Coverage Report

Created: 2025-09-05 06:55

/src/aac/libFDK/include/qmf_pcm.h
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):   Markus Lohwasser, Josef Hoepfl, Manuel Jander
98
99
   Description: QMF filterbank
100
101
*******************************************************************************/
102
103
#ifndef QMF_PCM_H
104
#define QMF_PCM_H
105
106
/*
107
   All Synthesis functions dependent on datatype INT_PCM_QMFOUT
108
   Should only be included by qmf.cpp, but not compiled separately, please
109
   exclude compilation from project, if done otherwise. Is optional included
110
   twice to duplicate all functions with two different pre-definitions, as:
111
        #define INT_PCM_QMFOUT LONG
112
    and ...
113
        #define INT_PCM_QMFOUT SHORT
114
    needed to run QMF synthesis in both 16bit and 32bit sample output format.
115
*/
116
117
#define QSSCALE (0)
118
14.1G
#define FX_DBL2FX_QSS(x) (x)
119
1.37G
#define FX_QSS2FX_DBL(x) (x)
120
121
/*!
122
  \brief Perform Synthesis Prototype Filtering on a single slot of input data.
123
124
  The filter takes 2 * qmf->no_channels of input data and
125
  generates qmf->no_channels time domain output samples.
126
*/
127
/* static */
128
#ifndef FUNCTION_qmfSynPrototypeFirSlot
129
void qmfSynPrototypeFirSlot(
130
#else
131
void qmfSynPrototypeFirSlot_fallback(
132
#endif
133
    HANDLE_QMF_FILTER_BANK qmf,
134
    FIXP_DBL *RESTRICT realSlot,      /*!< Input: Pointer to real Slot */
135
    FIXP_DBL *RESTRICT imagSlot,      /*!< Input: Pointer to imag Slot */
136
    INT_PCM_QMFOUT *RESTRICT timeOut, /*!< Time domain data */
137
27.0M
    int stride) {
138
27.0M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
139
27.0M
  int no_channels = qmf->no_channels;
140
27.0M
  const FIXP_PFT *p_Filter = qmf->p_filter;
141
27.0M
  int p_stride = qmf->p_stride;
142
27.0M
  int j;
143
27.0M
  FIXP_QSS *RESTRICT sta = FilterStates;
144
27.0M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
145
27.0M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
146
27.0M
              qmf->outGain_e;
147
148
27.0M
  p_flt =
149
27.0M
      p_Filter + p_stride * QMF_NO_POLY; /*                     5th of 330 */
150
27.0M
  p_fltm = p_Filter + (qmf->FilterSize / 2) -
151
27.0M
           p_stride * QMF_NO_POLY; /* 5 + (320 - 2*5) = 315th of 330 */
152
153
27.0M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
154
155
27.0M
  FIXP_DBL rnd_val = 0;
156
157
27.0M
  if (scale > 0) {
158
0
    if (scale < (DFRACT_BITS - 1))
159
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
160
0
    else
161
0
      scale = (DFRACT_BITS - 1);
162
27.0M
  } else {
163
27.0M
    scale = fMax(scale, -(DFRACT_BITS - 1));
164
27.0M
  }
165
166
1.39G
  for (j = no_channels - 1; j >= 0; j--) {
167
1.37G
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
168
1.37G
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
169
1.37G
    {
170
1.37G
      INT_PCM_QMFOUT tmp;
171
1.37G
      FIXP_DBL Are = fMultAddDiv2(FX_QSS2FX_DBL(sta[0]), p_fltm[0], real);
172
173
      /* This PCM formatting performs:
174
         - multiplication with 16-bit gain, if not -1.0f
175
         - rounding, if shift right is applied
176
         - apply shift left (or right) with saturation to 32 (or 16) bits
177
         - store output with --stride in 32 (or 16) bit format
178
      */
179
1.37G
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
180
0
      {
181
0
        Are = fMult(Are, gain);
182
0
      }
183
1.37G
      if (scale >= 0) {
184
89.4k
        FDK_ASSERT(
185
89.4k
            Are <=
186
89.4k
            (Are + rnd_val)); /* Round-addition must not overflow, might be
187
                                 equal for rnd_val=0 */
188
89.4k
        tmp = (INT_PCM_QMFOUT)(
189
89.4k
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
190
1.36G
      } else {
191
1.36G
        tmp = (INT_PCM_QMFOUT)(
192
1.36G
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
193
1.36G
      }
194
195
1.37G
      { timeOut[(j)*stride] = tmp; }
196
1.37G
    }
197
198
1.37G
    sta[0] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[1]), p_flt[4], imag));
199
1.37G
    sta[1] =
200
1.37G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[2]), p_fltm[1], real));
201
1.37G
    sta[2] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[3]), p_flt[3], imag));
202
1.37G
    sta[3] =
203
1.37G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[4]), p_fltm[2], real));
204
1.37G
    sta[4] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[5]), p_flt[2], imag));
205
1.37G
    sta[5] =
206
1.37G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[6]), p_fltm[3], real));
207
1.37G
    sta[6] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[7]), p_flt[1], imag));
208
1.37G
    sta[7] =
209
1.37G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[8]), p_fltm[4], real));
210
1.37G
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
211
1.37G
    p_flt += (p_stride * QMF_NO_POLY);
212
1.37G
    p_fltm -= (p_stride * QMF_NO_POLY);
213
1.37G
    sta += 9;  // = (2*QMF_NO_POLY-1);
214
1.37G
  }
215
27.0M
}
Unexecuted instantiation: qmfSynPrototypeFirSlot(QMF_FILTER_BANK*, int*, int*, short*, int)
qmfSynPrototypeFirSlot(QMF_FILTER_BANK*, int*, int*, int*, int)
Line
Count
Source
137
27.0M
    int stride) {
138
27.0M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
139
27.0M
  int no_channels = qmf->no_channels;
140
27.0M
  const FIXP_PFT *p_Filter = qmf->p_filter;
141
27.0M
  int p_stride = qmf->p_stride;
142
27.0M
  int j;
143
27.0M
  FIXP_QSS *RESTRICT sta = FilterStates;
144
27.0M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
145
27.0M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
146
27.0M
              qmf->outGain_e;
147
148
27.0M
  p_flt =
149
27.0M
      p_Filter + p_stride * QMF_NO_POLY; /*                     5th of 330 */
150
27.0M
  p_fltm = p_Filter + (qmf->FilterSize / 2) -
151
27.0M
           p_stride * QMF_NO_POLY; /* 5 + (320 - 2*5) = 315th of 330 */
152
153
27.0M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
154
155
27.0M
  FIXP_DBL rnd_val = 0;
156
157
27.0M
  if (scale > 0) {
158
0
    if (scale < (DFRACT_BITS - 1))
159
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
160
0
    else
161
0
      scale = (DFRACT_BITS - 1);
162
27.0M
  } else {
163
27.0M
    scale = fMax(scale, -(DFRACT_BITS - 1));
164
27.0M
  }
165
166
1.39G
  for (j = no_channels - 1; j >= 0; j--) {
167
1.37G
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
168
1.37G
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
169
1.37G
    {
170
1.37G
      INT_PCM_QMFOUT tmp;
171
1.37G
      FIXP_DBL Are = fMultAddDiv2(FX_QSS2FX_DBL(sta[0]), p_fltm[0], real);
172
173
      /* This PCM formatting performs:
174
         - multiplication with 16-bit gain, if not -1.0f
175
         - rounding, if shift right is applied
176
         - apply shift left (or right) with saturation to 32 (or 16) bits
177
         - store output with --stride in 32 (or 16) bit format
178
      */
179
1.37G
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
180
0
      {
181
0
        Are = fMult(Are, gain);
182
0
      }
183
1.37G
      if (scale >= 0) {
184
89.4k
        FDK_ASSERT(
185
89.4k
            Are <=
186
89.4k
            (Are + rnd_val)); /* Round-addition must not overflow, might be
187
                                 equal for rnd_val=0 */
188
89.4k
        tmp = (INT_PCM_QMFOUT)(
189
89.4k
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
190
1.36G
      } else {
191
1.36G
        tmp = (INT_PCM_QMFOUT)(
192
1.36G
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
193
1.36G
      }
194
195
1.37G
      { timeOut[(j)*stride] = tmp; }
196
1.37G
    }
197
198
1.37G
    sta[0] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[1]), p_flt[4], imag));
199
1.37G
    sta[1] =
200
1.37G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[2]), p_fltm[1], real));
201
1.37G
    sta[2] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[3]), p_flt[3], imag));
202
1.37G
    sta[3] =
203
1.37G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[4]), p_fltm[2], real));
204
1.37G
    sta[4] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[5]), p_flt[2], imag));
205
1.37G
    sta[5] =
206
1.37G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[6]), p_fltm[3], real));
207
1.37G
    sta[6] = FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[7]), p_flt[1], imag));
208
1.37G
    sta[7] =
209
1.37G
        FX_DBL2FX_QSS(fMultAddDiv2(FX_QSS2FX_DBL(sta[8]), p_fltm[4], real));
210
1.37G
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
211
1.37G
    p_flt += (p_stride * QMF_NO_POLY);
212
1.37G
    p_fltm -= (p_stride * QMF_NO_POLY);
213
1.37G
    sta += 9;  // = (2*QMF_NO_POLY-1);
214
1.37G
  }
215
27.0M
}
216
217
#ifndef FUNCTION_qmfSynPrototypeFirSlot_NonSymmetric
218
/*!
219
  \brief Perform Synthesis Prototype Filtering on a single slot of input data.
220
221
  The filter takes 2 * qmf->no_channels of input data and
222
  generates qmf->no_channels time domain output samples.
223
*/
224
static void qmfSynPrototypeFirSlot_NonSymmetric(
225
    HANDLE_QMF_FILTER_BANK qmf,
226
    FIXP_DBL *RESTRICT realSlot,      /*!< Input: Pointer to real Slot */
227
    FIXP_DBL *RESTRICT imagSlot,      /*!< Input: Pointer to imag Slot */
228
    INT_PCM_QMFOUT *RESTRICT timeOut, /*!< Time domain data */
229
4.17M
    int stride) {
230
4.17M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
231
4.17M
  int no_channels = qmf->no_channels;
232
4.17M
  const FIXP_PFT *p_Filter = qmf->p_filter;
233
4.17M
  int p_stride = qmf->p_stride;
234
4.17M
  int j;
235
4.17M
  FIXP_QSS *RESTRICT sta = FilterStates;
236
4.17M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
237
4.17M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
238
4.17M
              qmf->outGain_e;
239
240
4.17M
  p_flt = p_Filter; /*!< Pointer to first half of filter coefficients */
241
4.17M
  p_fltm =
242
4.17M
      &p_flt[qmf->FilterSize / 2]; /* at index 320, overall 640 coefficients */
243
244
4.17M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
245
246
4.17M
  FIXP_DBL rnd_val = (FIXP_DBL)0;
247
248
4.17M
  if (scale > 0) {
249
0
    if (scale < (DFRACT_BITS - 1))
250
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
251
0
    else
252
0
      scale = (DFRACT_BITS - 1);
253
4.17M
  } else {
254
4.17M
    scale = fMax(scale, -(DFRACT_BITS - 1));
255
4.17M
  }
256
257
189M
  for (j = no_channels - 1; j >= 0; j--) {
258
185M
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
259
185M
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
260
185M
    {
261
185M
      INT_PCM_QMFOUT tmp;
262
185M
      FIXP_DBL Are = sta[0] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[4], real));
263
264
      /* This PCM formatting performs:
265
         - multiplication with 16-bit gain, if not -1.0f
266
         - rounding, if shift right is applied
267
         - apply shift left (or right) with saturation to 32 (or 16) bits
268
         - store output with --stride in 32 (or 16) bit format
269
      */
270
185M
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
271
0
      {
272
0
        Are = fMult(Are, gain);
273
0
      }
274
185M
      if (scale > 0) {
275
0
        FDK_ASSERT(Are <
276
0
                   (Are + rnd_val)); /* Round-addition must not overflow */
277
0
        tmp = (INT_PCM_QMFOUT)(
278
0
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
279
185M
      } else {
280
185M
        tmp = (INT_PCM_QMFOUT)(
281
185M
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
282
185M
      }
283
185M
      timeOut[j * stride] = tmp;
284
185M
    }
285
286
185M
    sta[0] = sta[1] + FX_DBL2FX_QSS(fMultDiv2(p_flt[4], imag));
287
185M
    sta[1] = sta[2] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[3], real));
288
185M
    sta[2] = sta[3] + FX_DBL2FX_QSS(fMultDiv2(p_flt[3], imag));
289
290
185M
    sta[3] = sta[4] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[2], real));
291
185M
    sta[4] = sta[5] + FX_DBL2FX_QSS(fMultDiv2(p_flt[2], imag));
292
185M
    sta[5] = sta[6] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[1], real));
293
185M
    sta[6] = sta[7] + FX_DBL2FX_QSS(fMultDiv2(p_flt[1], imag));
294
295
185M
    sta[7] = sta[8] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[0], real));
296
185M
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
297
298
185M
    p_flt += (p_stride * QMF_NO_POLY);
299
185M
    p_fltm += (p_stride * QMF_NO_POLY);
300
185M
    sta += 9;  // = (2*QMF_NO_POLY-1);
301
185M
  }
302
4.17M
}
Unexecuted instantiation: qmf.cpp:qmfSynPrototypeFirSlot_NonSymmetric(QMF_FILTER_BANK*, int*, int*, short*, int)
qmf.cpp:qmfSynPrototypeFirSlot_NonSymmetric(QMF_FILTER_BANK*, int*, int*, int*, int)
Line
Count
Source
229
4.17M
    int stride) {
230
4.17M
  FIXP_QSS *FilterStates = (FIXP_QSS *)qmf->FilterStates;
231
4.17M
  int no_channels = qmf->no_channels;
232
4.17M
  const FIXP_PFT *p_Filter = qmf->p_filter;
233
4.17M
  int p_stride = qmf->p_stride;
234
4.17M
  int j;
235
4.17M
  FIXP_QSS *RESTRICT sta = FilterStates;
236
4.17M
  const FIXP_PFT *RESTRICT p_flt, *RESTRICT p_fltm;
237
4.17M
  int scale = (DFRACT_BITS - SAMPLE_BITS_QMFOUT) - 1 - qmf->outScalefactor -
238
4.17M
              qmf->outGain_e;
239
240
4.17M
  p_flt = p_Filter; /*!< Pointer to first half of filter coefficients */
241
4.17M
  p_fltm =
242
4.17M
      &p_flt[qmf->FilterSize / 2]; /* at index 320, overall 640 coefficients */
243
244
4.17M
  FIXP_SGL gain = FX_DBL2FX_SGL(qmf->outGain_m);
245
246
4.17M
  FIXP_DBL rnd_val = (FIXP_DBL)0;
247
248
4.17M
  if (scale > 0) {
249
0
    if (scale < (DFRACT_BITS - 1))
250
0
      rnd_val = FIXP_DBL(1 << (scale - 1));
251
0
    else
252
0
      scale = (DFRACT_BITS - 1);
253
4.17M
  } else {
254
4.17M
    scale = fMax(scale, -(DFRACT_BITS - 1));
255
4.17M
  }
256
257
189M
  for (j = no_channels - 1; j >= 0; j--) {
258
185M
    FIXP_DBL imag = imagSlot[j]; /* no_channels-1 .. 0 */
259
185M
    FIXP_DBL real = realSlot[j]; /* no_channels-1 .. 0 */
260
185M
    {
261
185M
      INT_PCM_QMFOUT tmp;
262
185M
      FIXP_DBL Are = sta[0] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[4], real));
263
264
      /* This PCM formatting performs:
265
         - multiplication with 16-bit gain, if not -1.0f
266
         - rounding, if shift right is applied
267
         - apply shift left (or right) with saturation to 32 (or 16) bits
268
         - store output with --stride in 32 (or 16) bit format
269
      */
270
185M
      if (gain != (FIXP_SGL)(-32768)) /* -1.0f */
271
0
      {
272
0
        Are = fMult(Are, gain);
273
0
      }
274
185M
      if (scale > 0) {
275
0
        FDK_ASSERT(Are <
276
0
                   (Are + rnd_val)); /* Round-addition must not overflow */
277
0
        tmp = (INT_PCM_QMFOUT)(
278
0
            SATURATE_RIGHT_SHIFT(Are + rnd_val, scale, SAMPLE_BITS_QMFOUT));
279
185M
      } else {
280
185M
        tmp = (INT_PCM_QMFOUT)(
281
185M
            SATURATE_LEFT_SHIFT(Are, -scale, SAMPLE_BITS_QMFOUT));
282
185M
      }
283
185M
      timeOut[j * stride] = tmp;
284
185M
    }
285
286
185M
    sta[0] = sta[1] + FX_DBL2FX_QSS(fMultDiv2(p_flt[4], imag));
287
185M
    sta[1] = sta[2] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[3], real));
288
185M
    sta[2] = sta[3] + FX_DBL2FX_QSS(fMultDiv2(p_flt[3], imag));
289
290
185M
    sta[3] = sta[4] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[2], real));
291
185M
    sta[4] = sta[5] + FX_DBL2FX_QSS(fMultDiv2(p_flt[2], imag));
292
185M
    sta[5] = sta[6] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[1], real));
293
185M
    sta[6] = sta[7] + FX_DBL2FX_QSS(fMultDiv2(p_flt[1], imag));
294
295
185M
    sta[7] = sta[8] + FX_DBL2FX_QSS(fMultDiv2(p_fltm[0], real));
296
185M
    sta[8] = FX_DBL2FX_QSS(fMultDiv2(p_flt[0], imag));
297
298
185M
    p_flt += (p_stride * QMF_NO_POLY);
299
185M
    p_fltm += (p_stride * QMF_NO_POLY);
300
185M
    sta += 9;  // = (2*QMF_NO_POLY-1);
301
185M
  }
302
4.17M
}
303
#endif /* FUNCTION_qmfSynPrototypeFirSlot_NonSymmetric */
304
305
void qmfSynthesisFilteringSlot(HANDLE_QMF_FILTER_BANK synQmf,
306
                               const FIXP_DBL *realSlot,
307
                               const FIXP_DBL *imagSlot,
308
                               const int scaleFactorLowBand,
309
                               const int scaleFactorHighBand,
310
                               INT_PCM_QMFOUT *timeOut, const int stride,
311
31.1M
                               FIXP_DBL *pWorkBuffer) {
312
31.1M
  if (!(synQmf->flags & QMF_FLAG_LP))
313
20.4M
    qmfInverseModulationHQ(synQmf, realSlot, imagSlot, scaleFactorLowBand,
314
20.4M
                           scaleFactorHighBand, pWorkBuffer);
315
10.7M
  else {
316
10.7M
    if (synQmf->flags & QMF_FLAG_CLDFB) {
317
2.46M
      qmfInverseModulationLP_odd(synQmf, realSlot, scaleFactorLowBand,
318
2.46M
                                 scaleFactorHighBand, pWorkBuffer);
319
8.26M
    } else {
320
8.26M
      qmfInverseModulationLP_even(synQmf, realSlot, scaleFactorLowBand,
321
8.26M
                                  scaleFactorHighBand, pWorkBuffer);
322
8.26M
    }
323
10.7M
  }
324
325
31.1M
  if (synQmf->flags & QMF_FLAG_NONSYMMETRIC) {
326
4.17M
    qmfSynPrototypeFirSlot_NonSymmetric(synQmf, pWorkBuffer,
327
4.17M
                                        pWorkBuffer + synQmf->no_channels,
328
4.17M
                                        timeOut, stride);
329
27.0M
  } else {
330
27.0M
    qmfSynPrototypeFirSlot(synQmf, pWorkBuffer,
331
27.0M
                           pWorkBuffer + synQmf->no_channels, timeOut, stride);
332
27.0M
  }
333
31.1M
}
Unexecuted instantiation: qmfSynthesisFilteringSlot(QMF_FILTER_BANK*, int const*, int const*, int, int, short*, int, int*)
qmfSynthesisFilteringSlot(QMF_FILTER_BANK*, int const*, int const*, int, int, int*, int, int*)
Line
Count
Source
311
31.1M
                               FIXP_DBL *pWorkBuffer) {
312
31.1M
  if (!(synQmf->flags & QMF_FLAG_LP))
313
20.4M
    qmfInverseModulationHQ(synQmf, realSlot, imagSlot, scaleFactorLowBand,
314
20.4M
                           scaleFactorHighBand, pWorkBuffer);
315
10.7M
  else {
316
10.7M
    if (synQmf->flags & QMF_FLAG_CLDFB) {
317
2.46M
      qmfInverseModulationLP_odd(synQmf, realSlot, scaleFactorLowBand,
318
2.46M
                                 scaleFactorHighBand, pWorkBuffer);
319
8.26M
    } else {
320
8.26M
      qmfInverseModulationLP_even(synQmf, realSlot, scaleFactorLowBand,
321
8.26M
                                  scaleFactorHighBand, pWorkBuffer);
322
8.26M
    }
323
10.7M
  }
324
325
31.1M
  if (synQmf->flags & QMF_FLAG_NONSYMMETRIC) {
326
4.17M
    qmfSynPrototypeFirSlot_NonSymmetric(synQmf, pWorkBuffer,
327
4.17M
                                        pWorkBuffer + synQmf->no_channels,
328
4.17M
                                        timeOut, stride);
329
27.0M
  } else {
330
27.0M
    qmfSynPrototypeFirSlot(synQmf, pWorkBuffer,
331
27.0M
                           pWorkBuffer + synQmf->no_channels, timeOut, stride);
332
27.0M
  }
333
31.1M
}
334
335
/*!
336
 *
337
 * \brief Perform complex-valued subband synthesis of the
338
 *        low band and the high band and store the
339
 *        time domain data in timeOut
340
 *
341
 * First step: Calculate the proper scaling factor of current
342
 * spectral data in qmfReal/qmfImag, old spectral data in the overlap
343
 * range and filter states.
344
 *
345
 * Second step: Perform Frequency-to-Time mapping with inverse
346
 * Modulation slot-wise.
347
 *
348
 * Third step: Perform FIR-filter slot-wise. To save space for filter
349
 * states, the MAC operations are executed directly on the filter states
350
 * instead of accumulating several products in the accumulator. The
351
 * buffer shift at the end of the function should be replaced by a
352
 * modulo operation, which is available on some DSPs.
353
 *
354
 * Last step: Copy the upper part of the spectral data to the overlap buffer.
355
 *
356
 * The qmf coefficient table is symmetric. The symmetry is exploited by
357
 * shrinking the coefficient table to half the size. The addressing mode
358
 * takes care of the symmetries.  If the #define #QMFTABLE_FULL is set,
359
 * coefficient addressing works on the full table size. The code will be
360
 * slightly faster and slightly more compact.
361
 *
362
 * Workbuffer requirement: 2 x sizeof(**QmfBufferReal) * synQmf->no_channels
363
 * The workbuffer must be aligned
364
 */
365
void qmfSynthesisFiltering(
366
    HANDLE_QMF_FILTER_BANK synQmf, /*!< Handle of Qmf Synthesis Bank  */
367
    FIXP_DBL **QmfBufferReal,      /*!< Low and High band, real */
368
    FIXP_DBL **QmfBufferImag,      /*!< Low and High band, imag */
369
    const QMF_SCALE_FACTOR *scaleFactor,
370
    const INT ov_len,        /*!< split Slot of overlap and actual slots */
371
    INT_PCM_QMFOUT *timeOut, /*!< Pointer to output */
372
    const INT stride,        /*!< stride factor of output */
373
    FIXP_DBL *pWorkBuffer    /*!< pointer to temporal working buffer */
374
413k
) {
375
413k
  int i;
376
413k
  int L = synQmf->no_channels;
377
413k
  int scaleFactorHighBand;
378
413k
  int scaleFactorLowBand_ov, scaleFactorLowBand_no_ov;
379
380
413k
  FDK_ASSERT(synQmf->no_channels >= synQmf->lsb);
381
413k
  FDK_ASSERT(synQmf->no_channels >= synQmf->usb);
382
383
  /* adapt scaling */
384
413k
  scaleFactorHighBand = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
385
413k
                        scaleFactor->hb_scale - synQmf->filterScale;
386
413k
  scaleFactorLowBand_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
387
413k
                          scaleFactor->ov_lb_scale - synQmf->filterScale;
388
413k
  scaleFactorLowBand_no_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
389
413k
                             scaleFactor->lb_scale - synQmf->filterScale;
390
391
12.5M
  for (i = 0; i < synQmf->no_col; i++) /* ----- no_col loop ----- */
392
12.1M
  {
393
12.1M
    const FIXP_DBL *QmfBufferImagSlot = NULL;
394
395
12.1M
    int scaleFactorLowBand =
396
12.1M
        (i < ov_len) ? scaleFactorLowBand_ov : scaleFactorLowBand_no_ov;
397
398
12.1M
    if (!(synQmf->flags & QMF_FLAG_LP)) QmfBufferImagSlot = QmfBufferImag[i];
399
400
12.1M
    qmfSynthesisFilteringSlot(synQmf, QmfBufferReal[i], QmfBufferImagSlot,
401
12.1M
                              scaleFactorLowBand, scaleFactorHighBand,
402
12.1M
                              timeOut + (i * L * stride), stride, pWorkBuffer);
403
12.1M
  } /* no_col loop  i  */
404
413k
}
Unexecuted instantiation: qmfSynthesisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR const*, int, short*, int, int*)
qmfSynthesisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR const*, int, int*, int, int*)
Line
Count
Source
374
413k
) {
375
413k
  int i;
376
413k
  int L = synQmf->no_channels;
377
413k
  int scaleFactorHighBand;
378
413k
  int scaleFactorLowBand_ov, scaleFactorLowBand_no_ov;
379
380
413k
  FDK_ASSERT(synQmf->no_channels >= synQmf->lsb);
381
413k
  FDK_ASSERT(synQmf->no_channels >= synQmf->usb);
382
383
  /* adapt scaling */
384
413k
  scaleFactorHighBand = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
385
413k
                        scaleFactor->hb_scale - synQmf->filterScale;
386
413k
  scaleFactorLowBand_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
387
413k
                          scaleFactor->ov_lb_scale - synQmf->filterScale;
388
413k
  scaleFactorLowBand_no_ov = -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK -
389
413k
                             scaleFactor->lb_scale - synQmf->filterScale;
390
391
12.5M
  for (i = 0; i < synQmf->no_col; i++) /* ----- no_col loop ----- */
392
12.1M
  {
393
12.1M
    const FIXP_DBL *QmfBufferImagSlot = NULL;
394
395
12.1M
    int scaleFactorLowBand =
396
12.1M
        (i < ov_len) ? scaleFactorLowBand_ov : scaleFactorLowBand_no_ov;
397
398
12.1M
    if (!(synQmf->flags & QMF_FLAG_LP)) QmfBufferImagSlot = QmfBufferImag[i];
399
400
12.1M
    qmfSynthesisFilteringSlot(synQmf, QmfBufferReal[i], QmfBufferImagSlot,
401
12.1M
                              scaleFactorLowBand, scaleFactorHighBand,
402
12.1M
                              timeOut + (i * L * stride), stride, pWorkBuffer);
403
12.1M
  } /* no_col loop  i  */
404
413k
}
405
406
/*!
407
 *
408
 * \brief Create QMF filter bank instance
409
 *
410
 *
411
 * \return 0 if successful
412
 *
413
 */
414
int qmfInitAnalysisFilterBank(
415
    HANDLE_QMF_FILTER_BANK h_Qmf, /*!< Returns handle */
416
    FIXP_QAS *pFilterStates,      /*!< Handle to filter states */
417
    int noCols,                   /*!< Number of timeslots per frame */
418
    int lsb,                      /*!< lower end of QMF */
419
    int usb,                      /*!< upper end of QMF */
420
    int no_channels,              /*!< Number of channels (bands) */
421
    int flags)                    /*!< Low Power flag */
422
160k
{
423
160k
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
424
160k
                              no_channels, flags, 0);
425
160k
  if (!(flags & QMF_FLAG_KEEP_STATES) && (h_Qmf->FilterStates != NULL)) {
426
109k
    FDKmemclear(h_Qmf->FilterStates,
427
109k
                (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QAS));
428
109k
  }
429
430
160k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
431
432
160k
  return err;
433
160k
}
Unexecuted instantiation: qmfInitAnalysisFilterBank(QMF_FILTER_BANK*, short*, int, int, int, int, int)
qmfInitAnalysisFilterBank(QMF_FILTER_BANK*, int*, int, int, int, int, int)
Line
Count
Source
422
160k
{
423
160k
  int err = qmfInitFilterBank(h_Qmf, pFilterStates, noCols, lsb, usb,
424
160k
                              no_channels, flags, 0);
425
160k
  if (!(flags & QMF_FLAG_KEEP_STATES) && (h_Qmf->FilterStates != NULL)) {
426
109k
    FDKmemclear(h_Qmf->FilterStates,
427
109k
                (2 * QMF_NO_POLY - 1) * h_Qmf->no_channels * sizeof(FIXP_QAS));
428
109k
  }
429
430
160k
  FDK_ASSERT(h_Qmf->no_channels >= h_Qmf->lsb);
431
432
160k
  return err;
433
160k
}
434
435
#ifndef FUNCTION_qmfAnaPrototypeFirSlot
436
/*!
437
  \brief Perform Analysis Prototype Filtering on a single slot of input data.
438
*/
439
static void qmfAnaPrototypeFirSlot(
440
    FIXP_DBL *analysisBuffer,
441
    INT no_channels, /*!< Number channels of analysis filter */
442
    const FIXP_PFT *p_filter, INT p_stride, /*!< Stride of analysis filter    */
443
18.4M
    FIXP_QAS *RESTRICT pFilterStates) {
444
18.4M
  INT k;
445
446
18.4M
  FIXP_DBL accu;
447
18.4M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
448
18.4M
  FIXP_DBL *RESTRICT pData_0 = analysisBuffer + 2 * no_channels - 1;
449
18.4M
  FIXP_DBL *RESTRICT pData_1 = analysisBuffer;
450
451
18.4M
  FIXP_QAS *RESTRICT sta_0 = (FIXP_QAS *)pFilterStates;
452
18.4M
  FIXP_QAS *RESTRICT sta_1 =
453
18.4M
      (FIXP_QAS *)pFilterStates + (2 * QMF_NO_POLY * no_channels) - 1;
454
18.4M
  INT pfltStep = QMF_NO_POLY * (p_stride);
455
18.4M
  INT staStep1 = no_channels << 1;
456
18.4M
  INT staStep2 = (no_channels << 3) - 1; /* Rewind one less */
457
458
  /* FIR filters 127..64 0..63 */
459
486M
  for (k = 0; k < no_channels; k++) {
460
467M
    accu = fMultDiv2(p_flt[0], *sta_1);
461
467M
    sta_1 -= staStep1;
462
467M
    accu += fMultDiv2(p_flt[1], *sta_1);
463
467M
    sta_1 -= staStep1;
464
467M
    accu += fMultDiv2(p_flt[2], *sta_1);
465
467M
    sta_1 -= staStep1;
466
467M
    accu += fMultDiv2(p_flt[3], *sta_1);
467
467M
    sta_1 -= staStep1;
468
467M
    accu += fMultDiv2(p_flt[4], *sta_1);
469
467M
    *pData_1++ = (accu << 1);
470
467M
    sta_1 += staStep2;
471
472
467M
    p_flt += pfltStep;
473
467M
    accu = fMultDiv2(p_flt[0], *sta_0);
474
467M
    sta_0 += staStep1;
475
467M
    accu += fMultDiv2(p_flt[1], *sta_0);
476
467M
    sta_0 += staStep1;
477
467M
    accu += fMultDiv2(p_flt[2], *sta_0);
478
467M
    sta_0 += staStep1;
479
467M
    accu += fMultDiv2(p_flt[3], *sta_0);
480
467M
    sta_0 += staStep1;
481
467M
    accu += fMultDiv2(p_flt[4], *sta_0);
482
467M
    *pData_0-- = (accu << 1);
483
467M
    sta_0 -= staStep2;
484
467M
  }
485
18.4M
}
Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot(int*, int, short const*, int, short*)
qmf.cpp:qmfAnaPrototypeFirSlot(int*, int, short const*, int, int*)
Line
Count
Source
443
18.4M
    FIXP_QAS *RESTRICT pFilterStates) {
444
18.4M
  INT k;
445
446
18.4M
  FIXP_DBL accu;
447
18.4M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
448
18.4M
  FIXP_DBL *RESTRICT pData_0 = analysisBuffer + 2 * no_channels - 1;
449
18.4M
  FIXP_DBL *RESTRICT pData_1 = analysisBuffer;
450
451
18.4M
  FIXP_QAS *RESTRICT sta_0 = (FIXP_QAS *)pFilterStates;
452
18.4M
  FIXP_QAS *RESTRICT sta_1 =
453
18.4M
      (FIXP_QAS *)pFilterStates + (2 * QMF_NO_POLY * no_channels) - 1;
454
18.4M
  INT pfltStep = QMF_NO_POLY * (p_stride);
455
18.4M
  INT staStep1 = no_channels << 1;
456
18.4M
  INT staStep2 = (no_channels << 3) - 1; /* Rewind one less */
457
458
  /* FIR filters 127..64 0..63 */
459
486M
  for (k = 0; k < no_channels; k++) {
460
467M
    accu = fMultDiv2(p_flt[0], *sta_1);
461
467M
    sta_1 -= staStep1;
462
467M
    accu += fMultDiv2(p_flt[1], *sta_1);
463
467M
    sta_1 -= staStep1;
464
467M
    accu += fMultDiv2(p_flt[2], *sta_1);
465
467M
    sta_1 -= staStep1;
466
467M
    accu += fMultDiv2(p_flt[3], *sta_1);
467
467M
    sta_1 -= staStep1;
468
467M
    accu += fMultDiv2(p_flt[4], *sta_1);
469
467M
    *pData_1++ = (accu << 1);
470
467M
    sta_1 += staStep2;
471
472
467M
    p_flt += pfltStep;
473
467M
    accu = fMultDiv2(p_flt[0], *sta_0);
474
467M
    sta_0 += staStep1;
475
467M
    accu += fMultDiv2(p_flt[1], *sta_0);
476
467M
    sta_0 += staStep1;
477
467M
    accu += fMultDiv2(p_flt[2], *sta_0);
478
467M
    sta_0 += staStep1;
479
467M
    accu += fMultDiv2(p_flt[3], *sta_0);
480
467M
    sta_0 += staStep1;
481
467M
    accu += fMultDiv2(p_flt[4], *sta_0);
482
467M
    *pData_0-- = (accu << 1);
483
467M
    sta_0 -= staStep2;
484
467M
  }
485
18.4M
}
486
#endif /* !defined(FUNCTION_qmfAnaPrototypeFirSlot) */
487
488
#ifndef FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric
489
/*!
490
  \brief Perform Analysis Prototype Filtering on a single slot of input data.
491
*/
492
static void qmfAnaPrototypeFirSlot_NonSymmetric(
493
    FIXP_DBL *analysisBuffer,
494
    int no_channels, /*!< Number channels of analysis filter */
495
    const FIXP_PFT *p_filter, int p_stride, /*!< Stride of analysis filter    */
496
3.33M
    FIXP_QAS *RESTRICT pFilterStates) {
497
3.33M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
498
3.33M
  int p, k;
499
500
213M
  for (k = 0; k < 2 * no_channels; k++) {
501
209M
    FIXP_DBL accu = (FIXP_DBL)0;
502
503
209M
    p_flt += QMF_NO_POLY * (p_stride - 1);
504
505
    /*
506
      Perform FIR-Filter
507
    */
508
1.25G
    for (p = 0; p < QMF_NO_POLY; p++) {
509
1.04G
      accu += fMultDiv2(*p_flt++, pFilterStates[2 * no_channels * p]);
510
1.04G
    }
511
209M
    analysisBuffer[2 * no_channels - 1 - k] = (accu << 1);
512
209M
    pFilterStates++;
513
209M
  }
514
3.33M
}
Unexecuted instantiation: qmf.cpp:qmfAnaPrototypeFirSlot_NonSymmetric(int*, int, short const*, int, short*)
qmf.cpp:qmfAnaPrototypeFirSlot_NonSymmetric(int*, int, short const*, int, int*)
Line
Count
Source
496
3.33M
    FIXP_QAS *RESTRICT pFilterStates) {
497
3.33M
  const FIXP_PFT *RESTRICT p_flt = p_filter;
498
3.33M
  int p, k;
499
500
213M
  for (k = 0; k < 2 * no_channels; k++) {
501
209M
    FIXP_DBL accu = (FIXP_DBL)0;
502
503
209M
    p_flt += QMF_NO_POLY * (p_stride - 1);
504
505
    /*
506
      Perform FIR-Filter
507
    */
508
1.25G
    for (p = 0; p < QMF_NO_POLY; p++) {
509
1.04G
      accu += fMultDiv2(*p_flt++, pFilterStates[2 * no_channels * p]);
510
1.04G
    }
511
209M
    analysisBuffer[2 * no_channels - 1 - k] = (accu << 1);
512
209M
    pFilterStates++;
513
209M
  }
514
3.33M
}
515
#endif /* FUNCTION_qmfAnaPrototypeFirSlot_NonSymmetric */
516
517
/*
518
 * \brief Perform one QMF slot analysis of the time domain data of timeIn
519
 *        with specified stride and stores the real part of the subband
520
 *        samples in rSubband, and the imaginary part in iSubband
521
 *
522
 *        Note: anaQmf->lsb can be greater than anaQmf->no_channels in case
523
 *        of implicit resampling (USAC with reduced 3/4 core frame length).
524
 */
525
void qmfAnalysisFilteringSlot(
526
    HANDLE_QMF_FILTER_BANK anaQmf,        /*!< Handle of Qmf Synthesis Bank  */
527
    FIXP_DBL *qmfReal,                    /*!< Low and High band, real */
528
    FIXP_DBL *qmfImag,                    /*!< Low and High band, imag */
529
    const INT_PCM_QMFIN *RESTRICT timeIn, /*!< Pointer to input */
530
    const int stride,                     /*!< stride factor of input */
531
    FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
532
21.7M
) {
533
21.7M
  int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);
534
  /*
535
    Feed time signal into oldest anaQmf->no_channels states
536
  */
537
21.7M
  {
538
21.7M
    FIXP_QAS *FilterStatesAnaTmp = ((FIXP_QAS *)anaQmf->FilterStates) + offset;
539
540
    /* Feed and scale actual time in slot */
541
308M
    for (int i = anaQmf->no_channels >> 1; i != 0; i--) {
542
      /* Place INT_PCM value left aligned in scaledTimeIn */
543
286M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
544
286M
      timeIn += stride;
545
286M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
546
286M
      timeIn += stride;
547
286M
    }
548
21.7M
  }
549
550
21.7M
  if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) {
551
3.33M
    qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,
552
3.33M
                                        anaQmf->p_filter, anaQmf->p_stride,
553
3.33M
                                        (FIXP_QAS *)anaQmf->FilterStates);
554
18.4M
  } else {
555
18.4M
    qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,
556
18.4M
                           anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);
557
18.4M
  }
558
559
21.7M
  if (anaQmf->flags & QMF_FLAG_LP) {
560
3.82M
    if (anaQmf->flags & QMF_FLAG_CLDFB)
561
2.46M
      qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);
562
1.36M
    else
563
1.36M
      qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);
564
565
17.9M
  } else {
566
17.9M
    qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);
567
17.9M
  }
568
  /*
569
    Shift filter states
570
571
    Should be realized with modulo addressing on a DSP instead of a true buffer
572
    shift
573
  */
574
21.7M
  FDKmemmove(anaQmf->FilterStates,
575
21.7M
             (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,
576
21.7M
             offset * sizeof(FIXP_QAS));
577
21.7M
}
Unexecuted instantiation: qmfAnalysisFilteringSlot(QMF_FILTER_BANK*, int*, int*, short const*, int, int*)
qmfAnalysisFilteringSlot(QMF_FILTER_BANK*, int*, int*, int const*, int, int*)
Line
Count
Source
532
21.7M
) {
533
21.7M
  int offset = anaQmf->no_channels * (QMF_NO_POLY * 2 - 1);
534
  /*
535
    Feed time signal into oldest anaQmf->no_channels states
536
  */
537
21.7M
  {
538
21.7M
    FIXP_QAS *FilterStatesAnaTmp = ((FIXP_QAS *)anaQmf->FilterStates) + offset;
539
540
    /* Feed and scale actual time in slot */
541
308M
    for (int i = anaQmf->no_channels >> 1; i != 0; i--) {
542
      /* Place INT_PCM value left aligned in scaledTimeIn */
543
286M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
544
286M
      timeIn += stride;
545
286M
      *FilterStatesAnaTmp++ = (FIXP_QAS)*timeIn;
546
286M
      timeIn += stride;
547
286M
    }
548
21.7M
  }
549
550
21.7M
  if (anaQmf->flags & QMF_FLAG_NONSYMMETRIC) {
551
3.33M
    qmfAnaPrototypeFirSlot_NonSymmetric(pWorkBuffer, anaQmf->no_channels,
552
3.33M
                                        anaQmf->p_filter, anaQmf->p_stride,
553
3.33M
                                        (FIXP_QAS *)anaQmf->FilterStates);
554
18.4M
  } else {
555
18.4M
    qmfAnaPrototypeFirSlot(pWorkBuffer, anaQmf->no_channels, anaQmf->p_filter,
556
18.4M
                           anaQmf->p_stride, (FIXP_QAS *)anaQmf->FilterStates);
557
18.4M
  }
558
559
21.7M
  if (anaQmf->flags & QMF_FLAG_LP) {
560
3.82M
    if (anaQmf->flags & QMF_FLAG_CLDFB)
561
2.46M
      qmfForwardModulationLP_odd(anaQmf, pWorkBuffer, qmfReal);
562
1.36M
    else
563
1.36M
      qmfForwardModulationLP_even(anaQmf, pWorkBuffer, qmfReal);
564
565
17.9M
  } else {
566
17.9M
    qmfForwardModulationHQ(anaQmf, pWorkBuffer, qmfReal, qmfImag);
567
17.9M
  }
568
  /*
569
    Shift filter states
570
571
    Should be realized with modulo addressing on a DSP instead of a true buffer
572
    shift
573
  */
574
21.7M
  FDKmemmove(anaQmf->FilterStates,
575
21.7M
             (FIXP_QAS *)anaQmf->FilterStates + anaQmf->no_channels,
576
21.7M
             offset * sizeof(FIXP_QAS));
577
21.7M
}
578
579
/*!
580
 *
581
 * \brief Perform complex-valued subband filtering of the time domain
582
 *        data of timeIn and stores the real part of the subband
583
 *        samples in rAnalysis, and the imaginary part in iAnalysis
584
 * The qmf coefficient table is symmetric. The symmetry is expoited by
585
 * shrinking the coefficient table to half the size. The addressing mode
586
 * takes care of the symmetries.
587
 *
588
 *
589
 * \sa PolyphaseFiltering
590
 */
591
void qmfAnalysisFiltering(
592
    HANDLE_QMF_FILTER_BANK anaQmf, /*!< Handle of Qmf Analysis Bank */
593
    FIXP_DBL **qmfReal,            /*!< Pointer to real subband slots */
594
    FIXP_DBL **qmfImag,            /*!< Pointer to imag subband slots */
595
    QMF_SCALE_FACTOR *scaleFactor,
596
    const INT_PCM_QMFIN *timeIn, /*!< Time signal */
597
    const int timeIn_e, const int stride,
598
    FIXP_DBL *pWorkBuffer /*!< pointer to temporal working buffer */
599
531k
) {
600
531k
  int i;
601
531k
  int no_channels = anaQmf->no_channels;
602
603
531k
  scaleFactor->lb_scale =
604
531k
      -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;
605
531k
  scaleFactor->lb_scale -= anaQmf->filterScale;
606
607
15.3M
  for (i = 0; i < anaQmf->no_col; i++) {
608
14.8M
    FIXP_DBL *qmfImagSlot = NULL;
609
610
14.8M
    if (!(anaQmf->flags & QMF_FLAG_LP)) {
611
11.0M
      qmfImagSlot = qmfImag[i];
612
11.0M
    }
613
614
14.8M
    qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,
615
14.8M
                             pWorkBuffer);
616
617
14.8M
    timeIn += no_channels * stride;
618
619
14.8M
  } /* no_col loop  i  */
620
531k
}
Unexecuted instantiation: qmfAnalysisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR*, short const*, int, int, int*)
qmfAnalysisFiltering(QMF_FILTER_BANK*, int**, int**, QMF_SCALE_FACTOR*, int const*, int, int, int*)
Line
Count
Source
599
531k
) {
600
531k
  int i;
601
531k
  int no_channels = anaQmf->no_channels;
602
603
531k
  scaleFactor->lb_scale =
604
531k
      -ALGORITHMIC_SCALING_IN_ANALYSIS_FILTERBANK - timeIn_e;
605
531k
  scaleFactor->lb_scale -= anaQmf->filterScale;
606
607
15.3M
  for (i = 0; i < anaQmf->no_col; i++) {
608
14.8M
    FIXP_DBL *qmfImagSlot = NULL;
609
610
14.8M
    if (!(anaQmf->flags & QMF_FLAG_LP)) {
611
11.0M
      qmfImagSlot = qmfImag[i];
612
11.0M
    }
613
614
14.8M
    qmfAnalysisFilteringSlot(anaQmf, qmfReal[i], qmfImagSlot, timeIn, stride,
615
14.8M
                             pWorkBuffer);
616
617
14.8M
    timeIn += no_channels * stride;
618
619
14.8M
  } /* no_col loop  i  */
620
531k
}
621
#endif /* QMF_PCM_H */