAR ahFlag[(2)][MAX_GROUPED_SFB], |
954 | 0 | const PSY_OUT_CHANNEL *const psyOutChannel[(2)], const INT nChannels) { |
955 | 0 | INT ch, sfb, sfbGrp; |
956 | |
|
957 | 0 | INT pe_tmp = peData->offset; |
958 | 0 | INT constPart_tmp = 0; |
959 | 0 | INT nActiveLines_tmp = 0; |
960 | 0 | for (ch = 0; ch < nChannels; ch++) { |
961 | 0 | const PE_CHANNEL_DATA *const peChanData = &peData->peChannelData[ch]; |
962 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
963 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
964 | 0 | for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
965 | 0 | if (ahFlag[ch][sfbGrp + sfb] < AH_ACTIVE) { |
966 | 0 | pe_tmp += peChanData->sfbPe[sfbGrp + sfb]; |
967 | 0 | constPart_tmp += |
968 | 0 | peChanData->sfbConstPart[sfbGrp + sfb] >> CONSTPART_HEADROOM; |
969 | 0 | nActiveLines_tmp += peChanData->sfbNActiveLines[sfbGrp + sfb]; |
970 | 0 | } |
971 | 0 | } |
972 | 0 | } |
973 | 0 | } |
974 | | /* correct scaled pe and constPart values */ |
975 | 0 | *pe = pe_tmp >> PE_CONSTPART_SHIFT; |
976 | 0 | *constPart = constPart_tmp >> (PE_CONSTPART_SHIFT - CONSTPART_HEADROOM); |
977 | |
|
978 | 0 | *nActiveLines = nActiveLines_tmp; |
979 | 0 | } |
980 | | |
981 | | /***************************************************************************** |
982 | | functionname: FDKaacEnc_reduceThresholdsCBR |
983 | | description: apply reduction formula |
984 | | *****************************************************************************/ |
985 | | static const FIXP_DBL limitThrReducedLdData = |
986 | | (FIXP_DBL)0x00008000; /*FL2FXCONST_DBL(FDKpow(2.0,-LD_DATA_SCALING/4.0));*/ |
987 | | |
988 | | static void FDKaacEnc_reduceThresholdsCBR( |
989 | | QC_OUT_CHANNEL *const qcOutChannel[(2)], |
990 | | const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
991 | | UCHAR ahFlag[(2)][MAX_GROUPED_SFB], |
992 | | const FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB], const INT nChannels, |
993 | 0 | const FIXP_DBL redVal_m, const SCHAR redVal_e) { |
994 | 0 | INT ch, sfb, sfbGrp; |
995 | 0 | FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData; |
996 | 0 | FIXP_DBL sfbThrExp; |
997 | |
|
998 | 0 | for (ch = 0; ch < nChannels; ch++) { |
999 | 0 | QC_OUT_CHANNEL *qcOutChan = qcOutChannel[ch]; |
1000 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
1001 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
1002 | 0 | for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
1003 | 0 | sfbEnLdData = qcOutChan->sfbWeightedEnergyLdData[sfbGrp + sfb]; |
1004 | 0 | sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp + sfb]; |
1005 | 0 | sfbThrExp = thrExp[ch][sfbGrp + sfb]; |
1006 | 0 | if ((sfbEnLdData > sfbThrLdData) && |
1007 | 0 | (ahFlag[ch][sfbGrp + sfb] != AH_ACTIVE)) { |
1008 | | /* threshold reduction formula: |
1009 | | float tmp = thrExp[ch][sfb]+redVal; |
1010 | | tmp *= tmp; |
1011 | | sfbThrReduced = tmp*tmp; |
1012 | | */ |
1013 | 0 | int minScale = fixMin(CountLeadingBits(sfbThrExp), |
1014 | 0 | CountLeadingBits(redVal_m) - redVal_e) - |
1015 | 0 | 1; |
1016 | | |
1017 | | /* 4*log( sfbThrExp + redVal ) */ |
1018 | 0 | sfbThrReducedLdData = |
1019 | 0 | CalcLdData(fAbs(scaleValue(sfbThrExp, minScale) + |
1020 | 0 | scaleValue(redVal_m, redVal_e + minScale))) - |
1021 | 0 | (FIXP_DBL)(minScale << (DFRACT_BITS - 1 - LD_DATA_SHIFT)); |
1022 | 0 | sfbThrReducedLdData <<= 2; |
1023 | | |
1024 | | /* avoid holes */ |
1025 | 0 | if ((sfbThrReducedLdData > |
1026 | 0 | (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData)) && |
1027 | 0 | (ahFlag[ch][sfbGrp + sfb] != NO_AH)) { |
1028 | 0 | if (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] > |
1029 | 0 | (FL2FXCONST_DBL(-1.0f) - sfbEnLdData)) { |
1030 | 0 | sfbThrReducedLdData = fixMax( |
1031 | 0 | (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData), |
1032 | 0 | sfbThrLdData); |
1033 | 0 | } else |
1034 | 0 | sfbThrReducedLdData = sfbThrLdData; |
1035 | 0 | ahFlag[ch][sfbGrp + sfb] = AH_ACTIVE; |
1036 | 0 | } |
1037 | | |
1038 | | /* minimum of 29 dB Ratio for Thresholds */ |
1039 | 0 | if ((sfbEnLdData + (FIXP_DBL)MAXVAL_DBL) > |
1040 | 0 | FL2FXCONST_DBL(9.6336206 / LD_DATA_SCALING)) { |
1041 | 0 | sfbThrReducedLdData = fixMax( |
1042 | 0 | sfbThrReducedLdData, |
1043 | 0 | (sfbEnLdData - FL2FXCONST_DBL(9.6336206 / LD_DATA_SCALING))); |
1044 | 0 | } |
1045 | |
|
1046 | 0 | qcOutChan->sfbThresholdLdData[sfbGrp + sfb] = sfbThrReducedLdData; |
1047 | 0 | } |
1048 | 0 | } |
1049 | 0 | } |
1050 | 0 | } |
1051 | 0 | } |
1052 | | |
1053 | | /* similar to prepareSfbPe1() */ |
1054 | | static FIXP_DBL FDKaacEnc_calcChaosMeasure( |
1055 | | const PSY_OUT_CHANNEL *const psyOutChannel, |
1056 | 0 | const FIXP_DBL *const sfbFormFactorLdData) { |
1057 | 0 | #define SCALE_FORM_FAC \ |
1058 | 0 | (4) /* (SCALE_FORM_FAC+FORM_FAC_SHIFT) >= ld(FRAME_LENGTH)*/ |
1059 | 0 | #define SCALE_NRGS (8) |
1060 | 0 | #define SCALE_NLINES (16) |
1061 | 0 | #define SCALE_NRGS_SQRT4 (2) /* 0.25 * SCALE_NRGS */ |
1062 | 0 | #define SCALE_NLINES_P34 (12) /* 0.75 * SCALE_NLINES */ |
1063 | |
|
1064 | 0 | INT sfbGrp, sfb; |
1065 | 0 | FIXP_DBL chaosMeasure; |
1066 | 0 | INT frameNLines = 0; |
1067 | 0 | FIXP_DBL frameFormFactor = FL2FXCONST_DBL(0.f); |
1068 | 0 | FIXP_DBL frameEnergy = FL2FXCONST_DBL(0.f); |
1069 | |
|
1070 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel->sfbCnt; |
1071 | 0 | sfbGrp += psyOutChannel->sfbPerGroup) { |
1072 | 0 | for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { |
1073 | 0 | if (psyOutChannel->sfbEnergyLdData[sfbGrp + sfb] > |
1074 | 0 | psyOutChannel->sfbThresholdLdData[sfbGrp + sfb]) { |
1075 | 0 | frameFormFactor += (CalcInvLdData(sfbFormFactorLdData[sfbGrp + sfb]) >> |
1076 | 0 | SCALE_FORM_FAC); |
1077 | 0 | frameNLines += (psyOutChannel->sfbOffsets[sfbGrp + sfb + 1] - |
1078 | 0 | psyOutChannel->sfbOffsets[sfbGrp + sfb]); |
1079 | 0 | frameEnergy += (psyOutChannel->sfbEnergy[sfbGrp + sfb] >> SCALE_NRGS); |
1080 | 0 | } |
1081 | 0 | } |
1082 | 0 | } |
1083 | |
|
1084 | 0 | if (frameNLines > 0) { |
1085 | | /* frameNActiveLines = frameFormFactor*2^FORM_FAC_SHIFT * ((frameEnergy |
1086 | | *2^SCALE_NRGS)/frameNLines)^-0.25 chaosMeasure = frameNActiveLines / |
1087 | | frameNLines */ |
1088 | 0 | chaosMeasure = CalcInvLdData( |
1089 | 0 | (((CalcLdData(frameFormFactor) >> 1) - |
1090 | 0 | (CalcLdData(frameEnergy) >> (2 + 1))) - |
1091 | 0 | (fMultDiv2(FL2FXCONST_DBL(0.75f), |
1092 | 0 | CalcLdData((FIXP_DBL)frameNLines |
1093 | 0 | << (DFRACT_BITS - 1 - SCALE_NLINES))) - |
1094 | 0 | (((FIXP_DBL)(-((-SCALE_FORM_FAC + SCALE_NRGS_SQRT4 - FORM_FAC_SHIFT + |
1095 | 0 | SCALE_NLINES_P34) |
1096 | 0 | << (DFRACT_BITS - 1 - LD_DATA_SHIFT)))) >> |
1097 | 0 | 1))) |
1098 | 0 | << 1); |
1099 | 0 | } else { |
1100 | | /* assuming total chaos, if no sfb is above thresholds */ |
1101 | 0 | chaosMeasure = FL2FXCONST_DBL(1.f); |
1102 | 0 | } |
1103 | |
|
1104 | 0 | return chaosMeasure; |
1105 | 0 | } |
1106 | | |
1107 | | /* apply reduction formula for VBR-mode */ |
1108 | | static void FDKaacEnc_reduceThresholdsVBR( |
1109 | | QC_OUT_CHANNEL *const qcOutChannel[(2)], |
1110 | | const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
1111 | | UCHAR ahFlag[(2)][MAX_GROUPED_SFB], |
1112 | | const FIXP_DBL thrExp[(2)][MAX_GROUPED_SFB], const INT nChannels, |
1113 | 0 | const FIXP_DBL vbrQualFactor, FIXP_DBL *const chaosMeasureOld) { |
1114 | 0 | INT ch, sfbGrp, sfb; |
1115 | 0 | FIXP_DBL chGroupEnergy[TRANS_FAC][2]; /*energy for each group and channel*/ |
1116 | 0 | FIXP_DBL chChaosMeasure[2]; |
1117 | 0 | FIXP_DBL frameEnergy = FL2FXCONST_DBL(1e-10f); |
1118 | 0 | FIXP_DBL chaosMeasure = FL2FXCONST_DBL(0.f); |
1119 | 0 | FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrExp; |
1120 | 0 | FIXP_DBL sfbThrReducedLdData; |
1121 | 0 | FIXP_DBL chaosMeasureAvg; |
1122 | 0 | INT groupCnt; /* loop counter */ |
1123 | 0 | FIXP_DBL redVal[TRANS_FAC]; /* reduction values; in short-block case one |
1124 | | redVal for each group */ |
1125 | 0 | QC_OUT_CHANNEL *qcOutChan = NULL; |
1126 | 0 | const PSY_OUT_CHANNEL *psyOutChan = NULL; |
1127 | |
|
1128 | 0 | #define SCALE_GROUP_ENERGY (8) |
1129 | |
|
1130 | 0 | #define CONST_CHAOS_MEAS_AVG_FAC_0 (FL2FXCONST_DBL(0.25f)) |
1131 | 0 | #define CONST_CHAOS_MEAS_AVG_FAC_1 (FL2FXCONST_DBL(1.f - 0.25f)) |
1132 | |
|
1133 | 0 | #define MIN_LDTHRESH (FL2FXCONST_DBL(-0.515625f)) |
1134 | |
|
1135 | 0 | for (ch = 0; ch < nChannels; ch++) { |
1136 | 0 | psyOutChan = psyOutChannel[ch]; |
1137 | | |
1138 | | /* adding up energy for each channel and each group separately */ |
1139 | 0 | FIXP_DBL chEnergy = FL2FXCONST_DBL(0.f); |
1140 | 0 | groupCnt = 0; |
1141 | |
|
1142 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; |
1143 | 0 | sfbGrp += psyOutChan->sfbPerGroup, groupCnt++) { |
1144 | 0 | chGroupEnergy[groupCnt][ch] = FL2FXCONST_DBL(0.f); |
1145 | 0 | for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) { |
1146 | 0 | chGroupEnergy[groupCnt][ch] += |
1147 | 0 | (psyOutChan->sfbEnergy[sfbGrp + sfb] >> SCALE_GROUP_ENERGY); |
1148 | 0 | } |
1149 | 0 | chEnergy += chGroupEnergy[groupCnt][ch]; |
1150 | 0 | } |
1151 | 0 | frameEnergy += chEnergy; |
1152 | | |
1153 | | /* chaosMeasure */ |
1154 | 0 | if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) { |
1155 | 0 | chChaosMeasure[ch] = FL2FXCONST_DBL( |
1156 | 0 | 0.5f); /* assume a constant chaos measure of 0.5f for short blocks */ |
1157 | 0 | } else { |
1158 | 0 | chChaosMeasure[ch] = FDKaacEnc_calcChaosMeasure( |
1159 | 0 | psyOutChannel[ch], qcOutChannel[ch]->sfbFormFactorLdData); |
1160 | 0 | } |
1161 | 0 | chaosMeasure += fMult(chChaosMeasure[ch], chEnergy); |
1162 | 0 | } |
1163 | |
|
1164 | 0 | if (frameEnergy > chaosMeasure) { |
1165 | 0 | INT scale = CntLeadingZeros(frameEnergy) - 1; |
1166 | 0 | FIXP_DBL num = chaosMeasure << scale; |
1167 | 0 | FIXP_DBL denum = frameEnergy << scale; |
1168 | 0 | chaosMeasure = schur_div(num, denum, 16); |
1169 | 0 | } else { |
1170 | 0 | chaosMeasure = FL2FXCONST_DBL(1.f); |
1171 | 0 | } |
1172 | |
|
1173 | 0 | chaosMeasureAvg = fMult(CONST_CHAOS_MEAS_AVG_FAC_0, chaosMeasure) + |
1174 | 0 | fMult(CONST_CHAOS_MEAS_AVG_FAC_1, |
1175 | 0 | *chaosMeasureOld); /* averaging chaos measure */ |
1176 | 0 | *chaosMeasureOld = chaosMeasure = (fixMin( |
1177 | 0 | chaosMeasure, chaosMeasureAvg)); /* use min-value, safe for next frame */ |
1178 | | |
1179 | | /* characteristic curve |
1180 | | chaosMeasure = 0.2f + 0.7f/0.3f * (chaosMeasure - 0.2f); |
1181 | | chaosMeasure = fixMin(1.0f, fixMax(0.1f, chaosMeasure)); |
1182 | | constants scaled by 4.f |
1183 | | */ |
1184 | 0 | chaosMeasure = ((FL2FXCONST_DBL(0.2f) >> 2) + |
1185 | 0 | fMult(FL2FXCONST_DBL(0.7f / (4.f * 0.3f)), |
1186 | 0 | (chaosMeasure - FL2FXCONST_DBL(0.2f)))); |
1187 | 0 | chaosMeasure = |
1188 | 0 | (fixMin((FIXP_DBL)(FL2FXCONST_DBL(1.0f) >> 2), |
1189 | 0 | fixMax((FIXP_DBL)(FL2FXCONST_DBL(0.1f) >> 2), chaosMeasure))) |
1190 | 0 | << 2; |
1191 | | |
1192 | | /* calculation of reduction value */ |
1193 | 0 | if (psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) { /* short-blocks */ |
1194 | 0 | FDK_ASSERT(TRANS_FAC == 8); |
1195 | 0 | #define WIN_TYPE_SCALE (3) |
1196 | | |
1197 | 0 | groupCnt = 0; |
1198 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[0]->sfbCnt; |
1199 | 0 | sfbGrp += psyOutChannel[0]->sfbPerGroup, groupCnt++) { |
1200 | 0 | FIXP_DBL groupEnergy = FL2FXCONST_DBL(0.f); |
1201 | |
|
1202 | 0 | for (ch = 0; ch < nChannels; ch++) { |
1203 | 0 | groupEnergy += |
1204 | 0 | chGroupEnergy[groupCnt] |
1205 | 0 | [ch]; /* adding up the channels groupEnergy */ |
1206 | 0 | } |
1207 | |
|
1208 | 0 | FDK_ASSERT(psyOutChannel[0]->groupLen[groupCnt] <= INV_INT_TAB_SIZE); |
1209 | 0 | groupEnergy = fMult( |
1210 | 0 | groupEnergy, |
1211 | 0 | invInt[psyOutChannel[0]->groupLen[groupCnt]]); /* correction of |
1212 | | group energy */ |
1213 | 0 | groupEnergy = fixMin(groupEnergy, |
1214 | 0 | frameEnergy >> WIN_TYPE_SCALE); /* do not allow an |
1215 | | higher redVal as |
1216 | | calculated |
1217 | | framewise */ |
1218 | |
|
1219 | 0 | groupEnergy >>= |
1220 | 0 | 2; /* 2*WIN_TYPE_SCALE = 6 => 6+2 = 8 ==> 8/4 = int number */ |
1221 | |
|
1222 | 0 | redVal[groupCnt] = |
1223 | 0 | fMult(fMult(vbrQualFactor, chaosMeasure), |
1224 | 0 | CalcInvLdData(CalcLdData(groupEnergy) >> 2)) |
1225 | 0 | << (int)((2 + (2 * WIN_TYPE_SCALE) + SCALE_GROUP_ENERGY) >> 2); |
1226 | 0 | } |
1227 | 0 | } else { /* long-block */ |
1228 | |
|
1229 | 0 | redVal[0] = fMult(fMult(vbrQualFactor, chaosMeasure), |
1230 | 0 | CalcInvLdData(CalcLdData(frameEnergy) >> 2)) |
1231 | 0 | << (int)(SCALE_GROUP_ENERGY >> 2); |
1232 | 0 | } |
1233 | | |
1234 | 0 | for (ch = 0; ch < nChannels; ch++) { |
1235 | 0 | qcOutChan = qcOutChannel[ch]; |
1236 | 0 | psyOutChan = psyOutChannel[ch]; |
1237 | |
|
1238 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; |
1239 | 0 | sfbGrp += psyOutChan->sfbPerGroup) { |
1240 | 0 | for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) { |
1241 | 0 | sfbEnLdData = (qcOutChan->sfbWeightedEnergyLdData[sfbGrp + sfb]); |
1242 | 0 | sfbThrLdData = (qcOutChan->sfbThresholdLdData[sfbGrp + sfb]); |
1243 | 0 | sfbThrExp = thrExp[ch][sfbGrp + sfb]; |
1244 | |
|
1245 | 0 | if ((sfbThrLdData >= MIN_LDTHRESH) && (sfbEnLdData > sfbThrLdData) && |
1246 | 0 | (ahFlag[ch][sfbGrp + sfb] != AH_ACTIVE)) { |
1247 | | /* Short-Window */ |
1248 | 0 | if (psyOutChannel[ch]->lastWindowSequence == SHORT_WINDOW) { |
1249 | 0 | const int groupNumber = (int)sfb / psyOutChan->sfbPerGroup; |
1250 | |
|
1251 | 0 | FDK_ASSERT(INV_SQRT4_TAB_SIZE > psyOutChan->groupLen[groupNumber]); |
1252 | | |
1253 | 0 | sfbThrExp = |
1254 | 0 | fMult(sfbThrExp, |
1255 | 0 | fMult(FL2FXCONST_DBL(2.82f / 4.f), |
1256 | 0 | invSqrt4[psyOutChan->groupLen[groupNumber]])) |
1257 | 0 | << 2; |
1258 | |
|
1259 | 0 | if (sfbThrExp <= (limitThrReducedLdData - redVal[groupNumber])) { |
1260 | 0 | sfbThrReducedLdData = FL2FXCONST_DBL(-1.0f); |
1261 | 0 | } else { |
1262 | 0 | if ((FIXP_DBL)redVal[groupNumber] >= |
1263 | 0 | FL2FXCONST_DBL(1.0f) - sfbThrExp) |
1264 | 0 | sfbThrReducedLdData = FL2FXCONST_DBL(0.0f); |
1265 | 0 | else { |
1266 | | /* threshold reduction formula */ |
1267 | 0 | sfbThrReducedLdData = |
1268 | 0 | CalcLdData(sfbThrExp + redVal[groupNumber]); |
1269 | 0 | sfbThrReducedLdData <<= 2; |
1270 | 0 | } |
1271 | 0 | } |
1272 | 0 | sfbThrReducedLdData += |
1273 | 0 | (CalcLdInt(psyOutChan->groupLen[groupNumber]) - |
1274 | 0 | ((FIXP_DBL)6 << (DFRACT_BITS - 1 - LD_DATA_SHIFT))); |
1275 | 0 | } |
1276 | | |
1277 | | /* Long-Window */ |
1278 | 0 | else { |
1279 | 0 | if ((FIXP_DBL)redVal[0] >= FL2FXCONST_DBL(1.0f) - sfbThrExp) { |
1280 | 0 | sfbThrReducedLdData = FL2FXCONST_DBL(0.0f); |
1281 | 0 | } else { |
1282 | | /* threshold reduction formula */ |
1283 | 0 | sfbThrReducedLdData = CalcLdData(sfbThrExp + redVal[0]); |
1284 | 0 | sfbThrReducedLdData <<= 2; |
1285 | 0 | } |
1286 | 0 | } |
1287 | | |
1288 | | /* avoid holes */ |
1289 | 0 | if (((sfbThrReducedLdData - sfbEnLdData) > |
1290 | 0 | qcOutChan->sfbMinSnrLdData[sfbGrp + sfb]) && |
1291 | 0 | (ahFlag[ch][sfbGrp + sfb] != NO_AH)) { |
1292 | 0 | if (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] > |
1293 | 0 | (FL2FXCONST_DBL(-1.0f) - sfbEnLdData)) { |
1294 | 0 | sfbThrReducedLdData = fixMax( |
1295 | 0 | (qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData), |
1296 | 0 | sfbThrLdData); |
1297 | 0 | } else |
1298 | 0 | sfbThrReducedLdData = sfbThrLdData; |
1299 | 0 | ahFlag[ch][sfbGrp + sfb] = AH_ACTIVE; |
1300 | 0 | } |
1301 | |
|
1302 | 0 | if (sfbThrReducedLdData < FL2FXCONST_DBL(-0.5f)) |
1303 | 0 | sfbThrReducedLdData = FL2FXCONST_DBL(-1.f); |
1304 | |
|
1305 | 0 | sfbThrReducedLdData = fixMax(MIN_LDTHRESH, sfbThrReducedLdData); |
1306 | |
|
1307 | 0 | qcOutChan->sfbThresholdLdData[sfbGrp + sfb] = sfbThrReducedLdData; |
1308 | 0 | } |
1309 | 0 | } |
1310 | 0 | } |
1311 | 0 | } |
1312 | 0 | } |
1313 | | |
1314 | | /***************************************************************************** |
1315 | | functionname: FDKaacEnc_correctThresh |
1316 | | description: if pe difference deltaPe between desired pe and real pe is small |
1317 | | enough, the difference can be distributed among the scale factor bands. New |
1318 | | thresholds can be derived from this pe-difference |
1319 | | *****************************************************************************/ |
1320 | | static void FDKaacEnc_correctThresh( |
1321 | | const CHANNEL_MAPPING *const cm, QC_OUT_ELEMENT *const qcElement[((8))], |
1322 | | const PSY_OUT_ELEMENT *const psyOutElement[((8))], |
1323 | | UCHAR ahFlag[((8))][(2)][MAX_GROUPED_SFB], |
1324 | | const FIXP_DBL thrExp[((8))][(2)][MAX_GROUPED_SFB], const FIXP_DBL redVal_m, |
1325 | | const SCHAR redVal_e, const INT deltaPe, const INT processElements, |
1326 | 0 | const INT elementOffset) { |
1327 | 0 | INT ch, sfb, sfbGrp; |
1328 | 0 | QC_OUT_CHANNEL *qcOutChan; |
1329 | 0 | PSY_OUT_CHANNEL *psyOutChan; |
1330 | 0 | PE_CHANNEL_DATA *peChanData; |
1331 | 0 | FIXP_DBL thrFactorLdData; |
1332 | 0 | FIXP_DBL sfbEnLdData, sfbThrLdData, sfbThrReducedLdData; |
1333 | 0 | FIXP_DBL *sfbPeFactorsLdData[((8))][(2)]; |
1334 | 0 | FIXP_DBL(*sfbNActiveLinesLdData)[(2)][MAX_GROUPED_SFB]; |
1335 | |
|
1336 | 0 | INT normFactorInt; |
1337 | 0 | FIXP_DBL normFactorLdData; |
1338 | |
|
1339 | 0 | INT nElements = elementOffset + processElements; |
1340 | 0 | INT elementId; |
1341 | | |
1342 | | /* scratch is empty; use temporal memory from quantSpec in QC_OUT_CHANNEL */ |
1343 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1344 | 0 | for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
1345 | | /* The reinterpret_cast is used to suppress a compiler warning. We know |
1346 | | * that qcElement[elementId]->qcOutChannel[ch]->quantSpec is sufficiently |
1347 | | * aligned, so the cast is safe */ |
1348 | 0 | sfbPeFactorsLdData[elementId][ch] = |
1349 | 0 | reinterpret_cast<FIXP_DBL *>(reinterpret_cast<void *>( |
1350 | 0 | qcElement[elementId]->qcOutChannel[ch]->quantSpec)); |
1351 | 0 | } |
1352 | 0 | } |
1353 | | /* The reinterpret_cast is used to suppress a compiler warning. We know that |
1354 | | * qcElement[0]->dynMem_SfbNActiveLinesLdData is sufficiently aligned, so the |
1355 | | * cast is safe */ |
1356 | 0 | sfbNActiveLinesLdData = reinterpret_cast<FIXP_DBL(*)[(2)][MAX_GROUPED_SFB]>( |
1357 | 0 | reinterpret_cast<void *>(qcElement[0]->dynMem_SfbNActiveLinesLdData)); |
1358 | | |
1359 | | /* for each sfb calc relative factors for pe changes */ |
1360 | 0 | normFactorInt = 0; |
1361 | |
|
1362 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1363 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
1364 | 0 | for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
1365 | 0 | psyOutChan = psyOutElement[elementId]->psyOutChannel[ch]; |
1366 | 0 | peChanData = &qcElement[elementId]->peData.peChannelData[ch]; |
1367 | |
|
1368 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; |
1369 | 0 | sfbGrp += psyOutChan->sfbPerGroup) { |
1370 | 0 | for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) { |
1371 | 0 | if (peChanData->sfbNActiveLines[sfbGrp + sfb] == 0) { |
1372 | 0 | sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] = |
1373 | 0 | FL2FXCONST_DBL(-1.0f); |
1374 | 0 | } else { |
1375 | | /* Both CalcLdInt and CalcLdData can be used! |
1376 | | * No offset has to be subtracted, because sfbNActiveLinesLdData |
1377 | | * is shorted while thrFactor calculation */ |
1378 | 0 | sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] = |
1379 | 0 | CalcLdInt(peChanData->sfbNActiveLines[sfbGrp + sfb]); |
1380 | 0 | } |
1381 | 0 | if (((ahFlag[elementId][ch][sfbGrp + sfb] < AH_ACTIVE) || |
1382 | 0 | (deltaPe > 0)) && |
1383 | 0 | peChanData->sfbNActiveLines[sfbGrp + sfb] != 0) { |
1384 | 0 | if (thrExp[elementId][ch][sfbGrp + sfb] > -redVal_m) { |
1385 | | /* sfbPeFactors[ch][sfbGrp+sfb] = |
1386 | | peChanData->sfbNActiveLines[sfbGrp+sfb] / |
1387 | | (thrExp[elementId][ch][sfbGrp+sfb] + |
1388 | | redVal[elementId]); */ |
1389 | |
|
1390 | 0 | int minScale = |
1391 | 0 | fixMin( |
1392 | 0 | CountLeadingBits(thrExp[elementId][ch][sfbGrp + sfb]), |
1393 | 0 | CountLeadingBits(redVal_m) - redVal_e) - |
1394 | 0 | 1; |
1395 | | |
1396 | | /* sumld = ld64( sfbThrExp + redVal ) */ |
1397 | 0 | FIXP_DBL sumLd = |
1398 | 0 | CalcLdData(scaleValue(thrExp[elementId][ch][sfbGrp + sfb], |
1399 | 0 | minScale) + |
1400 | 0 | scaleValue(redVal_m, redVal_e + minScale)) - |
1401 | 0 | (FIXP_DBL)(minScale << (DFRACT_BITS - 1 - LD_DATA_SHIFT)); |
1402 | |
|
1403 | 0 | if (sumLd < FL2FXCONST_DBL(0.f)) { |
1404 | 0 | sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] = |
1405 | 0 | sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] - |
1406 | 0 | sumLd; |
1407 | 0 | } else { |
1408 | 0 | if (sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] > |
1409 | 0 | (FL2FXCONST_DBL(-1.f) + sumLd)) { |
1410 | 0 | sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] = |
1411 | 0 | sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] - |
1412 | 0 | sumLd; |
1413 | 0 | } else { |
1414 | 0 | sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] = |
1415 | 0 | sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb]; |
1416 | 0 | } |
1417 | 0 | } |
1418 | |
|
1419 | 0 | normFactorInt += (INT)CalcInvLdData( |
1420 | 0 | sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb]); |
1421 | 0 | } else |
1422 | 0 | sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] = |
1423 | 0 | FL2FXCONST_DBL(1.0f); |
1424 | 0 | } else |
1425 | 0 | sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] = |
1426 | 0 | FL2FXCONST_DBL(-1.0f); |
1427 | 0 | } |
1428 | 0 | } |
1429 | 0 | } |
1430 | 0 | } |
1431 | 0 | } |
1432 | | |
1433 | | /* normFactorLdData = ld64(deltaPe/normFactorInt) */ |
1434 | 0 | normFactorLdData = |
1435 | 0 | CalcLdData((FIXP_DBL)((deltaPe < 0) ? (-deltaPe) : (deltaPe))) - |
1436 | 0 | CalcLdData((FIXP_DBL)normFactorInt); |
1437 | | |
1438 | | /* distribute the pe difference to the scalefactors |
1439 | | and calculate the according thresholds */ |
1440 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1441 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
1442 | 0 | for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
1443 | 0 | qcOutChan = qcElement[elementId]->qcOutChannel[ch]; |
1444 | 0 | psyOutChan = psyOutElement[elementId]->psyOutChannel[ch]; |
1445 | 0 | peChanData = &qcElement[elementId]->peData.peChannelData[ch]; |
1446 | |
|
1447 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChan->sfbCnt; |
1448 | 0 | sfbGrp += psyOutChan->sfbPerGroup) { |
1449 | 0 | for (sfb = 0; sfb < psyOutChan->maxSfbPerGroup; sfb++) { |
1450 | 0 | if (peChanData->sfbNActiveLines[sfbGrp + sfb] > 0) { |
1451 | | /* pe difference for this sfb */ |
1452 | 0 | if ((sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] == |
1453 | 0 | FL2FXCONST_DBL(-1.0f)) || |
1454 | 0 | (deltaPe == 0)) { |
1455 | 0 | thrFactorLdData = FL2FXCONST_DBL(0.f); |
1456 | 0 | } else { |
1457 | | /* new threshold */ |
1458 | 0 | FIXP_DBL tmp = CalcInvLdData( |
1459 | 0 | sfbPeFactorsLdData[elementId][ch][sfbGrp + sfb] + |
1460 | 0 | normFactorLdData - |
1461 | 0 | sfbNActiveLinesLdData[elementId][ch][sfbGrp + sfb] - |
1462 | 0 | FL2FXCONST_DBL((float)LD_DATA_SHIFT / LD_DATA_SCALING)); |
1463 | | |
1464 | | /* limit thrFactor to 60dB */ |
1465 | 0 | tmp = (deltaPe < 0) ? tmp : (-tmp); |
1466 | 0 | thrFactorLdData = |
1467 | 0 | fMin(tmp, FL2FXCONST_DBL(20.f / LD_DATA_SCALING)); |
1468 | 0 | } |
1469 | | |
1470 | | /* new threshold */ |
1471 | 0 | sfbThrLdData = qcOutChan->sfbThresholdLdData[sfbGrp + sfb]; |
1472 | 0 | sfbEnLdData = qcOutChan->sfbWeightedEnergyLdData[sfbGrp + sfb]; |
1473 | |
|
1474 | 0 | if (thrFactorLdData < FL2FXCONST_DBL(0.f)) { |
1475 | 0 | if (sfbThrLdData > (FL2FXCONST_DBL(-1.f) - thrFactorLdData)) { |
1476 | 0 | sfbThrReducedLdData = sfbThrLdData + thrFactorLdData; |
1477 | 0 | } else { |
1478 | 0 | sfbThrReducedLdData = FL2FXCONST_DBL(-1.f); |
1479 | 0 | } |
1480 | 0 | } else { |
1481 | 0 | sfbThrReducedLdData = sfbThrLdData + thrFactorLdData; |
1482 | 0 | } |
1483 | | |
1484 | | /* avoid hole */ |
1485 | 0 | if ((sfbThrReducedLdData - sfbEnLdData > |
1486 | 0 | qcOutChan->sfbMinSnrLdData[sfbGrp + sfb]) && |
1487 | 0 | (ahFlag[elementId][ch][sfbGrp + sfb] == AH_INACTIVE)) { |
1488 | | /* sfbThrReduced = max(psyOutChan[ch]->sfbMinSnr[i] * sfbEn, |
1489 | | * sfbThr); */ |
1490 | 0 | if (sfbEnLdData > |
1491 | 0 | (sfbThrLdData - qcOutChan->sfbMinSnrLdData[sfbGrp + sfb])) { |
1492 | 0 | sfbThrReducedLdData = |
1493 | 0 | qcOutChan->sfbMinSnrLdData[sfbGrp + sfb] + sfbEnLdData; |
1494 | 0 | } else { |
1495 | 0 | sfbThrReducedLdData = sfbThrLdData; |
1496 | 0 | } |
1497 | 0 | ahFlag[elementId][ch][sfbGrp + sfb] = AH_ACTIVE; |
1498 | 0 | } |
1499 | |
|
1500 | 0 | qcOutChan->sfbThresholdLdData[sfbGrp + sfb] = sfbThrReducedLdData; |
1501 | 0 | } |
1502 | 0 | } |
1503 | 0 | } |
1504 | 0 | } |
1505 | 0 | } |
1506 | 0 | } |
1507 | 0 | } |
1508 | | |
1509 | | /***************************************************************************** |
1510 | | functionname: FDKaacEnc_reduceMinSnr |
1511 | | description: if the desired pe can not be reached, reduce pe by |
1512 | | reducing minSnr |
1513 | | *****************************************************************************/ |
1514 | | static void FDKaacEnc_reduceMinSnr( |
1515 | | const CHANNEL_MAPPING *const cm, QC_OUT_ELEMENT *const qcElement[((8))], |
1516 | | const PSY_OUT_ELEMENT *const psyOutElement[((8))], |
1517 | | const UCHAR ahFlag[((8))][(2)][MAX_GROUPED_SFB], const INT desiredPe, |
1518 | | INT *const redPeGlobal, const INT processElements, const INT elementOffset) |
1519 | | |
1520 | 0 | { |
1521 | 0 | INT ch, elementId, globalMaxSfb = 0; |
1522 | 0 | const INT nElements = elementOffset + processElements; |
1523 | 0 | INT newGlobalPe = *redPeGlobal; |
1524 | |
|
1525 | 0 | if (newGlobalPe <= desiredPe) { |
1526 | 0 | goto bail; |
1527 | 0 | } |
1528 | | |
1529 | | /* global maximum of maxSfbPerGroup */ |
1530 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1531 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
1532 | 0 | for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
1533 | 0 | globalMaxSfb = |
1534 | 0 | fMax(globalMaxSfb, |
1535 | 0 | psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup); |
1536 | 0 | } |
1537 | 0 | } |
1538 | 0 | } |
1539 | | |
1540 | | /* as long as globalPE is above desirePE reduce SNR to 1.0 dB, starting at |
1541 | | * highest SFB */ |
1542 | 0 | while ((newGlobalPe > desiredPe) && (--globalMaxSfb >= 0)) { |
1543 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1544 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
1545 | 0 | PE_DATA *peData = &qcElement[elementId]->peData; |
1546 | |
|
1547 | 0 | for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
1548 | 0 | QC_OUT_CHANNEL *qcOutChan = qcElement[elementId]->qcOutChannel[ch]; |
1549 | 0 | PSY_OUT_CHANNEL *psyOutChan = |
1550 | 0 | psyOutElement[elementId]->psyOutChannel[ch]; |
1551 | | |
1552 | | /* try to reduce SNR of channel's uppermost SFB(s) */ |
1553 | 0 | if (globalMaxSfb < psyOutChan->maxSfbPerGroup) { |
1554 | 0 | INT sfb, deltaPe = 0; |
1555 | |
|
1556 | 0 | for (sfb = globalMaxSfb; sfb < psyOutChan->sfbCnt; |
1557 | 0 | sfb += psyOutChan->sfbPerGroup) { |
1558 | 0 | if (ahFlag[elementId][ch][sfb] != NO_AH && |
1559 | 0 | qcOutChan->sfbMinSnrLdData[sfb] < SnrLdFac && |
1560 | 0 | (qcOutChan->sfbWeightedEnergyLdData[sfb] > |
1561 | 0 | qcOutChan->sfbThresholdLdData[sfb] - SnrLdFac)) { |
1562 | | /* increase threshold to new minSnr of 1dB */ |
1563 | 0 | qcOutChan->sfbMinSnrLdData[sfb] = SnrLdFac; |
1564 | 0 | qcOutChan->sfbThresholdLdData[sfb] = |
1565 | 0 | qcOutChan->sfbWeightedEnergyLdData[sfb] + SnrLdFac; |
1566 | | |
1567 | | /* calc new pe */ |
1568 | | /* C2 + C3*ld(1/0.8) = 1.5 */ |
1569 | 0 | deltaPe -= peData->peChannelData[ch].sfbPe[sfb]; |
1570 | | |
1571 | | /* sfbPe = 1.5 * sfbNLines */ |
1572 | 0 | peData->peChannelData[ch].sfbPe[sfb] = |
1573 | 0 | (3 * peData->peChannelData[ch].sfbNLines[sfb]) |
1574 | 0 | << (PE_CONSTPART_SHIFT - 1); |
1575 | 0 | deltaPe += peData->peChannelData[ch].sfbPe[sfb]; |
1576 | 0 | } |
1577 | |
|
1578 | 0 | } /* sfb loop */ |
1579 | |
|
1580 | 0 | deltaPe >>= PE_CONSTPART_SHIFT; |
1581 | 0 | peData->pe += deltaPe; |
1582 | 0 | peData->peChannelData[ch].pe += deltaPe; |
1583 | 0 | newGlobalPe += deltaPe; |
1584 | |
|
1585 | 0 | } /* if globalMaxSfb < maxSfbPerGroup */ |
1586 | | |
1587 | | /* stop if enough has been saved */ |
1588 | 0 | if (newGlobalPe <= desiredPe) { |
1589 | 0 | goto bail; |
1590 | 0 | } |
1591 | |
|
1592 | 0 | } /* ch loop */ |
1593 | 0 | } /* != ID_DSE */ |
1594 | 0 | } /* elementId loop */ |
1595 | 0 | } /* while ( newGlobalPe > desiredPe) && (--globalMaxSfb >= 0) ) */ |
1596 | | |
1597 | 0 | bail: |
1598 | | /* update global PE */ |
1599 | 0 | *redPeGlobal = newGlobalPe; |
1600 | 0 | } |
1601 | | |
1602 | | /***************************************************************************** |
1603 | | functionname: FDKaacEnc_allowMoreHoles |
1604 | | description: if the desired pe can not be reached, some more scalefactor |
1605 | | bands have to be quantized to zero |
1606 | | *****************************************************************************/ |
1607 | | static void FDKaacEnc_allowMoreHoles( |
1608 | | const CHANNEL_MAPPING *const cm, QC_OUT_ELEMENT *const qcElement[((8))], |
1609 | | const PSY_OUT_ELEMENT *const psyOutElement[((8))], |
1610 | | const ATS_ELEMENT *const AdjThrStateElement[((8))], |
1611 | | UCHAR ahFlag[((8))][(2)][MAX_GROUPED_SFB], const INT desiredPe, |
1612 | 0 | const INT currentPe, const int processElements, const int elementOffset) { |
1613 | 0 | INT elementId; |
1614 | 0 | INT nElements = elementOffset + processElements; |
1615 | 0 | INT actPe = currentPe; |
1616 | |
|
1617 | 0 | if (actPe <= desiredPe) { |
1618 | 0 | return; /* nothing to do */ |
1619 | 0 | } |
1620 | | |
1621 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1622 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
1623 | 0 | INT ch, sfb, sfbGrp; |
1624 | |
|
1625 | 0 | PE_DATA *peData = &qcElement[elementId]->peData; |
1626 | 0 | const INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
1627 | |
|
1628 | 0 | QC_OUT_CHANNEL *qcOutChannel[(2)] = {NULL}; |
1629 | 0 | PSY_OUT_CHANNEL *psyOutChannel[(2)] = {NULL}; |
1630 | |
|
1631 | 0 | for (ch = 0; ch < nChannels; ch++) { |
1632 | | /* init pointers */ |
1633 | 0 | qcOutChannel[ch] = qcElement[elementId]->qcOutChannel[ch]; |
1634 | 0 | psyOutChannel[ch] = psyOutElement[elementId]->psyOutChannel[ch]; |
1635 | |
|
1636 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
1637 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
1638 | 0 | for (sfb = psyOutChannel[ch]->maxSfbPerGroup; |
1639 | 0 | sfb < psyOutChannel[ch]->sfbPerGroup; sfb++) { |
1640 | 0 | peData->peChannelData[ch].sfbPe[sfbGrp + sfb] = 0; |
1641 | 0 | } |
1642 | 0 | } |
1643 | 0 | } |
1644 | | |
1645 | | /* for MS allow hole in the channel with less energy */ |
1646 | 0 | if (nChannels == 2 && psyOutChannel[0]->lastWindowSequence == |
1647 | 0 | psyOutChannel[1]->lastWindowSequence) { |
1648 | 0 | for (sfb = psyOutChannel[0]->maxSfbPerGroup - 1; sfb >= 0; sfb--) { |
1649 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[0]->sfbCnt; |
1650 | 0 | sfbGrp += psyOutChannel[0]->sfbPerGroup) { |
1651 | 0 | if (psyOutElement[elementId]->toolsInfo.msMask[sfbGrp + sfb]) { |
1652 | 0 | FIXP_DBL EnergyLd_L = |
1653 | 0 | qcOutChannel[0]->sfbWeightedEnergyLdData[sfbGrp + sfb]; |
1654 | 0 | FIXP_DBL EnergyLd_R = |
1655 | 0 | qcOutChannel[1]->sfbWeightedEnergyLdData[sfbGrp + sfb]; |
1656 | | |
1657 | | /* allow hole in side channel ? */ |
1658 | 0 | if ((ahFlag[elementId][1][sfbGrp + sfb] != NO_AH) && |
1659 | 0 | (((FL2FXCONST_DBL(-0.02065512648f) >> 1) + |
1660 | 0 | (qcOutChannel[0]->sfbMinSnrLdData[sfbGrp + sfb] >> 1)) > |
1661 | 0 | ((EnergyLd_R >> 1) - (EnergyLd_L >> 1)))) { |
1662 | 0 | ahFlag[elementId][1][sfbGrp + sfb] = NO_AH; |
1663 | 0 | qcOutChannel[1]->sfbThresholdLdData[sfbGrp + sfb] = |
1664 | 0 | FL2FXCONST_DBL(0.015625f) + EnergyLd_R; |
1665 | 0 | actPe -= peData->peChannelData[1].sfbPe[sfbGrp + sfb] >> |
1666 | 0 | PE_CONSTPART_SHIFT; |
1667 | 0 | } |
1668 | | /* allow hole in mid channel ? */ |
1669 | 0 | else if ((ahFlag[elementId][0][sfbGrp + sfb] != NO_AH) && |
1670 | 0 | (((FL2FXCONST_DBL(-0.02065512648f) >> 1) + |
1671 | 0 | (qcOutChannel[1]->sfbMinSnrLdData[sfbGrp + sfb] >> |
1672 | 0 | 1)) > ((EnergyLd_L >> 1) - (EnergyLd_R >> 1)))) { |
1673 | 0 | ahFlag[elementId][0][sfbGrp + sfb] = NO_AH; |
1674 | 0 | qcOutChannel[0]->sfbThresholdLdData[sfbGrp + sfb] = |
1675 | 0 | FL2FXCONST_DBL(0.015625f) + EnergyLd_L; |
1676 | 0 | actPe -= peData->peChannelData[0].sfbPe[sfbGrp + sfb] >> |
1677 | 0 | PE_CONSTPART_SHIFT; |
1678 | 0 | } /* if (ahFlag) */ |
1679 | 0 | } /* if MS */ |
1680 | 0 | } /* sfbGrp */ |
1681 | 0 | if (actPe <= desiredPe) { |
1682 | 0 | return; /* stop if enough has been saved */ |
1683 | 0 | } |
1684 | 0 | } /* sfb */ |
1685 | 0 | } /* MS possible ? */ |
1686 | |
|
1687 | 0 | } /* EOF DSE-suppression */ |
1688 | 0 | } /* EOF for all elements... */ |
1689 | | |
1690 | 0 | if (actPe > desiredPe) { |
1691 | | /* more holes necessary? subsequently erase bands starting with low energies |
1692 | | */ |
1693 | 0 | INT ch, sfb, sfbGrp; |
1694 | 0 | INT minSfb, maxSfb; |
1695 | 0 | INT enIdx, ahCnt, done; |
1696 | 0 | INT startSfb[(8)]; |
1697 | 0 | INT sfbCnt[(8)]; |
1698 | 0 | INT sfbPerGroup[(8)]; |
1699 | 0 | INT maxSfbPerGroup[(8)]; |
1700 | 0 | FIXP_DBL avgEn; |
1701 | 0 | FIXP_DBL minEnLD64; |
1702 | 0 | FIXP_DBL avgEnLD64; |
1703 | 0 | FIXP_DBL enLD64[NUM_NRG_LEVS]; |
1704 | 0 | INT avgEn_e; |
1705 | | |
1706 | | /* get the scaling factor over all audio elements and channels */ |
1707 | 0 | maxSfb = 0; |
1708 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1709 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
1710 | 0 | for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
1711 | 0 | for (sfbGrp = 0; |
1712 | 0 | sfbGrp < psyOutElement[elementId]->psyOutChannel[ch]->sfbCnt; |
1713 | 0 | sfbGrp += |
1714 | 0 | psyOutElement[elementId]->psyOutChannel[ch]->sfbPerGroup) { |
1715 | 0 | maxSfb += |
1716 | 0 | psyOutElement[elementId]->psyOutChannel[ch]->maxSfbPerGroup; |
1717 | 0 | } |
1718 | 0 | } |
1719 | 0 | } |
1720 | 0 | } |
1721 | 0 | avgEn_e = |
1722 | 0 | (DFRACT_BITS - fixnormz_D((LONG)fMax(0, maxSfb - 1))); /* ilog2() */ |
1723 | |
|
1724 | 0 | ahCnt = 0; |
1725 | 0 | maxSfb = 0; |
1726 | 0 | minSfb = MAX_SFB; |
1727 | 0 | avgEn = FL2FXCONST_DBL(0.0f); |
1728 | 0 | minEnLD64 = FL2FXCONST_DBL(0.0f); |
1729 | |
|
1730 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1731 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
1732 | 0 | for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
1733 | 0 | const INT chIdx = cm->elInfo[elementId].ChannelIndex[ch]; |
1734 | 0 | QC_OUT_CHANNEL *qcOutChannel = qcElement[elementId]->qcOutChannel[ch]; |
1735 | 0 | PSY_OUT_CHANNEL *psyOutChannel = |
1736 | 0 | psyOutElement[elementId]->psyOutChannel[ch]; |
1737 | |
|
1738 | 0 | maxSfbPerGroup[chIdx] = psyOutChannel->maxSfbPerGroup; |
1739 | 0 | sfbCnt[chIdx] = psyOutChannel->sfbCnt; |
1740 | 0 | sfbPerGroup[chIdx] = psyOutChannel->sfbPerGroup; |
1741 | |
|
1742 | 0 | maxSfb = fMax(maxSfb, psyOutChannel->maxSfbPerGroup); |
1743 | |
|
1744 | 0 | if (psyOutChannel->lastWindowSequence != SHORT_WINDOW) { |
1745 | 0 | startSfb[chIdx] = AdjThrStateElement[elementId]->ahParam.startSfbL; |
1746 | 0 | } else { |
1747 | 0 | startSfb[chIdx] = AdjThrStateElement[elementId]->ahParam.startSfbS; |
1748 | 0 | } |
1749 | |
|
1750 | 0 | minSfb = fMin(minSfb, startSfb[chIdx]); |
1751 | |
|
1752 | 0 | sfbGrp = 0; |
1753 | 0 | sfb = startSfb[chIdx]; |
1754 | |
|
1755 | 0 | do { |
1756 | 0 | for (; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { |
1757 | 0 | if ((ahFlag[elementId][ch][sfbGrp + sfb] != NO_AH) && |
1758 | 0 | (qcOutChannel->sfbWeightedEnergyLdData[sfbGrp + sfb] > |
1759 | 0 | qcOutChannel->sfbThresholdLdData[sfbGrp + sfb])) { |
1760 | 0 | minEnLD64 = fixMin(minEnLD64, |
1761 | 0 | qcOutChannel->sfbEnergyLdData[sfbGrp + sfb]); |
1762 | 0 | avgEn += qcOutChannel->sfbEnergy[sfbGrp + sfb] >> avgEn_e; |
1763 | 0 | ahCnt++; |
1764 | 0 | } |
1765 | 0 | } |
1766 | |
|
1767 | 0 | sfbGrp += psyOutChannel->sfbPerGroup; |
1768 | 0 | sfb = startSfb[chIdx]; |
1769 | |
|
1770 | 0 | } while (sfbGrp < psyOutChannel->sfbCnt); |
1771 | 0 | } |
1772 | 0 | } /* (cm->elInfo[elementId].elType != ID_DSE) */ |
1773 | 0 | } /* (elementId = elementOffset;elementId<nElements;elementId++) */ |
1774 | |
|
1775 | 0 | if ((avgEn == FL2FXCONST_DBL(0.0f)) || (ahCnt == 0)) { |
1776 | 0 | avgEnLD64 = FL2FXCONST_DBL(0.0f); |
1777 | 0 | } else { |
1778 | 0 | avgEnLD64 = CalcLdData(avgEn) + |
1779 | 0 | (FIXP_DBL)(avgEn_e << (DFRACT_BITS - 1 - LD_DATA_SHIFT)) - |
1780 | 0 | CalcLdInt(ahCnt); |
1781 | 0 | } |
1782 | | |
1783 | | /* calc some energy borders between minEn and avgEn */ |
1784 | | |
1785 | | /* for (enIdx = 0; enIdx < NUM_NRG_LEVS; enIdx++) { |
1786 | | en[enIdx] = (2.0f*enIdx+1.0f)/(2.0f*NUM_NRG_LEVS-1.0f); |
1787 | | } */ |
1788 | 0 | enLD64[0] = |
1789 | 0 | minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.06666667f)); |
1790 | 0 | enLD64[1] = |
1791 | 0 | minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.20000000f)); |
1792 | 0 | enLD64[2] = |
1793 | 0 | minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.33333334f)); |
1794 | 0 | enLD64[3] = |
1795 | 0 | minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.46666667f)); |
1796 | 0 | enLD64[4] = |
1797 | 0 | minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.60000002f)); |
1798 | 0 | enLD64[5] = |
1799 | 0 | minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.73333335f)); |
1800 | 0 | enLD64[6] = |
1801 | 0 | minEnLD64 + fMult((avgEnLD64 - minEnLD64), FL2FXCONST_DBL(0.86666667f)); |
1802 | 0 | enLD64[7] = minEnLD64 + (avgEnLD64 - minEnLD64); |
1803 | |
|
1804 | 0 | done = 0; |
1805 | 0 | enIdx = 0; |
1806 | 0 | sfb = maxSfb - 1; |
1807 | |
|
1808 | 0 | while (!done) { |
1809 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1810 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
1811 | 0 | PE_DATA *peData = &qcElement[elementId]->peData; |
1812 | 0 | for (ch = 0; ch < cm->elInfo[elementId].nChannelsInEl; ch++) { |
1813 | 0 | const INT chIdx = cm->elInfo[elementId].ChannelIndex[ch]; |
1814 | 0 | QC_OUT_CHANNEL *qcOutChannel = |
1815 | 0 | qcElement[elementId]->qcOutChannel[ch]; |
1816 | 0 | if (sfb >= startSfb[chIdx] && sfb < maxSfbPerGroup[chIdx]) { |
1817 | 0 | for (sfbGrp = 0; sfbGrp < sfbCnt[chIdx]; |
1818 | 0 | sfbGrp += sfbPerGroup[chIdx]) { |
1819 | | /* sfb energy below border ? */ |
1820 | 0 | if (ahFlag[elementId][ch][sfbGrp + sfb] != NO_AH && |
1821 | 0 | qcOutChannel->sfbEnergyLdData[sfbGrp + sfb] < |
1822 | 0 | enLD64[enIdx]) { |
1823 | | /* allow hole */ |
1824 | 0 | ahFlag[elementId][ch][sfbGrp + sfb] = NO_AH; |
1825 | 0 | qcOutChannel->sfbThresholdLdData[sfbGrp + sfb] = |
1826 | 0 | FL2FXCONST_DBL(0.015625f) + |
1827 | 0 | qcOutChannel->sfbWeightedEnergyLdData[sfbGrp + sfb]; |
1828 | 0 | actPe -= peData->peChannelData[ch].sfbPe[sfbGrp + sfb] >> |
1829 | 0 | PE_CONSTPART_SHIFT; |
1830 | 0 | } |
1831 | 0 | if (actPe <= desiredPe) { |
1832 | 0 | return; /* stop if enough has been saved */ |
1833 | 0 | } |
1834 | 0 | } /* sfbGrp */ |
1835 | 0 | } /* sfb */ |
1836 | 0 | } /* nChannelsInEl */ |
1837 | 0 | } /* ID_DSE */ |
1838 | 0 | } /* elementID */ |
1839 | | |
1840 | 0 | sfb--; |
1841 | 0 | if (sfb < minSfb) { |
1842 | | /* restart with next energy border */ |
1843 | 0 | sfb = maxSfb; |
1844 | 0 | enIdx++; |
1845 | 0 | if (enIdx >= NUM_NRG_LEVS) { |
1846 | 0 | done = 1; |
1847 | 0 | } |
1848 | 0 | } |
1849 | 0 | } /* done */ |
1850 | 0 | } /* (actPe <= desiredPe) */ |
1851 | 0 | } |
1852 | | |
1853 | | /* reset avoid hole flags from AH_ACTIVE to AH_INACTIVE */ |
1854 | | static void FDKaacEnc_resetAHFlags( |
1855 | | UCHAR ahFlag[(2)][MAX_GROUPED_SFB], const INT nChannels, |
1856 | 0 | const PSY_OUT_CHANNEL *const psyOutChannel[(2)]) { |
1857 | 0 | int ch, sfb, sfbGrp; |
1858 | |
|
1859 | 0 | for (ch = 0; ch < nChannels; ch++) { |
1860 | 0 | for (sfbGrp = 0; sfbGrp < psyOutChannel[ch]->sfbCnt; |
1861 | 0 | sfbGrp += psyOutChannel[ch]->sfbPerGroup) { |
1862 | 0 | for (sfb = 0; sfb < psyOutChannel[ch]->maxSfbPerGroup; sfb++) { |
1863 | 0 | if (ahFlag[ch][sfbGrp + sfb] == AH_ACTIVE) { |
1864 | 0 | ahFlag[ch][sfbGrp + sfb] = AH_INACTIVE; |
1865 | 0 | } |
1866 | 0 | } |
1867 | 0 | } |
1868 | 0 | } |
1869 | 0 | } |
1870 | | |
1871 | 0 | static FIXP_DBL CalcRedValPower(FIXP_DBL num, FIXP_DBL denum, INT *scaling) { |
1872 | 0 | FIXP_DBL value = FL2FXCONST_DBL(0.f); |
1873 | |
|
1874 | 0 | if (num >= FL2FXCONST_DBL(0.f)) { |
1875 | 0 | value = fDivNorm(num, denum, scaling); |
1876 | 0 | } else { |
1877 | 0 | value = -fDivNorm(-num, denum, scaling); |
1878 | 0 | } |
1879 | 0 | value = f2Pow(value, *scaling, scaling); |
1880 | |
|
1881 | 0 | return value; |
1882 | 0 | } |
1883 | | |
1884 | | /***************************************************************************** |
1885 | | functionname: FDKaacEnc_adaptThresholdsToPe |
1886 | | description: two guesses for the reduction value and one final correction of |
1887 | | the thresholds |
1888 | | *****************************************************************************/ |
1889 | | static void FDKaacEnc_adaptThresholdsToPe( |
1890 | | const CHANNEL_MAPPING *const cm, |
1891 | | ATS_ELEMENT *const AdjThrStateElement[((8))], |
1892 | | QC_OUT_ELEMENT *const qcElement[((8))], |
1893 | | const PSY_OUT_ELEMENT *const psyOutElement[((8))], const INT desiredPe, |
1894 | | const INT maxIter2ndGuess, const INT processElements, |
1895 | 0 | const INT elementOffset) { |
1896 | 0 | FIXP_DBL reductionValue_m; |
1897 | 0 | SCHAR reductionValue_e; |
1898 | 0 | UCHAR(*pAhFlag)[(2)][MAX_GROUPED_SFB]; |
1899 | 0 | FIXP_DBL(*pThrExp)[(2)][MAX_GROUPED_SFB]; |
1900 | 0 | int iter; |
1901 | |
|
1902 | 0 | INT constPartGlobal, noRedPeGlobal, nActiveLinesGlobal, redPeGlobal; |
1903 | 0 | constPartGlobal = noRedPeGlobal = nActiveLinesGlobal = redPeGlobal = 0; |
1904 | |
|
1905 | 0 | int elementId; |
1906 | |
|
1907 | 0 | int nElements = elementOffset + processElements; |
1908 | 0 | if (nElements > cm->nElements) { |
1909 | 0 | nElements = cm->nElements; |
1910 | 0 | } |
1911 | | |
1912 | | /* The reinterpret_cast is used to suppress a compiler warning. We know that |
1913 | | * qcElement[0]->dynMem_Ah_Flag is sufficiently aligned, so the cast is safe |
1914 | | */ |
1915 | 0 | pAhFlag = reinterpret_cast<UCHAR(*)[(2)][MAX_GROUPED_SFB]>( |
1916 | 0 | reinterpret_cast<void *>(qcElement[0]->dynMem_Ah_Flag)); |
1917 | | /* The reinterpret_cast is used to suppress a compiler warning. We know that |
1918 | | * qcElement[0]->dynMem_Thr_Exp is sufficiently aligned, so the cast is safe |
1919 | | */ |
1920 | 0 | pThrExp = reinterpret_cast<FIXP_DBL(*)[(2)][MAX_GROUPED_SFB]>( |
1921 | 0 | reinterpret_cast<void *>(qcElement[0]->dynMem_Thr_Exp)); |
1922 | | |
1923 | | /* ------------------------------------------------------- */ |
1924 | | /* Part I: Initialize data structures and variables... */ |
1925 | | /* ------------------------------------------------------- */ |
1926 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1927 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
1928 | 0 | INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
1929 | 0 | PE_DATA *peData = &qcElement[elementId]->peData; |
1930 | | |
1931 | | /* thresholds to the power of redExp */ |
1932 | 0 | FDKaacEnc_calcThreshExp( |
1933 | 0 | pThrExp[elementId], qcElement[elementId]->qcOutChannel, |
1934 | 0 | psyOutElement[elementId]->psyOutChannel, nChannels); |
1935 | | |
1936 | | /* lower the minSnr requirements for low energies compared to the average |
1937 | | energy in this frame */ |
1938 | 0 | FDKaacEnc_adaptMinSnr(qcElement[elementId]->qcOutChannel, |
1939 | 0 | psyOutElement[elementId]->psyOutChannel, |
1940 | 0 | &AdjThrStateElement[elementId]->minSnrAdaptParam, |
1941 | 0 | nChannels); |
1942 | | |
1943 | | /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */ |
1944 | 0 | FDKaacEnc_initAvoidHoleFlag( |
1945 | 0 | qcElement[elementId]->qcOutChannel, |
1946 | 0 | psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], |
1947 | 0 | &psyOutElement[elementId]->toolsInfo, nChannels, |
1948 | 0 | &AdjThrStateElement[elementId]->ahParam); |
1949 | | |
1950 | | /* sum up */ |
1951 | 0 | constPartGlobal += peData->constPart; |
1952 | 0 | noRedPeGlobal += peData->pe; |
1953 | 0 | nActiveLinesGlobal += fixMax((INT)peData->nActiveLines, 1); |
1954 | |
|
1955 | 0 | } /* EOF DSE-suppression */ |
1956 | 0 | } /* EOF for all elements... */ |
1957 | | |
1958 | | /* |
1959 | | First guess of reduction value: |
1960 | | avgThrExp = (float)pow(2.0f, (constPartGlobal - noRedPeGlobal)/(4.0f * |
1961 | | nActiveLinesGlobal)); redVal = (float)pow(2.0f, (constPartGlobal - |
1962 | | desiredPe)/(4.0f * nActiveLinesGlobal)) - avgThrExp; redVal = max(0.f, |
1963 | | redVal); |
1964 | | */ |
1965 | 0 | int redVal_e, avgThrExp_e, result_e; |
1966 | 0 | FIXP_DBL redVal_m, avgThrExp_m; |
1967 | |
|
1968 | 0 | redVal_m = CalcRedValPower(constPartGlobal - desiredPe, |
1969 | 0 | 4 * nActiveLinesGlobal, &redVal_e); |
1970 | 0 | avgThrExp_m = CalcRedValPower(constPartGlobal - noRedPeGlobal, |
1971 | 0 | 4 * nActiveLinesGlobal, &avgThrExp_e); |
1972 | 0 | result_e = fMax(redVal_e, avgThrExp_e) + 1; |
1973 | |
|
1974 | 0 | reductionValue_m = fMax(FL2FXCONST_DBL(0.f), |
1975 | 0 | scaleValue(redVal_m, redVal_e - result_e) - |
1976 | 0 | scaleValue(avgThrExp_m, avgThrExp_e - result_e)); |
1977 | 0 | reductionValue_e = result_e; |
1978 | | |
1979 | | /* ----------------------------------------------------------------------- */ |
1980 | | /* Part II: Calculate bit consumption of initial bit constraints setup */ |
1981 | | /* ----------------------------------------------------------------------- */ |
1982 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
1983 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
1984 | 0 | INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
1985 | 0 | PE_DATA *peData = &qcElement[elementId]->peData; |
1986 | | |
1987 | | /* reduce thresholds */ |
1988 | 0 | FDKaacEnc_reduceThresholdsCBR( |
1989 | 0 | qcElement[elementId]->qcOutChannel, |
1990 | 0 | psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], |
1991 | 0 | pThrExp[elementId], nChannels, reductionValue_m, reductionValue_e); |
1992 | | |
1993 | | /* pe after first guess */ |
1994 | 0 | FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, |
1995 | 0 | qcElement[elementId]->qcOutChannel, peData, nChannels); |
1996 | |
|
1997 | 0 | redPeGlobal += peData->pe; |
1998 | 0 | } /* EOF DSE-suppression */ |
1999 | 0 | } /* EOF for all elements... */ |
2000 | | |
2001 | | /* -------------------------------------------------- */ |
2002 | | /* Part III: Iterate until bit constraints are met */ |
2003 | | /* -------------------------------------------------- */ |
2004 | 0 | iter = 0; |
2005 | 0 | while ((fixp_abs(redPeGlobal - desiredPe) > |
2006 | 0 | fMultI(FL2FXCONST_DBL(0.05f), desiredPe)) && |
2007 | 0 | (iter < maxIter2ndGuess)) { |
2008 | 0 | INT desiredPeNoAHGlobal; |
2009 | 0 | INT redPeNoAHGlobal = 0; |
2010 | 0 | INT constPartNoAHGlobal = 0; |
2011 | 0 | INT nActiveLinesNoAHGlobal = 0; |
2012 | |
|
2013 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
2014 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
2015 | 0 | INT redPeNoAH, constPartNoAH, nActiveLinesNoAH; |
2016 | 0 | INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
2017 | 0 | PE_DATA *peData = &qcElement[elementId]->peData; |
2018 | | |
2019 | | /* pe for bands where avoid hole is inactive */ |
2020 | 0 | FDKaacEnc_FDKaacEnc_calcPeNoAH( |
2021 | 0 | &redPeNoAH, &constPartNoAH, &nActiveLinesNoAH, peData, |
2022 | 0 | pAhFlag[elementId], psyOutElement[elementId]->psyOutChannel, |
2023 | 0 | nChannels); |
2024 | |
|
2025 | 0 | redPeNoAHGlobal += redPeNoAH; |
2026 | 0 | constPartNoAHGlobal += constPartNoAH; |
2027 | 0 | nActiveLinesNoAHGlobal += nActiveLinesNoAH; |
2028 | 0 | } /* EOF DSE-suppression */ |
2029 | 0 | } /* EOF for all elements... */ |
2030 | | |
2031 | | /* Calculate new redVal ... */ |
2032 | 0 | if (desiredPe < redPeGlobal) { |
2033 | | /* new desired pe without bands where avoid hole is active */ |
2034 | 0 | desiredPeNoAHGlobal = desiredPe - (redPeGlobal - redPeNoAHGlobal); |
2035 | | |
2036 | | /* limit desiredPeNoAH to positive values, as the PE can not become |
2037 | | * negative */ |
2038 | 0 | desiredPeNoAHGlobal = fMax(0, desiredPeNoAHGlobal); |
2039 | | |
2040 | | /* second guess (only if there are bands left where avoid hole is |
2041 | | * inactive)*/ |
2042 | 0 | if (nActiveLinesNoAHGlobal > 0) { |
2043 | | /* |
2044 | | avgThrExp = (float)pow(2.0f, (constPartNoAHGlobal - redPeNoAHGlobal) / |
2045 | | (4.0f * nActiveLinesNoAHGlobal)); redVal += (float)pow(2.0f, |
2046 | | (constPartNoAHGlobal - desiredPeNoAHGlobal) / (4.0f * |
2047 | | nActiveLinesNoAHGlobal)) - avgThrExp; redVal = max(0.0f, redVal); |
2048 | | */ |
2049 | |
|
2050 | 0 | redVal_m = CalcRedValPower(constPartNoAHGlobal - desiredPeNoAHGlobal, |
2051 | 0 | 4 * nActiveLinesNoAHGlobal, &redVal_e); |
2052 | 0 | avgThrExp_m = CalcRedValPower(constPartNoAHGlobal - redPeNoAHGlobal, |
2053 | 0 | 4 * nActiveLinesNoAHGlobal, &avgThrExp_e); |
2054 | 0 | result_e = fMax(reductionValue_e, fMax(redVal_e, avgThrExp_e) + 1) + 1; |
2055 | |
|
2056 | 0 | reductionValue_m = |
2057 | 0 | fMax(FL2FXCONST_DBL(0.f), |
2058 | 0 | scaleValue(reductionValue_m, reductionValue_e - result_e) + |
2059 | 0 | scaleValue(redVal_m, redVal_e - result_e) - |
2060 | 0 | scaleValue(avgThrExp_m, avgThrExp_e - result_e)); |
2061 | 0 | reductionValue_e = result_e; |
2062 | |
|
2063 | 0 | } /* nActiveLinesNoAHGlobal > 0 */ |
2064 | 0 | } else { |
2065 | | /* redVal *= redPeGlobal/desiredPe; */ |
2066 | 0 | int sc0, sc1; |
2067 | 0 | reductionValue_m = fMultNorm( |
2068 | 0 | reductionValue_m, |
2069 | 0 | fDivNorm((FIXP_DBL)redPeGlobal, (FIXP_DBL)desiredPe, &sc0), &sc1); |
2070 | 0 | reductionValue_e += sc0 + sc1; |
2071 | |
|
2072 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
2073 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
2074 | 0 | FDKaacEnc_resetAHFlags(pAhFlag[elementId], |
2075 | 0 | cm->elInfo[elementId].nChannelsInEl, |
2076 | 0 | psyOutElement[elementId]->psyOutChannel); |
2077 | 0 | } /* EOF DSE-suppression */ |
2078 | 0 | } /* EOF for all elements... */ |
2079 | 0 | } |
2080 | |
|
2081 | 0 | redPeGlobal = 0; |
2082 | | /* Calculate new redVal's PE... */ |
2083 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
2084 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
2085 | 0 | INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
2086 | 0 | PE_DATA *peData = &qcElement[elementId]->peData; |
2087 | | |
2088 | | /* reduce thresholds */ |
2089 | 0 | FDKaacEnc_reduceThresholdsCBR( |
2090 | 0 | qcElement[elementId]->qcOutChannel, |
2091 | 0 | psyOutElement[elementId]->psyOutChannel, pAhFlag[elementId], |
2092 | 0 | pThrExp[elementId], nChannels, reductionValue_m, reductionValue_e); |
2093 | | |
2094 | | /* pe after second guess */ |
2095 | 0 | FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, |
2096 | 0 | qcElement[elementId]->qcOutChannel, peData, nChannels); |
2097 | 0 | redPeGlobal += peData->pe; |
2098 | |
|
2099 | 0 | } /* EOF DSE-suppression */ |
2100 | 0 | } /* EOF for all elements... */ |
2101 | |
|
2102 | 0 | iter++; |
2103 | 0 | } /* EOF while */ |
2104 | | |
2105 | | /* ------------------------------------------------------- */ |
2106 | | /* Part IV: if still required, further reduce constraints */ |
2107 | | /* ------------------------------------------------------- */ |
2108 | | /* 1.0* 1.15* 1.20* |
2109 | | * desiredPe desiredPe desiredPe |
2110 | | * | | | |
2111 | | * ...XXXXXXXXXXXXXXXXXXXXXXXXXXX| | |
2112 | | * | | |XXXXXXXXXXX... |
2113 | | * | |XXXXXXXXXXX| |
2114 | | * --- A --- | --- B --- | --- C --- |
2115 | | * |
2116 | | * (X): redPeGlobal |
2117 | | * (A): FDKaacEnc_correctThresh() |
2118 | | * (B): FDKaacEnc_allowMoreHoles() |
2119 | | * (C): FDKaacEnc_reduceMinSnr() |
2120 | | */ |
2121 | | |
2122 | | /* correct thresholds to get closer to the desired pe */ |
2123 | 0 | if (redPeGlobal > desiredPe) { |
2124 | 0 | FDKaacEnc_correctThresh(cm, qcElement, psyOutElement, pAhFlag, pThrExp, |
2125 | 0 | reductionValue_m, reductionValue_e, |
2126 | 0 | desiredPe - redPeGlobal, processElements, |
2127 | 0 | elementOffset); |
2128 | | |
2129 | | /* update PE */ |
2130 | 0 | redPeGlobal = 0; |
2131 | 0 | for (elementId = elementOffset; elementId < nElements; elementId++) { |
2132 | 0 | if (cm->elInfo[elementId].elType != ID_DSE) { |
2133 | 0 | INT nChannels = cm->elInfo[elementId].nChannelsInEl; |
2134 | 0 | PE_DATA *peData = &qcElement[elementId]->peData; |
2135 | | |
2136 | | /* pe after correctThresh */ |
2137 | 0 | FDKaacEnc_calcPe(psyOutElement[elementId]->psyOutChannel, |
2138 | 0 | qcElement[elementId]->qcOutChannel, peData, nChannels); |
2139 | 0 | redPeGlobal += peData->pe; |
2140 | |
|
2141 | 0 | } /* EOF DSE-suppression */ |
2142 | 0 | } /* EOF for all elements... */ |
2143 | 0 | } |
2144 | |
|
2145 | 0 | if (redPeGlobal > desiredPe) { |
2146 | | /* reduce pe by reducing minSnr requirements */ |
2147 | 0 | FDKaacEnc_reduceMinSnr( |
2148 | 0 | cm, qcElement, psyOutElement, pAhFlag, |
2149 | 0 | (fMultI(FL2FXCONST_DBL(0.15f), desiredPe) + desiredPe), &redPeGlobal, |
2150 | 0 | processElements, elementOffset); |
2151 | | |
2152 | | /* reduce pe by allowing additional spectral holes */ |
2153 | 0 | FDKaacEnc_allowMoreHoles(cm, qcElement, psyOutElement, AdjThrStateElement, |
2154 | 0 | pAhFlag, desiredPe, redPeGlobal, processElements, |
2155 | 0 | elementOffset); |
2156 | 0 | } |
2157 | 0 | } |
2158 | | |
2159 | | /* similar to FDKaacEnc_adaptThresholdsToPe(), for VBR-mode */ |
2160 | | static void FDKaacEnc_AdaptThresholdsVBR( |
2161 | | QC_OUT_CHANNEL *const qcOutChannel[(2)], |
2162 | | const PSY_OUT_CHANNEL *const psyOutChannel[(2)], |
2163 | | ATS_ELEMENT *const AdjThrStateElement, |
2164 | 0 | const struct TOOLSINFO *const toolsInfo, const INT nChannels) { |
2165 | 0 | UCHAR(*pAhFlag)[MAX_GROUPED_SFB]; |
2166 | 0 | FIXP_DBL(*pThrExp)[MAX_GROUPED_SFB]; |
2167 | | |
2168 | | /* allocate scratch memory */ |
2169 | 0 | C_ALLOC_SCRATCH_START(_pAhFlag, UCHAR, (2) * MAX_GROUPED_SFB) |
2170 | 0 | C_ALLOC_SCRATCH_START(_pThrExp, FIXP_DBL, (2) * MAX_GROUPED_SFB) |
2171 | 0 | pAhFlag = (UCHAR(*)[MAX_GROUPED_SFB])_pAhFlag; |
2172 | 0 | pThrExp = (FIXP_DBL(*)[MAX_GROUPED_SFB])_pThrExp; |
2173 | | |
2174 | | /* thresholds to the power of redExp */ |
2175 | 0 | FDKaacEnc_calcThreshExp(pThrExp, qcOutChannel, psyOutChannel, nChannels); |
2176 | | |
2177 | | /* lower the minSnr requirements for low energies compared to the average |
2178 | | energy in this frame */ |
2179 | 0 | FDKaacEnc_adaptMinSnr(qcOutChannel, psyOutChannel, |
2180 | 0 | &AdjThrStateElement->minSnrAdaptParam, nChannels); |
2181 | | |
2182 | | /* init ahFlag (0: no ah necessary, 1: ah possible, 2: ah active */ |
2183 | 0 | FDKaacEnc_initAvoidHoleFlag(qcOutChannel, psyOutChannel, pAhFlag, toolsInfo, |
2184 | 0 | nChannels, &AdjThrStateElement->ahParam); |
2185 | | |
2186 | | /* reduce thresholds */ |
2187 | 0 | FDKaacEnc_reduceThresholdsVBR(qcOutChannel, psyOutChannel, pAhFlag, pThrExp, |
2188 | 0 | nChannels, AdjThrStateElement->vbrQualFactor, |
2189 | 0 | &AdjThrStateElement->chaosMeasureOld); |
2190 | | |
2191 | | /* free scratch memory */ |
2192 | 0 | C_ALLOC_SCRATCH_END(_pThrExp, FIXP_DBL, (2) * MAX_GROUPED_SFB) |
2193 | 0 | C_ALLOC_SCRATCH_END(_pAhFlag, UCHAR, (2) * MAX_GROUPED_SFB) |
2194 | 0 | } |
2195 | | |
2196 | | /***************************************************************************** |
2197 | | |
2198 | | functionname: FDKaacEnc_calcBitSave |
2199 | | description: Calculates percentage of bit save, see figure below |
2200 | | returns: |
2201 | | input: parameters and bitres-fullness |
2202 | | output: percentage of bit save |
2203 | | |
2204 | | *****************************************************************************/ |
2205 | | /* |
2206 | | bitsave |
2207 | | maxBitSave(%)| clipLow |
2208 | | |---\ |
2209 | | | \ |
2210 | | | \ |
2211 | | | \ |
2212 | | | \ |
2213 | | |--------\--------------> bitres |
2214 | | | \ |
2215 | | minBitSave(%)| \------------ |
2216 | | clipHigh maxBitres |
2217 | | */ |
2218 | | static FIXP_DBL FDKaacEnc_calcBitSave(FIXP_DBL fillLevel, |
2219 | | const FIXP_DBL clipLow, |
2220 | | const FIXP_DBL clipHigh, |
2221 | | const FIXP_DBL minBitSave, |
2222 | | const FIXP_DBL maxBitSave, |
2223 | 0 | const FIXP_DBL bitsave_slope) { |
2224 | 0 | FIXP_DBL bitsave; |
2225 | |
|
2226 | 0 | fillLevel = fixMax(fillLevel, clipLow); |
2227 | 0 | fillLevel = fixMin(fillLevel, clipHigh); |
2228 | |
|
2229 | 0 | bitsave = maxBitSave - fMult((fillLevel - clipLow), bitsave_slope); |
2230 | |
|
2231 | 0 | return (bitsave); |
2232 | 0 | } |
2233 | | |
2234 | | /***************************************************************************** |
2235 | | |
2236 | | functionname: FDKaacEnc_calcBitSpend |
2237 | | description: Calculates percentage of bit spend, see figure below |
2238 | | returns: |
2239 | | input: parameters and bitres-fullness |
2240 | | output: percentage of bit spend |
2241 | | |
2242 | | *****************************************************************************/ |
2243 | | /* |
2244 | | bitspend clipHigh |
2245 | | maxBitSpend(%)| /-----------maxBitres |
2246 | | | / |
2247 | | | / |
2248 | | | / |
2249 | | | / |
2250 | | | / |
2251 | | |----/-----------------> bitres |
2252 | | | / |
2253 | | minBitSpend(%)|--/ |
2254 | | clipLow |
2255 | | */ |
2256 | | static FIXP_DBL FDKaacEnc_calcBitSpend(FIXP_DBL fillLevel, |
2257 | | const FIXP_DBL clipLow, |
2258 | | const FIXP_DBL clipHigh, |
2259 | | const FIXP_DBL minBitSpend, |
2260 | | const FIXP_DBL maxBitSpend, |
2261 | 0 | const FIXP_DBL bitspend_slope) { |
2262 | 0 | FIXP_DBL bitspend; |
2263 | |
|
2264 | 0 | fillLevel = fixMax(fillLevel, clipLow); |
2265 | 0 | fillLevel = fixMin(fillLevel, clipHigh); |
2266 | |
|
2267 | 0 | bitspend = minBitSpend + fMult(fillLevel - clipLow, bitspend_slope); |
2268 | |
|
2269 | 0 | return (bitspend); |
2270 | 0 | } |
2271 | | |
2272 | | /***************************************************************************** |
2273 | | |
2274 | | functionname: FDKaacEnc_adjustPeMinMax() |
2275 | | description: adjusts peMin and peMax parameters over time |
2276 | | returns: |
2277 | | input: current pe, peMin, peMax, bitres size |
2278 | | output: adjusted peMin/peMax |
2279 | | |
2280 | | *****************************************************************************/ |
2281 | 0 | static void FDKaacEnc_adjustPeMinMax(const INT currPe, INT *peMin, INT *peMax) { |
2282 | 0 | FIXP_DBL minFacHi = FL2FXCONST_DBL(0.3f), maxFacHi = (FIXP_DBL)MAXVAL_DBL, |
2283 | 0 | minFacLo = FL2FXCONST_DBL(0.14f), maxFacLo = FL2FXCONST_DBL(0.07f); |
2284 | 0 | INT diff; |
2285 | |
|
2286 | 0 | INT minDiff_fix = fMultI(FL2FXCONST_DBL(0.1666666667f), currPe); |
2287 | |
|
2288 | 0 | if (currPe > *peMax) { |
2289 | 0 | diff = (currPe - *peMax); |
2290 | 0 | *peMin += fMultI(minFacHi, diff); |
2291 | 0 | *peMax += fMultI(maxFacHi, diff); |
2292 | 0 | } else if (currPe < *peMin) { |
2293 | 0 | diff = (*peMin - currPe); |
2294 | 0 | *peMin -= fMultI(minFacLo, diff); |
2295 | 0 | *peMax -= fMultI(maxFacLo, diff); |
2296 | 0 | } else { |
2297 | 0 | *peMin += fMultI(minFacHi, (currPe - *peMin)); |
2298 | 0 | *peMax -= fMultI(maxFacLo, (*peMax - currPe)); |
2299 | 0 | } |
2300 | |
|
2301 | 0 | if ((*peMax - *peMin) < minDiff_fix) { |
2302 | 0 | INT peMax_fix = *peMax, peMin_fix = *peMin; |
2303 | 0 | FIXP_DBL partLo_fix, partHi_fix; |
2304 | |
|
2305 | 0 | partLo_fix = (FIXP_DBL)fixMax(0, currPe - peMin_fix); |
2306 | 0 | partHi_fix = (FIXP_DBL)fixMax(0, peMax_fix - currPe); |
2307 | |
|
2308 | 0 | peMax_fix = |
2309 | 0 | (INT)(currPe + fMultI(fDivNorm(partHi_fix, (partLo_fix + partHi_fix)), |
2310 | 0 | minDiff_fix)); |
2311 | 0 | peMin_fix = |
2312 | 0 | (INT)(currPe - fMultI(fDivNorm(partLo_fix, (partLo_fix + partHi_fix)), |
2313 | 0 | minDiff_fix)); |
2314 | 0 | peMin_fix = fixMax(0, peMin_fix); |
2315 | |
|
2316 | 0 | *peMax = peMax_fix; |
2317 | 0 | *peMin = peMin_fix; |
2318 | 0 | } |
2319 | 0 | } |
2320 | | |
2321 | | /***************************************************************************** |
2322 | | |
2323 | | functionname: BitresCalcBitFac |
2324 | | description: calculates factor of spending bits for one frame |
2325 | | 1.0 : take all frame dynpart bits |
2326 | | >1.0 : take all frame dynpart bits + bitres |
2327 | | <1.0 : put bits in bitreservoir |
2328 | | returns: BitFac |
2329 | | input: bitres-fullness, pe, blockType, parameter-settings |
2330 | | output: |
2331 | | |
2332 | | *****************************************************************************/ |
2333 | | /* |
2334 | | bitfac(%) pemax |
2335 | | bitspend(%) | /-----------maxBitres |
2336 | | | / |
2337 | | | / |
2338 | | | / |
2339 | | | / |
2340 | | | / |
2341 | | |----/-----------------> pe |
2342 | | | / |
2343 | | bitsave(%) |--/ |
2344 | | pemin |
2345 | | */ |
2346 | | |
2347 | | void FDKaacEnc_bitresCalcBitFac(const INT bitresBits, const INT maxBitresBits, |
2348 | | const INT pe, const INT lastWindowSequence, |
2349 | | const INT avgBits, const FIXP_DBL maxBitFac, |
2350 | | const ADJ_THR_STATE *const AdjThr, |
2351 | | ATS_ELEMENT *const adjThrChan, |
2352 | | FIXP_DBL *const pBitresFac, |
2353 | 0 | INT *const pBitresFac_e) { |
2354 | 0 | const BRES_PARAM *bresParam; |
2355 | 0 | INT pex; |
2356 | 0 | FIXP_DBL fillLevel; |
2357 | 0 | INT fillLevel_e = 0; |
2358 | |
|
2359 | 0 | FIXP_DBL bitresFac; |
2360 | 0 | INT bitresFac_e; |
2361 | |
|
2362 | 0 | FIXP_DBL bitSave, bitSpend; |
2363 | 0 | FIXP_DBL bitsave_slope, bitspend_slope; |
2364 | 0 | FIXP_DBL fillLevel_fix = MAXVAL_DBL; |
2365 | |
|
2366 | 0 | FIXP_DBL slope = MAXVAL_DBL; |
2367 | |
|
2368 | 0 | if (lastWindowSequence != SHORT_WINDOW) { |
2369 | 0 | bresParam = &(AdjThr->bresParamLong); |
2370 | 0 | bitsave_slope = FL2FXCONST_DBL(0.466666666); |
2371 | 0 | bitspend_slope = FL2FXCONST_DBL(0.666666666); |
2372 | 0 | } else { |
2373 | 0 | bresParam = &(AdjThr->bresParamShort); |
2374 | 0 | bitsave_slope = (FIXP_DBL)0x2E8BA2E9; |
2375 | 0 | bitspend_slope = (FIXP_DBL)0x7fffffff; |
2376 | 0 | } |
2377 | | |
2378 | | // fillLevel = (float)(bitresBits+avgBits) / (float)(maxBitresBits + avgBits); |
2379 | 0 | if (bitresBits < maxBitresBits) { |
2380 | 0 | fillLevel_fix = fDivNorm(bitresBits, maxBitresBits); |
2381 | 0 | } |
2382 | |
|
2383 | 0 | pex = fMax(pe, adjThrChan->peMin); |
2384 | 0 | pex = fMin(pex, adjThrChan->peMax); |
2385 | |
|
2386 | 0 | bitSave = FDKaacEnc_calcBitSave( |
2387 | 0 | fillLevel_fix, bresParam->clipSaveLow, bresParam->clipSaveHigh, |
2388 | 0 | bresParam->minBitSave, bresParam->maxBitSave, bitsave_slope); |
2389 | |
|
2390 | 0 | bitSpend = FDKaacEnc_calcBitSpend( |
2391 | 0 | fillLevel_fix, bresParam->clipSpendLow, bresParam->clipSpendHigh, |
2392 | 0 | bresParam->minBitSpend, bresParam->maxBitSpend, bitspend_slope); |
2393 | |
|
2394 | 0 | slope = schur_div((pex - adjThrChan->peMin), |
2395 | 0 | (adjThrChan->peMax - adjThrChan->peMin), 31); |
2396 | | |
2397 | | /* scale down by 1 bit because the result of the following addition can be |
2398 | | * bigger than 1 (though smaller than 2) */ |
2399 | 0 | bitresFac = ((FIXP_DBL)(MAXVAL_DBL >> 1) - (bitSave >> 1)); |
2400 | 0 | bitresFac_e = 1; /* exp=1 */ |
2401 | 0 | bitresFac = fMultAddDiv2(bitresFac, slope, bitSpend + bitSave); /* exp=1 */ |
2402 | | |
2403 | | /*** limit bitresFac for small bitreservoir ***/ |
2404 | 0 | fillLevel = fDivNorm(bitresBits, avgBits, &fillLevel_e); |
2405 | 0 | if (fillLevel_e < 0) { |
2406 | 0 | fillLevel = scaleValue(fillLevel, fillLevel_e); |
2407 | 0 | fillLevel_e = 0; |
2408 | 0 | } |
2409 | | /* shift down value by 1 because of summation, ... */ |
2410 | 0 | fillLevel >>= 1; |
2411 | 0 | fillLevel_e += 1; |
2412 | | /* ..., this summation: */ |
2413 | 0 | fillLevel += scaleValue(FL2FXCONST_DBL(0.7f), -fillLevel_e); |
2414 | | /* set bitresfactor to same exponent as fillLevel */ |
2415 | 0 | if (scaleValue(bitresFac, -fillLevel_e + 1) > fillLevel) { |
2416 | 0 | bitresFac = fillLevel; |
2417 | 0 | bitresFac_e = fillLevel_e; |
2418 | 0 | } |
2419 | | |
2420 | | /* limit bitresFac for high bitrates */ |
2421 | 0 | if (scaleValue(bitresFac, bitresFac_e - (DFRACT_BITS - 1 - 24)) > maxBitFac) { |
2422 | 0 | bitresFac = maxBitFac; |
2423 | 0 | bitresFac_e = (DFRACT_BITS - 1 - 24); |
2424 | 0 | } |
2425 | |
|
2426 | 0 | FDKaacEnc_adjustPeMinMax(pe, &adjThrChan->peMin, &adjThrChan->peMax); |
2427 | | |
2428 | | /* output values */ |
2429 | 0 | *pBitresFac = bitresFac; |
2430 | 0 | *pBitresFac_e = bitresFac_e; |
2431 | 0 | } |
2432 | | |
2433 | | /***************************************************************************** |
2434 | | functionname: FDKaacEnc_AdjThrNew |
2435 | | description: allocate ADJ_THR_STATE |
2436 | | *****************************************************************************/ |
2437 | 0 | INT FDKaacEnc_AdjThrNew(ADJ_THR_STATE **phAdjThr, INT nElements) { |
2438 | 0 | INT err = 0; |
2439 | 0 | INT i; |
2440 | 0 | ADJ_THR_STATE *hAdjThr = GetRam_aacEnc_AdjustThreshold(); |
2441 | 0 | if (hAdjThr == NULL) { |
2442 | 0 | err = 1; |
2443 | 0 | goto bail; |
2444 | 0 | } |
2445 | | |
2446 | 0 | for (i = 0; i < nElements; i++) { |
2447 | 0 | hAdjThr->adjThrStateElem[i] = GetRam_aacEnc_AdjThrStateElement(i); |
2448 | 0 | if (hAdjThr->adjThrStateElem[i] == NULL) { |
2449 | 0 | err = 1; |
2450 | 0 | goto bail; |
2451 | 0 | } |
2452 | 0 | } |
2453 | | |
2454 | 0 | bail: |
2455 | 0 | *phAdjThr = hAdjThr; |
2456 | 0 | return err; |
2457 | 0 | } |
2458 | | |
2459 | | /***************************************************************************** |
2460 | | functionname: FDKaacEnc_AdjThrInit |
2461 | | description: initialize ADJ_THR_STATE |
2462 | | *****************************************************************************/ |
2463 | | void FDKaacEnc_AdjThrInit( |
2464 | | ADJ_THR_STATE *const hAdjThr, const INT meanPe, const INT invQuant, |
2465 | | const CHANNEL_MAPPING *const channelMapping, const INT sampleRate, |
2466 | | const INT totalBitrate, const INT isLowDelay, |
2467 | | const AACENC_BITRES_MODE bitResMode, const INT dZoneQuantEnable, |
2468 | 0 | const INT bitDistributionMode, const FIXP_DBL vbrQualFactor) { |
2469 | 0 | INT i; |
2470 | |
|
2471 | 0 | FIXP_DBL POINT8 = FL2FXCONST_DBL(0.8f); |
2472 | 0 | FIXP_DBL POINT6 = FL2FXCONST_DBL(0.6f); |
2473 | |
|
2474 | 0 | if (bitDistributionMode == 1) { |
2475 | 0 | hAdjThr->bitDistributionMode = AACENC_BD_MODE_INTRA_ELEMENT; |
2476 | 0 | } else { |
2477 | 0 | hAdjThr->bitDistributionMode = AACENC_BD_MODE_INTER_ELEMENT; |
2478 | 0 | } |
2479 | | |
2480 | | /* Max number of iterations in second guess is 3 for lowdelay aot and for |
2481 | | configurations with multiple audio elements in general, otherwise iteration |
2482 | | value is always 1. */ |
2483 | 0 | hAdjThr->maxIter2ndGuess = |
2484 | 0 | (isLowDelay != 0 || channelMapping->nElements > 1) ? 3 : 1; |
2485 | | |
2486 | | /* common for all elements: */ |
2487 | | /* parameters for bitres control */ |
2488 | 0 | hAdjThr->bresParamLong.clipSaveLow = |
2489 | 0 | (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */ |
2490 | 0 | hAdjThr->bresParamLong.clipSaveHigh = |
2491 | 0 | (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */ |
2492 | 0 | hAdjThr->bresParamLong.minBitSave = |
2493 | 0 | (FIXP_DBL)0xf999999a; /* FL2FXCONST_DBL(-0.05f); */ |
2494 | 0 | hAdjThr->bresParamLong.maxBitSave = |
2495 | 0 | (FIXP_DBL)0x26666666; /* FL2FXCONST_DBL(0.3f); */ |
2496 | 0 | hAdjThr->bresParamLong.clipSpendLow = |
2497 | 0 | (FIXP_DBL)0x1999999a; /* FL2FXCONST_DBL(0.2f); */ |
2498 | 0 | hAdjThr->bresParamLong.clipSpendHigh = |
2499 | 0 | (FIXP_DBL)0x7999999a; /* FL2FXCONST_DBL(0.95f); */ |
2500 | 0 | hAdjThr->bresParamLong.minBitSpend = |
2501 | 0 | (FIXP_DBL)0xf3333333; /* FL2FXCONST_DBL(-0.10f); */ |
2502 | 0 | hAdjThr->bresParamLong.maxBitSpend = |
2503 | 0 | (FIXP_DBL)0x33333333; /* FL2FXCONST_DBL(0.4f); */ |
2504 | |
|
2505 | 0 | hAdjThr->bresParamShort.clipSaveLow = |
2506 | 0 | (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */ |
2507 | 0 | hAdjThr->bresParamShort.clipSaveHigh = |
2508 | 0 | (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */ |
2509 | 0 | hAdjThr->bresParamShort.minBitSave = |
2510 | 0 | (FIXP_DBL)0x00000000; /* FL2FXCONST_DBL(0.0f); */ |
2511 | 0 | hAdjThr->bresParamShort.maxBitSave = |
2512 | 0 | (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */ |
2513 | 0 | hAdjThr->bresParamShort.clipSpendLow = |
2514 | 0 | (FIXP_DBL)0x199999a0; /* FL2FXCONST_DBL(0.2f); */ |
2515 | 0 | hAdjThr->bresParamShort.clipSpendHigh = |
2516 | 0 | (FIXP_DBL)0x5fffffff; /* FL2FXCONST_DBL(0.75f); */ |
2517 | 0 | hAdjThr->bresParamShort.minBitSpend = |
2518 | 0 | (FIXP_DBL)0xf9999998; /* FL2FXCONST_DBL(-0.05f); */ |
2519 | 0 | hAdjThr->bresParamShort.maxBitSpend = |
2520 | 0 | (FIXP_DBL)0x40000000; /* FL2FXCONST_DBL(0.5f); */ |
2521 | | |
2522 | | /* specific for each element: */ |
2523 | 0 | for (i = 0; i < channelMapping->nElements; i++) { |
2524 | 0 | const FIXP_DBL relativeBits = channelMapping->elInfo[i].relativeBits; |
2525 | 0 | const INT nChannelsInElement = channelMapping->elInfo[i].nChannelsInEl; |
2526 | 0 | const INT bitrateInElement = |
2527 | 0 | (relativeBits != (FIXP_DBL)MAXVAL_DBL) |
2528 | 0 | ? (INT)fMultNorm(relativeBits, (FIXP_DBL)totalBitrate) |
2529 | 0 | : totalBitrate; |
2530 | 0 | const INT chBitrate = bitrateInElement >> (nChannelsInElement == 1 ? 0 : 1); |
2531 | |
|
2532 | 0 | ATS_ELEMENT *atsElem = hAdjThr->adjThrStateElem[i]; |
2533 | 0 | MINSNR_ADAPT_PARAM *msaParam = &atsElem->minSnrAdaptParam; |
2534 | | |
2535 | | /* parameters for bitres control */ |
2536 | 0 | if (isLowDelay) { |
2537 | 0 | atsElem->peMin = fMultI(POINT8, meanPe); |
2538 | 0 | atsElem->peMax = fMultI(POINT6, meanPe) << 1; |
2539 | 0 | } else { |
2540 | 0 | atsElem->peMin = fMultI(POINT8, meanPe) >> 1; |
2541 | 0 | atsElem->peMax = fMultI(POINT6, meanPe); |
2542 | 0 | } |
2543 | | |
2544 | | /* for use in FDKaacEnc_reduceThresholdsVBR */ |
2545 | 0 | atsElem->chaosMeasureOld = FL2FXCONST_DBL(0.3f); |
2546 | | |
2547 | | /* additional pe offset to correct pe2bits for low bitrates */ |
2548 | | /* ---- no longer necessary, set by table ----- */ |
2549 | 0 | atsElem->peOffset = 0; |
2550 | | |
2551 | | /* vbr initialisation */ |
2552 | 0 | atsElem->vbrQualFactor = vbrQualFactor; |
2553 | 0 | if (chBitrate < 32000) { |
2554 | 0 | atsElem->peOffset = |
2555 | 0 | fixMax(50, 100 - fMultI((FIXP_DBL)0x666667, chBitrate)); |
2556 | 0 | } |
2557 | | |
2558 | | /* avoid hole parameters */ |
2559 | 0 | if (chBitrate >= 20000) { |
2560 | 0 | atsElem->ahParam.modifyMinSnr = TRUE; |
2561 | 0 | atsElem->ahParam.startSfbL = 15; |
2562 | 0 | atsElem->ahParam.startSfbS = 3; |
2563 | 0 | } else { |
2564 | 0 | atsElem->ahParam.modifyMinSnr = FALSE; |
2565 | 0 | atsElem->ahParam.startSfbL = 0; |
2566 | 0 | atsElem->ahParam.startSfbS = 0; |
2567 | 0 | } |
2568 | | |
2569 | | /* minSnr adaptation */ |
2570 | 0 | msaParam->maxRed = FL2FXCONST_DBL(0.00390625f); /* 0.25f/64.0f */ |
2571 | | /* start adaptation of minSnr for avgEn/sfbEn > startRatio */ |
2572 | 0 | msaParam->startRatio = FL2FXCONST_DBL(0.05190512648f); /* ld64(10.0f) */ |
2573 | | /* maximum minSnr reduction to minSnr^maxRed is reached for |
2574 | | avgEn/sfbEn >= maxRatio */ |
2575 | | /* msaParam->maxRatio = 1000.0f; */ |
2576 | | /*msaParam->redRatioFac = ((float)1.0f - msaParam->maxRed) / |
2577 | | * ((float)10.0f*log10(msaParam->startRatio/msaParam->maxRatio)/log10(2.0f)*(float)0.3010299956f);*/ |
2578 | 0 | msaParam->redRatioFac = FL2FXCONST_DBL(-0.375f); /* -0.0375f * 10.0f */ |
2579 | | /*msaParam->redOffs = (float)1.0f - msaParam->redRatioFac * (float)10.0f * |
2580 | | * log10(msaParam->startRatio)/log10(2.0f) * (float)0.3010299956f;*/ |
2581 | 0 | msaParam->redOffs = FL2FXCONST_DBL(0.021484375); /* 1.375f/64.0f */ |
2582 | | |
2583 | | /* init pe correction */ |
2584 | 0 | atsElem->peCorrectionFactor_m = FL2FXCONST_DBL(0.5f); /* 1.0 */ |
2585 | 0 | atsElem->peCorrectionFactor_e = 1; |
2586 | |
|
2587 | 0 | atsElem->dynBitsLast = -1; |
2588 | 0 | atsElem->peLast = 0; |
2589 | | |
2590 | | /* init bits to pe factor */ |
2591 | | |
2592 | | /* init bits2PeFactor */ |
2593 | 0 | FDKaacEnc_InitBits2PeFactor( |
2594 | 0 | &atsElem->bits2PeFactor_m, &atsElem->bits2PeFactor_e, bitrateInElement, |
2595 | 0 | nChannelsInElement, sampleRate, isLowDelay, dZoneQuantEnable, invQuant); |
2596 | |
|
2597 | 0 | } /* for nElements */ |
2598 | 0 | } |
2599 | | |
2600 | | /***************************************************************************** |
2601 | | functionname: FDKaacEnc_FDKaacEnc_calcPeCorrection |
2602 | | description: calc desired pe |
2603 | | *****************************************************************************/ |
2604 | | static void FDKaacEnc_FDKaacEnc_calcPeCorrection( |
2605 | | FIXP_DBL *const correctionFac_m, INT *const correctionFac_e, |
2606 | | const INT peAct, const INT peLast, const INT bitsLast, |
2607 | 0 | const FIXP_DBL bits2PeFactor_m, const INT bits2PeFactor_e) { |
2608 | 0 | if ((bitsLast > 0) && (peAct < 1.5f * peLast) && (peAct > 0.7f * peLast) && |
2609 | 0 | (FDKaacEnc_bits2pe2(bitsLast, |
2610 | 0 | fMult(FL2FXCONST_DBL(1.2f / 2.f), bits2PeFactor_m), |
2611 | 0 | bits2PeFactor_e + 1) > peLast) && |
2612 | 0 | (FDKaacEnc_bits2pe2(bitsLast, |
2613 | 0 | fMult(FL2FXCONST_DBL(0.65f), bits2PeFactor_m), |
2614 | 0 | bits2PeFactor_e) < peLast)) { |
2615 | 0 | FIXP_DBL corrFac = *correctionFac_m; |
2616 | |
|
2617 | 0 | int scaling = 0; |
2618 | 0 | FIXP_DBL denum = (FIXP_DBL)FDKaacEnc_bits2pe2(bitsLast, bits2PeFactor_m, |
2619 | 0 | bits2PeFactor_e); |
2620 | 0 | FIXP_DBL newFac = fDivNorm((FIXP_DBL)peLast, denum, &scaling); |
2621 | | |
2622 | | /* dead zone, newFac and corrFac are scaled by 0.5 */ |
2623 | 0 | if ((FIXP_DBL)peLast <= denum) { /* ratio <= 1.f */ |
2624 | 0 | newFac = fixMax( |
2625 | 0 | scaleValue(fixMin(fMult(FL2FXCONST_DBL(1.1f / 2.f), newFac), |
2626 | 0 | scaleValue(FL2FXCONST_DBL(1.f / 2.f), -scaling)), |
2627 | 0 | scaling), |
2628 | 0 | FL2FXCONST_DBL(0.85f / 2.f)); |
2629 | 0 | } else { /* ratio < 1.f */ |
2630 | 0 | newFac = fixMax( |
2631 | 0 | fixMin(scaleValue(fMult(FL2FXCONST_DBL(0.9f / 2.f), newFac), scaling), |
2632 | 0 | FL2FXCONST_DBL(1.15f / 2.f)), |
2633 | 0 | FL2FXCONST_DBL(1.f / 2.f)); |
2634 | 0 | } |
2635 | |
|
2636 | 0 | if (((newFac > FL2FXCONST_DBL(1.f / 2.f)) && |
2637 | 0 | (corrFac < FL2FXCONST_DBL(1.f / 2.f))) || |
2638 | 0 | ((newFac < FL2FXCONST_DBL(1.f / 2.f)) && |
2639 | 0 | (corrFac > FL2FXCONST_DBL(1.f / 2.f)))) { |
2640 | 0 | corrFac = FL2FXCONST_DBL(1.f / 2.f); |
2641 | 0 | } |
2642 | | |
2643 | | /* faster adaptation towards 1.0, slower in the other direction */ |
2644 | 0 | if ((corrFac < FL2FXCONST_DBL(1.f / 2.f) && newFac < corrFac) || |
2645 | 0 | (corrFac > FL2FXCONST_DBL(1.f / 2.f) && newFac > corrFac)) { |
2646 | 0 | corrFac = fMult(FL2FXCONST_DBL(0.85f), corrFac) + |
2647 | 0 | fMult(FL2FXCONST_DBL(0.15f), newFac); |
2648 | 0 | } else { |
2649 | 0 | corrFac = fMult(FL2FXCONST_DBL(0.7f), corrFac) + |
2650 | 0 | fMult(FL2FXCONST_DBL(0.3f), newFac); |
2651 | 0 | } |
2652 | |
|
2653 | 0 | corrFac = fixMax(fixMin(corrFac, FL2FXCONST_DBL(1.15f / 2.f)), |
2654 | 0 | FL2FXCONST_DBL(0.85 / 2.f)); |
2655 | |
|
2656 | 0 | *correctionFac_m = corrFac; |
2657 | 0 | *correctionFac_e = 1; |
2658 | 0 | } else { |
2659 | 0 | *correctionFac_m = FL2FXCONST_DBL(1.f / 2.f); |
2660 | 0 | *correctionFac_e = 1; |
2661 | 0 | } |
2662 | 0 | } |
2663 | | |
2664 | | static void FDKaacEnc_calcPeCorrectionLowBitRes( |
2665 | | FIXP_DBL *const correctionFac_m, INT *const correctionFac_e, |
2666 | | const INT peLast, const INT bitsLast, const INT bitresLevel, |
2667 | | const INT nChannels, const FIXP_DBL bits2PeFactor_m, |
2668 | 0 | const INT bits2PeFactor_e) { |
2669 | | /* tuning params */ |
2670 | 0 | const FIXP_DBL amp = FL2FXCONST_DBL(0.005); |
2671 | 0 | const FIXP_DBL maxDiff = FL2FXCONST_DBL(0.25f); |
2672 | |
|
2673 | 0 | if (bitsLast > 0) { |
2674 | | /* Estimate deviation of granted and used dynamic bits in previous frame, in |
2675 | | * PE units */ |
2676 | 0 | const int bitsBalLast = |
2677 | 0 | peLast - FDKaacEnc_bits2pe2(bitsLast, bits2PeFactor_m, bits2PeFactor_e); |
2678 | | |
2679 | | /* reserve n bits per channel */ |
2680 | 0 | int headroom = (bitresLevel >= 50 * nChannels) ? 0 : (100 * nChannels); |
2681 | | |
2682 | | /* in PE units */ |
2683 | 0 | headroom = FDKaacEnc_bits2pe2(headroom, bits2PeFactor_m, bits2PeFactor_e); |
2684 | | |
2685 | | /* |
2686 | | * diff = amp * ((bitsBalLast - headroom) / (bitresLevel + headroom) |
2687 | | * diff = max ( min ( diff, maxDiff, -maxDiff)) / 2 |
2688 | | */ |
2689 | 0 | FIXP_DBL denominator = (FIXP_DBL)FDKaacEnc_bits2pe2( |
2690 | 0 | bitresLevel, bits2PeFactor_m, bits2PeFactor_e) + |
2691 | 0 | (FIXP_DBL)headroom; |
2692 | |
|
2693 | 0 | int scaling = 0; |
2694 | 0 | FIXP_DBL diff = |
2695 | 0 | (bitsBalLast >= headroom) |
2696 | 0 | ? fMult(amp, fDivNorm((FIXP_DBL)(bitsBalLast - headroom), |
2697 | 0 | denominator, &scaling)) |
2698 | 0 | : -fMult(amp, fDivNorm(-(FIXP_DBL)(bitsBalLast - headroom), |
2699 | 0 | denominator, &scaling)); |
2700 | |
|
2701 | 0 | scaling -= 1; /* divide by 2 */ |
2702 | |
|
2703 | 0 | diff = (scaling <= 0) |
2704 | 0 | ? fMax(fMin(diff >> (-scaling), maxDiff >> 1), -maxDiff >> 1) |
2705 | 0 | : fMax(fMin(diff, maxDiff >> (1 + scaling)), |
2706 | 0 | -maxDiff >> (1 + scaling)) |
2707 | 0 | << scaling; |
2708 | | |
2709 | | /* |
2710 | | * corrFac += diff |
2711 | | * corrFac = max ( min ( corrFac/2.f, 1.f/2.f, 0.75f/2.f ) ) |
2712 | | */ |
2713 | 0 | *correctionFac_m = |
2714 | 0 | fMax(fMin((*correctionFac_m) + diff, FL2FXCONST_DBL(1.0f / 2.f)), |
2715 | 0 | FL2FXCONST_DBL(0.75f / 2.f)); |
2716 | 0 | *correctionFac_e = 1; |
2717 | 0 | } else { |
2718 | 0 | *correctionFac_m = FL2FXCONST_DBL(0.75 / 2.f); |
2719 | 0 | *correctionFac_e = 1; |
2720 | 0 | } |
2721 | 0 | } |
2722 | | |
2723 | | void FDKaacEnc_DistributeBits( |
2724 | | ADJ_THR_STATE *adjThrState, ATS_ELEMENT *AdjThrStateElement, |
2725 | | PSY_OUT_CHANNEL *psyOutChannel[(2)], PE_DATA *peData, INT *grantedPe, |
2726 | | INT *grantedPeCorr, const INT nChannels, const INT commonWindow, |
2727 | | const INT grantedDynBits, const INT bitresBits, const INT maxBitresBits, |
2728 | 0 | const FIXP_DBL maxBitFac, const AACENC_BITRES_MODE bitResMode) { |
2729 | 0 | FIXP_DBL bitFactor; |
2730 | 0 | INT bitFactor_e; |
2731 | 0 | INT noRedPe = peData->pe; |
2732 | | |
2733 | | /* prefer short windows for calculation of bitFactor */ |
2734 | 0 | INT curWindowSequence = LONG_WINDOW; |
2735 | 0 | if (nChannels == 2) { |
2736 | 0 | if ((psyOutChannel[0]->lastWindowSequence == SHORT_WINDOW) || |
2737 | 0 | (psyOutChannel[1]->lastWindowSequence == SHORT_WINDOW)) { |
2738 | 0 | curWindowSequence = SHORT_WINDOW; |
2739 | 0 | } |
2740 | 0 | } else { |
2741 | 0 | curWindowSequence = psyOutChannel[0]->lastWindowSequence; |
2742 | 0 | } |
2743 | |
|
2744 | 0 | if (grantedDynBits >= 1) { |
2745 | 0 | if (bitResMode != AACENC_BR_MODE_FULL) { |
2746 | | /* small or disabled bitreservoir */ |
2747 | 0 | *grantedPe = FDKaacEnc_bits2pe2(grantedDynBits, |
2748 | 0 | AdjThrStateElement->bits2PeFactor_m, |
2749 | 0 | AdjThrStateElement->bits2PeFactor_e); |
2750 | 0 | } else { |
2751 | | /* factor dependend on current fill level and pe */ |
2752 | 0 | FDKaacEnc_bitresCalcBitFac( |
2753 | 0 | bitresBits, maxBitresBits, noRedPe, curWindowSequence, grantedDynBits, |
2754 | 0 | maxBitFac, adjThrState, AdjThrStateElement, &bitFactor, &bitFactor_e); |
2755 | | |
2756 | | /* desired pe for actual frame */ |
2757 | | /* Worst case max of grantedDynBits is = 1024 * 5.27 * 2 */ |
2758 | 0 | *grantedPe = FDKaacEnc_bits2pe2( |
2759 | 0 | grantedDynBits, fMult(bitFactor, AdjThrStateElement->bits2PeFactor_m), |
2760 | 0 | AdjThrStateElement->bits2PeFactor_e + bitFactor_e); |
2761 | 0 | } |
2762 | 0 | } else { |
2763 | 0 | *grantedPe = 0; /* prevent divsion by 0 */ |
2764 | 0 | } |
2765 | | |
2766 | | /* correction of pe value */ |
2767 | 0 | switch (bitResMode) { |
2768 | 0 | case AACENC_BR_MODE_DISABLED: |
2769 | 0 | case AACENC_BR_MODE_REDUCED: |
2770 | | /* correction of pe value for low bitres */ |
2771 | 0 | FDKaacEnc_calcPeCorrectionLowBitRes( |
2772 | 0 | &AdjThrStateElement->peCorrectionFactor_m, |
2773 | 0 | &AdjThrStateElement->peCorrectionFactor_e, AdjThrStateElement->peLast, |
2774 | 0 | AdjThrStateElement->dynBitsLast, bitresBits, nChannels, |
2775 | 0 | AdjThrStateElement->bits2PeFactor_m, |
2776 | 0 | AdjThrStateElement->bits2PeFactor_e); |
2777 | 0 | break; |
2778 | 0 | case AACENC_BR_MODE_FULL: |
2779 | 0 | default: |
2780 | | /* correction of pe value for high bitres */ |
2781 | 0 | FDKaacEnc_FDKaacEnc_calcPeCorrection( |
2782 | 0 | &AdjThrStateElement->peCorrectionFactor_m, |
2783 | 0 | &AdjThrStateElement->peCorrectionFactor_e, |
2784 | 0 | fixMin(*grantedPe, noRedPe), AdjThrStateElement->peLast, |
2785 | 0 | AdjThrStateElement->dynBitsLast, AdjThrStateElement->bits2PeFactor_m, |
2786 | 0 | AdjThrStateElement->bits2PeFactor_e); |
2787 | 0 | break; |
2788 | 0 | } |
2789 | | |
2790 | 0 | *grantedPeCorr = |
2791 | 0 | (INT)(fMult((FIXP_DBL)(*grantedPe << Q_AVGBITS), |
2792 | 0 | AdjThrStateElement->peCorrectionFactor_m) >> |
2793 | 0 | (Q_AVGBITS - AdjThrStateElement->peCorrectionFactor_e)); |
2794 | | |
2795 | | /* update last pe */ |
2796 | 0 | AdjThrStateElement->peLast = *grantedPe; |
2797 | 0 | AdjThrStateElement->dynBitsLast = -1; |
2798 | 0 | } |
2799 | | |
2800 | | /***************************************************************************** |
2801 | | functionname: FDKaacEnc_AdjustThresholds |
2802 | | description: adjust thresholds |
2803 | | *****************************************************************************/ |
2804 | | void FDKaacEnc_AdjustThresholds( |
2805 | | ADJ_THR_STATE *const hAdjThr, QC_OUT_ELEMENT *const qcElement[((8))], |
2806 | | QC_OUT *const qcOut, const PSY_OUT_ELEMENT *const psyOutElement[((8))], |
2807 | 0 | const INT CBRbitrateMode, const CHANNEL_MAPPING *const cm) { |
2808 | 0 | int i; |
2809 | |
|
2810 | 0 | if (CBRbitrateMode) { |
2811 | | /* In case, no bits must be shifted between different elements, */ |
2812 | | /* an element-wise execution of the pe-dependent threshold- */ |
2813 | | /* adaption becomes necessary... */ |
2814 | 0 | if (hAdjThr->bitDistributionMode == AACENC_BD_MODE_INTRA_ELEMENT) { |
2815 | 0 | for (i = 0; i < cm->nElements; i++) { |
2816 | 0 | ELEMENT_INFO elInfo = cm->elInfo[i]; |
2817 | |
|
2818 | 0 | if ((elInfo.elType == ID_SCE) || (elInfo.elType == ID_CPE) || |
2819 | 0 | (elInfo.elType == ID_LFE)) { |
2820 | | /* qcElement[i]->grantedPe = 2000; */ /* Use this only for debugging |
2821 | | */ |
2822 | | // if (totalGrantedPeCorr < totalNoRedPe) { |
2823 | 0 | if (qcElement[i]->grantedPeCorr < qcElement[i]->peData.pe) { |
2824 | | /* calc threshold necessary for desired pe */ |
2825 | 0 | FDKaacEnc_adaptThresholdsToPe( |
2826 | 0 | cm, hAdjThr->adjThrStateElem, qcElement, psyOutElement, |
2827 | 0 | qcElement[i]->grantedPeCorr, hAdjThr->maxIter2ndGuess, |
2828 | 0 | 1, /* Process only 1 element */ |
2829 | 0 | i /* Process exactly THIS element */ |
2830 | 0 | ); |
2831 | 0 | } |
2832 | 0 | } /* -end- if(ID_SCE || ID_CPE || ID_LFE) */ |
2833 | 0 | } /* -end- element loop */ |
2834 | 0 | } /* AACENC_BD_MODE_INTRA_ELEMENT */ |
2835 | 0 | else if (hAdjThr->bitDistributionMode == AACENC_BD_MODE_INTER_ELEMENT) { |
2836 | | /* Use global Pe to obtain the thresholds? */ |
2837 | 0 | if (qcOut->totalGrantedPeCorr < qcOut->totalNoRedPe) { |
2838 | | /* add equal loadness quantization noise to match the */ |
2839 | | /* desired pe calc threshold necessary for desired pe */ |
2840 | | /* Now carried out globally to cover all(!) channels. */ |
2841 | 0 | FDKaacEnc_adaptThresholdsToPe(cm, hAdjThr->adjThrStateElem, qcElement, |
2842 | 0 | psyOutElement, qcOut->totalGrantedPeCorr, |
2843 | 0 | hAdjThr->maxIter2ndGuess, |
2844 | 0 | cm->nElements, /* Process all elements */ |
2845 | 0 | 0); /* Process exactly THIS element */ |
2846 | 0 | } else { |
2847 | | /* In case global pe doesn't need to be reduced check each element to |
2848 | | hold estimated bitrate below maximum element bitrate. */ |
2849 | 0 | for (i = 0; i < cm->nElements; i++) { |
2850 | 0 | if ((cm->elInfo[i].elType == ID_SCE) || |
2851 | 0 | (cm->elInfo[i].elType == ID_CPE) || |
2852 | 0 | (cm->elInfo[i].elType == ID_LFE)) { |
2853 | | /* Element pe applies to dynamic bits of maximum element bitrate. */ |
2854 | 0 | const int maxElementPe = FDKaacEnc_bits2pe2( |
2855 | 0 | (cm->elInfo[i].nChannelsInEl * MIN_BUFSIZE_PER_EFF_CHAN) - |
2856 | 0 | qcElement[i]->staticBitsUsed - qcElement[i]->extBitsUsed, |
2857 | 0 | hAdjThr->adjThrStateElem[i]->bits2PeFactor_m, |
2858 | 0 | hAdjThr->adjThrStateElem[i]->bits2PeFactor_e); |
2859 | |
|
2860 | 0 | if (maxElementPe < qcElement[i]->peData.pe) { |
2861 | 0 | FDKaacEnc_adaptThresholdsToPe( |
2862 | 0 | cm, hAdjThr->adjThrStateElem, qcElement, psyOutElement, |
2863 | 0 | maxElementPe, hAdjThr->maxIter2ndGuess, 1, i); |
2864 | 0 | } |
2865 | 0 | } /* -end- if(ID_SCE || ID_CPE || ID_LFE) */ |
2866 | 0 | } /* -end- element loop */ |
2867 | 0 | } /* (qcOut->totalGrantedPeCorr < qcOut->totalNoRedPe) */ |
2868 | 0 | } /* AACENC_BD_MODE_INTER_ELEMENT */ |
2869 | 0 | } else { |
2870 | 0 | for (i = 0; i < cm->nElements; i++) { |
2871 | 0 | ELEMENT_INFO elInfo = cm->elInfo[i]; |
2872 | |
|
2873 | 0 | if ((elInfo.elType == ID_SCE) || (elInfo.elType == ID_CPE) || |
2874 | 0 | (elInfo.elType == ID_LFE)) { |
2875 | | /* for VBR-mode */ |
2876 | 0 | FDKaacEnc_AdaptThresholdsVBR( |
2877 | 0 | qcElement[i]->qcOutChannel, psyOutElement[i]->psyOutChannel, |
2878 | 0 | hAdjThr->adjThrStateElem[i], &psyOutElement[i]->toolsInfo, |
2879 | 0 | cm->elInfo[i].nChannelsInEl); |
2880 | 0 | } /* -end- if(ID_SCE || ID_CPE || ID_LFE) */ |
2881 | |
|
2882 | 0 | } /* -end- element loop */ |
2883 | 0 | } |
2884 | 0 | for (i = 0; i < cm->nElements; i++) { |
2885 | 0 | int ch, sfb, sfbGrp; |
2886 | | /* no weighting of threholds and energies for mlout */ |
2887 | | /* weight energies and thresholds */ |
2888 | 0 | for (ch = 0; ch < cm->elInfo[i].nChannelsInEl; ch++) { |
2889 | 0 | QC_OUT_CHANNEL *pQcOutCh = qcElement[i]->qcOutChannel[ch]; |
2890 | 0 | for (sfbGrp = 0; sfbGrp < psyOutElement[i]->psyOutChannel[ch]->sfbCnt; |
2891 | 0 | sfbGrp += psyOutElement[i]->psyOutChannel[ch]->sfbPerGroup) { |
2892 | 0 | for (sfb = 0; sfb < psyOutElement[i]->psyOutChannel[ch]->maxSfbPerGroup; |
2893 | 0 | sfb++) { |
2894 | 0 | pQcOutCh->sfbThresholdLdData[sfb + sfbGrp] += |
2895 | 0 | pQcOutCh->sfbEnFacLd[sfb + sfbGrp]; |
2896 | 0 | } |
2897 | 0 | } |
2898 | 0 | } |
2899 | 0 | } |
2900 | 0 | } |
2901 | | |
2902 | 0 | void FDKaacEnc_AdjThrClose(ADJ_THR_STATE **phAdjThr) { |
2903 | 0 | INT i; |
2904 | 0 | ADJ_THR_STATE *hAdjThr = *phAdjThr; |
2905 | |
|
2906 | 0 | if (hAdjThr != NULL) { |
2907 | 0 | for (i = 0; i < ((8)); i++) { |
2908 | 0 | if (hAdjThr->adjThrStateElem[i] != NULL) { |
2909 | 0 | FreeRam_aacEnc_AdjThrStateElement(&hAdjThr->adjThrStateElem[i]); |
2910 | 0 | } |
2911 | 0 | } |
2912 | 0 | FreeRam_aacEnc_AdjustThreshold(phAdjThr); |
2913 | 0 | } |
2914 | 0 | } |