Coverage Report

Created: 2025-09-05 06:55

/src/aac/libFDK/src/dct.cpp
Line
Count
Source (jump to first uncovered line)
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file   dct.cpp
105
  \brief  DCT Implementations
106
  Library functions to calculate standard DCTs. This will most likely be
107
  replaced by hand-optimized functions for the specific target processor.
108
109
  Three different implementations of the dct type II and the dct type III
110
  transforms are provided.
111
112
  By default implementations which are based on a single, standard complex
113
  FFT-kernel are used (dctII_f() and dctIII_f()). These are specifically helpful
114
  in cases where optimized FFT libraries are already available. The FFT used in
115
  these implementation is FFT rad2 from FDK_tools.
116
117
  Of course, one might also use DCT-libraries should they be available. The DCT
118
  and DST type IV implementations are only available in a version based on a
119
  complex FFT kernel.
120
*/
121
122
#include "dct.h"
123
124
#include "FDK_tools_rom.h"
125
#include "fft.h"
126
127
void dct_getTables(const FIXP_WTP **ptwiddle, const FIXP_STP **sin_twiddle,
128
93.2M
                   int *sin_step, int length) {
129
93.2M
  const FIXP_WTP *twiddle;
130
93.2M
  int ld2_length;
131
132
  /* Get ld2 of length - 2 + 1
133
      -2: because first table entry is window of size 4
134
      +1: because we already include +1 because of ceil(log2(length)) */
135
93.2M
  ld2_length = DFRACT_BITS - 1 - fNormz((FIXP_DBL)length) - 1;
136
137
  /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */
138
93.2M
  switch ((length) >> (ld2_length - 1)) {
139
74.7M
    case 0x4: /* radix 2 */
140
74.7M
      *sin_twiddle = SineTable1024;
141
74.7M
      *sin_step = 1 << (10 - ld2_length);
142
74.7M
      twiddle = windowSlopes[0][0][ld2_length - 1];
143
74.7M
      break;
144
504k
    case 0x7: /* 10 ms */
145
504k
      *sin_twiddle = SineTable480;
146
504k
      *sin_step = 1 << (8 - ld2_length);
147
504k
      twiddle = windowSlopes[0][1][ld2_length];
148
504k
      break;
149
17.7M
    case 0x6: /* 3/4 of radix 2 */
150
17.7M
      *sin_twiddle = SineTable384;
151
17.7M
      *sin_step = 1 << (8 - ld2_length);
152
17.7M
      twiddle = windowSlopes[0][2][ld2_length];
153
17.7M
      break;
154
294k
    case 0x5: /* 5/16 of radix 2*/
155
294k
      *sin_twiddle = SineTable80;
156
294k
      *sin_step = 1 << (6 - ld2_length);
157
294k
      twiddle = windowSlopes[0][3][ld2_length];
158
294k
      break;
159
0
    default:
160
0
      *sin_twiddle = NULL;
161
0
      *sin_step = 0;
162
0
      twiddle = NULL;
163
0
      break;
164
93.2M
  }
165
166
93.2M
  if (ptwiddle != NULL) {
167
83.6M
    FDK_ASSERT(twiddle != NULL);
168
83.6M
    *ptwiddle = twiddle;
169
83.6M
  }
170
171
93.2M
  FDK_ASSERT(*sin_step > 0);
172
93.2M
}
173
174
#if !defined(FUNCTION_dct_III)
175
void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */
176
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
177
             int L,          /*!< lenght of transform */
178
1.36M
             int *pDat_e) {
179
1.36M
  const FIXP_WTP *sin_twiddle;
180
1.36M
  int i;
181
1.36M
  FIXP_DBL xr, accu1, accu2;
182
1.36M
  int inc, index;
183
1.36M
  int M = L >> 1;
184
185
1.36M
  FDK_ASSERT(L % 4 == 0);
186
1.36M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
187
1.36M
  inc >>= 1;
188
189
1.36M
  FIXP_DBL *pTmp_0 = &tmp[2];
190
1.36M
  FIXP_DBL *pTmp_1 = &tmp[(M - 1) * 2];
191
192
1.36M
  index = 4 * inc;
193
194
  /* This loop performs multiplication for index i (i*inc) */
195
10.9M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
196
9.54M
    FIXP_DBL accu3, accu4, accu5, accu6;
197
198
9.54M
    cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle[i * inc]);
199
9.54M
    cplxMultDiv2(&accu4, &accu3, pDat[M + i], pDat[M - i],
200
9.54M
                 sin_twiddle[(M - i) * inc]);
201
9.54M
    accu3 >>= 1;
202
9.54M
    accu4 >>= 1;
203
204
    /* This method is better for ARM926, that uses operand2 shifted right by 1
205
     * always */
206
9.54M
    if (2 * i < (M / 2)) {
207
4.08M
      cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1 >> 1)),
208
4.08M
                   ((accu2 >> 1) + accu4), sin_twiddle[index]);
209
5.45M
    } else {
210
5.45M
      cplxMultDiv2(&accu6, &accu5, ((accu2 >> 1) + accu4),
211
5.45M
                   (accu3 - (accu1 >> 1)), sin_twiddle[index]);
212
5.45M
      accu6 = -accu6;
213
5.45M
    }
214
9.54M
    xr = (accu1 >> 1) + accu3;
215
9.54M
    pTmp_0[0] = (xr >> 1) - accu5;
216
9.54M
    pTmp_1[0] = (xr >> 1) + accu5;
217
218
9.54M
    xr = (accu2 >> 1) - accu4;
219
9.54M
    pTmp_0[1] = (xr >> 1) - accu6;
220
9.54M
    pTmp_1[1] = -((xr >> 1) + accu6);
221
222
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
223
     * short tables. */
224
9.54M
    if (2 * i < ((M / 2) - 1)) {
225
4.08M
      index += 4 * inc;
226
5.45M
    } else if (2 * i >= ((M / 2))) {
227
5.45M
      index -= 4 * inc;
228
5.45M
    }
229
9.54M
  }
230
231
1.36M
  xr = fMultDiv2(pDat[M], sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
232
1.36M
  tmp[0] = ((pDat[0] >> 1) + xr) >> 1;
233
1.36M
  tmp[1] = ((pDat[0] >> 1) - xr) >> 1;
234
235
1.36M
  cplxMultDiv2(&accu2, &accu1, pDat[L - (M / 2)], pDat[M / 2],
236
1.36M
               sin_twiddle[M * inc / 2]);
237
1.36M
  tmp[M] = accu1 >> 1;
238
1.36M
  tmp[M + 1] = accu2 >> 1;
239
240
  /* dit_fft expects 1 bit scaled input values */
241
1.36M
  fft(M, tmp, pDat_e);
242
243
  /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */
244
1.36M
  pTmp_1 = &tmp[L];
245
12.2M
  for (i = M >> 1; i--;) {
246
10.9M
    FIXP_DBL tmp1, tmp2, tmp3, tmp4;
247
10.9M
    tmp1 = *tmp++;
248
10.9M
    tmp2 = *tmp++;
249
10.9M
    tmp3 = *--pTmp_1;
250
10.9M
    tmp4 = *--pTmp_1;
251
10.9M
    *pDat++ = tmp1;
252
10.9M
    *pDat++ = tmp3;
253
10.9M
    *pDat++ = tmp2;
254
10.9M
    *pDat++ = tmp4;
255
10.9M
  }
256
257
1.36M
  *pDat_e += 2;
258
1.36M
}
259
260
void dst_III(FIXP_DBL *pDat, /*!< pointer to input/output */
261
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
262
             int L,          /*!< lenght of transform */
263
0
             int *pDat_e) {
264
0
  int L2 = L >> 1;
265
0
  int i;
266
0
  FIXP_DBL t;
267
268
  /* note: DCT III is reused here, direct DST III implementation might be more
269
   * efficient */
270
271
  /* mirror input */
272
0
  for (i = 0; i < L2; i++) {
273
0
    t = pDat[i];
274
0
    pDat[i] = pDat[L - 1 - i];
275
0
    pDat[L - 1 - i] = t;
276
0
  }
277
278
  /* DCT-III */
279
0
  dct_III(pDat, tmp, L, pDat_e);
280
281
  /* flip signs at odd indices */
282
0
  for (i = 1; i < L; i += 2) pDat[i] = -pDat[i];
283
0
}
284
285
#endif
286
287
#if !defined(FUNCTION_dct_II)
288
void dct_II(
289
    FIXP_DBL *pDat, /*!< pointer to input/output */
290
    FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
291
    int L, /*!< lenght of transform (has to be a multiple of 8 (or 4 in case
292
              DCT_II_L_MULTIPLE_OF_4_SUPPORT is defined) */
293
8.26M
    int *pDat_e) {
294
8.26M
  const FIXP_WTP *sin_twiddle;
295
8.26M
  FIXP_DBL accu1, accu2;
296
8.26M
  FIXP_DBL *pTmp_0, *pTmp_1;
297
298
8.26M
  int i;
299
8.26M
  int inc, index = 0;
300
8.26M
  int M = L >> 1;
301
302
8.26M
  FDK_ASSERT(L % 4 == 0);
303
8.26M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
304
8.26M
  inc >>= 1;
305
306
8.26M
  {
307
93.6M
    for (i = 0; i < M; i++) {
308
85.4M
      tmp[i] = pDat[2 * i] >> 2;
309
85.4M
      tmp[L - 1 - i] = pDat[2 * i + 1] >> 2;
310
85.4M
    }
311
8.26M
  }
312
313
8.26M
  fft(M, tmp, pDat_e);
314
315
8.26M
  pTmp_0 = &tmp[2];
316
8.26M
  pTmp_1 = &tmp[(M - 1) * 2];
317
318
8.26M
  index = inc * 4;
319
320
42.7M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
321
34.4M
    FIXP_DBL a1, a2;
322
34.4M
    FIXP_DBL accu3, accu4;
323
324
34.4M
    a1 = ((pTmp_0[1] >> 1) + (pTmp_1[1] >> 1));
325
34.4M
    a2 = ((pTmp_1[0] >> 1) - (pTmp_0[0] >> 1));
326
327
34.4M
    if (2 * i < (M / 2)) {
328
15.1M
      cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle[index]);
329
19.3M
    } else {
330
19.3M
      cplxMultDiv2(&accu1, &accu2, a1, a2, sin_twiddle[index]);
331
19.3M
      accu1 = -accu1;
332
19.3M
    }
333
34.4M
    accu1 <<= 1;
334
34.4M
    accu2 <<= 1;
335
336
34.4M
    a1 = ((pTmp_0[0] >> 1) + (pTmp_1[0] >> 1));
337
34.4M
    a2 = ((pTmp_0[1] >> 1) - (pTmp_1[1] >> 1));
338
339
34.4M
    cplxMult(&accu3, &accu4, (accu1 + a2), (a1 + accu2), sin_twiddle[i * inc]);
340
34.4M
    pDat[L - i] = -accu3;
341
34.4M
    pDat[i] = accu4;
342
343
34.4M
    cplxMult(&accu3, &accu4, (accu1 - a2), (a1 - accu2),
344
34.4M
             sin_twiddle[(M - i) * inc]);
345
34.4M
    pDat[M + i] = -accu3;
346
34.4M
    pDat[M - i] = accu4;
347
348
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
349
     * short tables. */
350
34.4M
    if (2 * i < ((M / 2) - 1)) {
351
11.0M
      index += 4 * inc;
352
23.3M
    } else if (2 * i >= ((M / 2))) {
353
19.3M
      index -= 4 * inc;
354
19.3M
    }
355
34.4M
  }
356
357
8.26M
  cplxMult(&accu1, &accu2, tmp[M], tmp[M + 1], sin_twiddle[(M / 2) * inc]);
358
8.26M
  pDat[L - (M / 2)] = accu2;
359
8.26M
  pDat[M / 2] = accu1;
360
361
8.26M
  pDat[0] = tmp[0] + tmp[1];
362
8.26M
  pDat[M] = fMult(tmp[0] - tmp[1],
363
8.26M
                  sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
364
365
8.26M
  *pDat_e += 2;
366
8.26M
}
367
#endif
368
369
#if !defined(FUNCTION_dct_IV)
370
371
45.2M
void dct_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
372
45.2M
  int sin_step = 0;
373
45.2M
  int M = L >> 1;
374
375
45.2M
  const FIXP_WTP *twiddle;
376
45.2M
  const FIXP_STP *sin_twiddle;
377
378
45.2M
  FDK_ASSERT(L >= 4);
379
380
45.2M
  FDK_ASSERT(L >= 4);
381
382
45.2M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
383
384
45.2M
  {
385
45.2M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
386
45.2M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
387
45.2M
    int i;
388
389
    /* 29 cycles on ARM926 */
390
670M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
391
625M
      FIXP_DBL accu1, accu2, accu3, accu4;
392
393
625M
      accu1 = pDat_1[1];
394
625M
      accu2 = pDat_0[0];
395
625M
      accu3 = pDat_0[1];
396
625M
      accu4 = pDat_1[0];
397
398
625M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
399
625M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
400
401
625M
      pDat_0[0] = accu2 >> 1;
402
625M
      pDat_0[1] = accu1 >> 1;
403
625M
      pDat_1[0] = accu4 >> 1;
404
625M
      pDat_1[1] = -(accu3 >> 1);
405
625M
    }
406
45.2M
    if (M & 1) {
407
0
      FIXP_DBL accu1, accu2;
408
409
0
      accu1 = pDat_1[1];
410
0
      accu2 = pDat_0[0];
411
412
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
413
414
0
      pDat_0[0] = accu2 >> 1;
415
0
      pDat_0[1] = accu1 >> 1;
416
0
    }
417
45.2M
  }
418
419
45.2M
  fft(M, pDat, pDat_e);
420
421
45.2M
  {
422
45.2M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
423
45.2M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
424
45.2M
    FIXP_DBL accu1, accu2, accu3, accu4;
425
45.2M
    int idx, i;
426
427
    /* Sin and Cos values are 0.0f and 1.0f */
428
45.2M
    accu1 = pDat_1[0];
429
45.2M
    accu2 = pDat_1[1];
430
431
45.2M
    pDat_1[1] = -pDat_0[1];
432
433
    /* 28 cycles for ARM926 */
434
625M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
435
580M
      FIXP_STP twd = sin_twiddle[idx];
436
580M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
437
580M
      pDat_0[1] = accu3;
438
580M
      pDat_1[0] = accu4;
439
440
580M
      pDat_0 += 2;
441
580M
      pDat_1 -= 2;
442
443
580M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
444
445
580M
      accu1 = pDat_1[0];
446
580M
      accu2 = pDat_1[1];
447
448
580M
      pDat_1[1] = -accu3;
449
580M
      pDat_0[0] = accu4;
450
580M
    }
451
452
45.2M
    if ((M & 1) == 0) {
453
      /* Last Sin and Cos value pair are the same */
454
45.2M
      accu1 = fMult(accu1, WTC(0x5a82799a));
455
45.2M
      accu2 = fMult(accu2, WTC(0x5a82799a));
456
457
45.2M
      pDat_1[0] = accu1 + accu2;
458
45.2M
      pDat_0[1] = accu1 - accu2;
459
45.2M
    }
460
45.2M
  }
461
462
  /* Add twiddeling scale. */
463
45.2M
  *pDat_e += 2;
464
45.2M
}
465
#endif /* defined (FUNCTION_dct_IV) */
466
467
#if !defined(FUNCTION_dst_IV)
468
38.4M
void dst_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
469
38.4M
  int sin_step = 0;
470
38.4M
  int M = L >> 1;
471
472
38.4M
  const FIXP_WTP *twiddle;
473
38.4M
  const FIXP_STP *sin_twiddle;
474
475
38.4M
  FDK_ASSERT(L >= 4);
476
477
38.4M
  FDK_ASSERT(L >= 4);
478
479
38.4M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
480
481
38.4M
  {
482
38.4M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
483
38.4M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
484
38.4M
    int i;
485
486
    /* 34 cycles on ARM926 */
487
465M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
488
427M
      FIXP_DBL accu1, accu2, accu3, accu4;
489
490
427M
      accu1 = pDat_1[1] >> 1;
491
427M
      accu2 = -(pDat_0[0] >> 1);
492
427M
      accu3 = pDat_0[1] >> 1;
493
427M
      accu4 = -(pDat_1[0] >> 1);
494
495
427M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
496
427M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
497
498
427M
      pDat_0[0] = accu2;
499
427M
      pDat_0[1] = accu1;
500
427M
      pDat_1[0] = accu4;
501
427M
      pDat_1[1] = -accu3;
502
427M
    }
503
38.4M
    if (M & 1) {
504
0
      FIXP_DBL accu1, accu2;
505
506
0
      accu1 = pDat_1[1];
507
0
      accu2 = -pDat_0[0];
508
509
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
510
511
0
      pDat_0[0] = accu2 >> 1;
512
0
      pDat_0[1] = accu1 >> 1;
513
0
    }
514
38.4M
  }
515
516
38.4M
  fft(M, pDat, pDat_e);
517
518
38.4M
  {
519
38.4M
    FIXP_DBL *RESTRICT pDat_0;
520
38.4M
    FIXP_DBL *RESTRICT pDat_1;
521
38.4M
    FIXP_DBL accu1, accu2, accu3, accu4;
522
38.4M
    int idx, i;
523
524
38.4M
    pDat_0 = &pDat[0];
525
38.4M
    pDat_1 = &pDat[L - 2];
526
527
    /* Sin and Cos values are 0.0f and 1.0f */
528
38.4M
    accu1 = pDat_1[0];
529
38.4M
    accu2 = pDat_1[1];
530
531
38.4M
    pDat_1[1] = -pDat_0[0];
532
38.4M
    pDat_0[0] = pDat_0[1];
533
534
427M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
535
388M
      FIXP_STP twd = sin_twiddle[idx];
536
537
388M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
538
388M
      pDat_1[0] = -accu3;
539
388M
      pDat_0[1] = -accu4;
540
541
388M
      pDat_0 += 2;
542
388M
      pDat_1 -= 2;
543
544
388M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
545
546
388M
      accu1 = pDat_1[0];
547
388M
      accu2 = pDat_1[1];
548
549
388M
      pDat_0[0] = accu3;
550
388M
      pDat_1[1] = -accu4;
551
388M
    }
552
553
38.4M
    if ((M & 1) == 0) {
554
      /* Last Sin and Cos value pair are the same */
555
38.4M
      accu1 = fMult(accu1, WTC(0x5a82799a));
556
38.4M
      accu2 = fMult(accu2, WTC(0x5a82799a));
557
558
38.4M
      pDat_0[1] = -accu1 - accu2;
559
38.4M
      pDat_1[0] = accu2 - accu1;
560
38.4M
    }
561
38.4M
  }
562
563
  /* Add twiddeling scale. */
564
38.4M
  *pDat_e += 2;
565
38.4M
}
566
#endif /* !defined(FUNCTION_dst_IV) */