Coverage Report

Created: 2025-10-10 07:00

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libFDK/src/dct.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file   dct.cpp
105
  \brief  DCT Implementations
106
  Library functions to calculate standard DCTs. This will most likely be
107
  replaced by hand-optimized functions for the specific target processor.
108
109
  Three different implementations of the dct type II and the dct type III
110
  transforms are provided.
111
112
  By default implementations which are based on a single, standard complex
113
  FFT-kernel are used (dctII_f() and dctIII_f()). These are specifically helpful
114
  in cases where optimized FFT libraries are already available. The FFT used in
115
  these implementation is FFT rad2 from FDK_tools.
116
117
  Of course, one might also use DCT-libraries should they be available. The DCT
118
  and DST type IV implementations are only available in a version based on a
119
  complex FFT kernel.
120
*/
121
122
#include "dct.h"
123
124
#include "FDK_tools_rom.h"
125
#include "fft.h"
126
127
void dct_getTables(const FIXP_WTP **ptwiddle, const FIXP_STP **sin_twiddle,
128
71.6M
                   int *sin_step, int length) {
129
71.6M
  const FIXP_WTP *twiddle;
130
71.6M
  int ld2_length;
131
132
  /* Get ld2 of length - 2 + 1
133
      -2: because first table entry is window of size 4
134
      +1: because we already include +1 because of ceil(log2(length)) */
135
71.6M
  ld2_length = DFRACT_BITS - 1 - fNormz((FIXP_DBL)length) - 1;
136
137
  /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */
138
71.6M
  switch ((length) >> (ld2_length - 1)) {
139
56.7M
    case 0x4: /* radix 2 */
140
56.7M
      *sin_twiddle = SineTable1024;
141
56.7M
      *sin_step = 1 << (10 - ld2_length);
142
56.7M
      twiddle = windowSlopes[0][0][ld2_length - 1];
143
56.7M
      break;
144
415k
    case 0x7: /* 10 ms */
145
415k
      *sin_twiddle = SineTable480;
146
415k
      *sin_step = 1 << (8 - ld2_length);
147
415k
      twiddle = windowSlopes[0][1][ld2_length];
148
415k
      break;
149
14.2M
    case 0x6: /* 3/4 of radix 2 */
150
14.2M
      *sin_twiddle = SineTable384;
151
14.2M
      *sin_step = 1 << (8 - ld2_length);
152
14.2M
      twiddle = windowSlopes[0][2][ld2_length];
153
14.2M
      break;
154
265k
    case 0x5: /* 5/16 of radix 2*/
155
265k
      *sin_twiddle = SineTable80;
156
265k
      *sin_step = 1 << (6 - ld2_length);
157
265k
      twiddle = windowSlopes[0][3][ld2_length];
158
265k
      break;
159
0
    default:
160
0
      *sin_twiddle = NULL;
161
0
      *sin_step = 0;
162
0
      twiddle = NULL;
163
0
      break;
164
71.6M
  }
165
166
71.6M
  if (ptwiddle != NULL) {
167
64.6M
    FDK_ASSERT(twiddle != NULL);
168
64.6M
    *ptwiddle = twiddle;
169
64.6M
  }
170
171
71.6M
  FDK_ASSERT(*sin_step > 0);
172
71.6M
}
173
174
#if !defined(FUNCTION_dct_III)
175
void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */
176
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
177
             int L,          /*!< lenght of transform */
178
1.15M
             int *pDat_e) {
179
1.15M
  const FIXP_WTP *sin_twiddle;
180
1.15M
  int i;
181
1.15M
  FIXP_DBL xr, accu1, accu2;
182
1.15M
  int inc, index;
183
1.15M
  int M = L >> 1;
184
185
1.15M
  FDK_ASSERT(L % 4 == 0);
186
1.15M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
187
1.15M
  inc >>= 1;
188
189
1.15M
  FIXP_DBL *pTmp_0 = &tmp[2];
190
1.15M
  FIXP_DBL *pTmp_1 = &tmp[(M - 1) * 2];
191
192
1.15M
  index = 4 * inc;
193
194
  /* This loop performs multiplication for index i (i*inc) */
195
9.20M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
196
8.05M
    FIXP_DBL accu3, accu4, accu5, accu6;
197
198
8.05M
    cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle[i * inc]);
199
8.05M
    cplxMultDiv2(&accu4, &accu3, pDat[M + i], pDat[M - i],
200
8.05M
                 sin_twiddle[(M - i) * inc]);
201
8.05M
    accu3 >>= 1;
202
8.05M
    accu4 >>= 1;
203
204
    /* This method is better for ARM926, that uses operand2 shifted right by 1
205
     * always */
206
8.05M
    if (2 * i < (M / 2)) {
207
3.45M
      cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1 >> 1)),
208
3.45M
                   ((accu2 >> 1) + accu4), sin_twiddle[index]);
209
4.60M
    } else {
210
4.60M
      cplxMultDiv2(&accu6, &accu5, ((accu2 >> 1) + accu4),
211
4.60M
                   (accu3 - (accu1 >> 1)), sin_twiddle[index]);
212
4.60M
      accu6 = -accu6;
213
4.60M
    }
214
8.05M
    xr = (accu1 >> 1) + accu3;
215
8.05M
    pTmp_0[0] = (xr >> 1) - accu5;
216
8.05M
    pTmp_1[0] = (xr >> 1) + accu5;
217
218
8.05M
    xr = (accu2 >> 1) - accu4;
219
8.05M
    pTmp_0[1] = (xr >> 1) - accu6;
220
8.05M
    pTmp_1[1] = -((xr >> 1) + accu6);
221
222
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
223
     * short tables. */
224
8.05M
    if (2 * i < ((M / 2) - 1)) {
225
3.45M
      index += 4 * inc;
226
4.60M
    } else if (2 * i >= ((M / 2))) {
227
4.60M
      index -= 4 * inc;
228
4.60M
    }
229
8.05M
  }
230
231
1.15M
  xr = fMultDiv2(pDat[M], sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
232
1.15M
  tmp[0] = ((pDat[0] >> 1) + xr) >> 1;
233
1.15M
  tmp[1] = ((pDat[0] >> 1) - xr) >> 1;
234
235
1.15M
  cplxMultDiv2(&accu2, &accu1, pDat[L - (M / 2)], pDat[M / 2],
236
1.15M
               sin_twiddle[M * inc / 2]);
237
1.15M
  tmp[M] = accu1 >> 1;
238
1.15M
  tmp[M + 1] = accu2 >> 1;
239
240
  /* dit_fft expects 1 bit scaled input values */
241
1.15M
  fft(M, tmp, pDat_e);
242
243
  /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */
244
1.15M
  pTmp_1 = &tmp[L];
245
10.3M
  for (i = M >> 1; i--;) {
246
9.20M
    FIXP_DBL tmp1, tmp2, tmp3, tmp4;
247
9.20M
    tmp1 = *tmp++;
248
9.20M
    tmp2 = *tmp++;
249
9.20M
    tmp3 = *--pTmp_1;
250
9.20M
    tmp4 = *--pTmp_1;
251
9.20M
    *pDat++ = tmp1;
252
9.20M
    *pDat++ = tmp3;
253
9.20M
    *pDat++ = tmp2;
254
9.20M
    *pDat++ = tmp4;
255
9.20M
  }
256
257
1.15M
  *pDat_e += 2;
258
1.15M
}
259
260
void dst_III(FIXP_DBL *pDat, /*!< pointer to input/output */
261
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
262
             int L,          /*!< lenght of transform */
263
0
             int *pDat_e) {
264
0
  int L2 = L >> 1;
265
0
  int i;
266
0
  FIXP_DBL t;
267
268
  /* note: DCT III is reused here, direct DST III implementation might be more
269
   * efficient */
270
271
  /* mirror input */
272
0
  for (i = 0; i < L2; i++) {
273
0
    t = pDat[i];
274
0
    pDat[i] = pDat[L - 1 - i];
275
0
    pDat[L - 1 - i] = t;
276
0
  }
277
278
  /* DCT-III */
279
0
  dct_III(pDat, tmp, L, pDat_e);
280
281
  /* flip signs at odd indices */
282
0
  for (i = 1; i < L; i += 2) pDat[i] = -pDat[i];
283
0
}
284
285
#endif
286
287
#if !defined(FUNCTION_dct_II)
288
void dct_II(
289
    FIXP_DBL *pDat, /*!< pointer to input/output */
290
    FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
291
    int L, /*!< lenght of transform (has to be a multiple of 8 (or 4 in case
292
              DCT_II_L_MULTIPLE_OF_4_SUPPORT is defined) */
293
5.87M
    int *pDat_e) {
294
5.87M
  const FIXP_WTP *sin_twiddle;
295
5.87M
  FIXP_DBL accu1, accu2;
296
5.87M
  FIXP_DBL *pTmp_0, *pTmp_1;
297
298
5.87M
  int i;
299
5.87M
  int inc, index = 0;
300
5.87M
  int M = L >> 1;
301
302
5.87M
  FDK_ASSERT(L % 4 == 0);
303
5.87M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
304
5.87M
  inc >>= 1;
305
306
5.87M
  {
307
72.4M
    for (i = 0; i < M; i++) {
308
66.5M
      tmp[i] = pDat[2 * i] >> 2;
309
66.5M
      tmp[L - 1 - i] = pDat[2 * i + 1] >> 2;
310
66.5M
    }
311
5.87M
  }
312
313
5.87M
  fft(M, tmp, pDat_e);
314
315
5.87M
  pTmp_0 = &tmp[2];
316
5.87M
  pTmp_1 = &tmp[(M - 1) * 2];
317
318
5.87M
  index = inc * 4;
319
320
33.2M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
321
27.4M
    FIXP_DBL a1, a2;
322
27.4M
    FIXP_DBL accu3, accu4;
323
324
27.4M
    a1 = ((pTmp_0[1] >> 1) + (pTmp_1[1] >> 1));
325
27.4M
    a2 = ((pTmp_1[0] >> 1) - (pTmp_0[0] >> 1));
326
327
27.4M
    if (2 * i < (M / 2)) {
328
12.2M
      cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle[index]);
329
15.1M
    } else {
330
15.1M
      cplxMultDiv2(&accu1, &accu2, a1, a2, sin_twiddle[index]);
331
15.1M
      accu1 = -accu1;
332
15.1M
    }
333
27.4M
    accu1 <<= 1;
334
27.4M
    accu2 <<= 1;
335
336
27.4M
    a1 = ((pTmp_0[0] >> 1) + (pTmp_1[0] >> 1));
337
27.4M
    a2 = ((pTmp_0[1] >> 1) - (pTmp_1[1] >> 1));
338
339
27.4M
    cplxMult(&accu3, &accu4, (accu1 + a2), (a1 + accu2), sin_twiddle[i * inc]);
340
27.4M
    pDat[L - i] = -accu3;
341
27.4M
    pDat[i] = accu4;
342
343
27.4M
    cplxMult(&accu3, &accu4, (accu1 - a2), (a1 - accu2),
344
27.4M
             sin_twiddle[(M - i) * inc]);
345
27.4M
    pDat[M + i] = -accu3;
346
27.4M
    pDat[M - i] = accu4;
347
348
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
349
     * short tables. */
350
27.4M
    if (2 * i < ((M / 2) - 1)) {
351
9.31M
      index += 4 * inc;
352
18.0M
    } else if (2 * i >= ((M / 2))) {
353
15.1M
      index -= 4 * inc;
354
15.1M
    }
355
27.4M
  }
356
357
5.87M
  cplxMult(&accu1, &accu2, tmp[M], tmp[M + 1], sin_twiddle[(M / 2) * inc]);
358
5.87M
  pDat[L - (M / 2)] = accu2;
359
5.87M
  pDat[M / 2] = accu1;
360
361
5.87M
  pDat[0] = tmp[0] + tmp[1];
362
5.87M
  pDat[M] = fMult(tmp[0] - tmp[1],
363
5.87M
                  sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
364
365
5.87M
  *pDat_e += 2;
366
5.87M
}
367
#endif
368
369
#if !defined(FUNCTION_dct_IV)
370
371
34.8M
void dct_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
372
34.8M
  int sin_step = 0;
373
34.8M
  int M = L >> 1;
374
375
34.8M
  const FIXP_WTP *twiddle;
376
34.8M
  const FIXP_STP *sin_twiddle;
377
378
34.8M
  FDK_ASSERT(L >= 4);
379
380
34.8M
  FDK_ASSERT(L >= 4);
381
382
34.8M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
383
384
34.8M
  {
385
34.8M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
386
34.8M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
387
34.8M
    int i;
388
389
    /* 29 cycles on ARM926 */
390
524M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
391
489M
      FIXP_DBL accu1, accu2, accu3, accu4;
392
393
489M
      accu1 = pDat_1[1];
394
489M
      accu2 = pDat_0[0];
395
489M
      accu3 = pDat_0[1];
396
489M
      accu4 = pDat_1[0];
397
398
489M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
399
489M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
400
401
489M
      pDat_0[0] = accu2 >> 1;
402
489M
      pDat_0[1] = accu1 >> 1;
403
489M
      pDat_1[0] = accu4 >> 1;
404
489M
      pDat_1[1] = -(accu3 >> 1);
405
489M
    }
406
34.8M
    if (M & 1) {
407
0
      FIXP_DBL accu1, accu2;
408
409
0
      accu1 = pDat_1[1];
410
0
      accu2 = pDat_0[0];
411
412
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
413
414
0
      pDat_0[0] = accu2 >> 1;
415
0
      pDat_0[1] = accu1 >> 1;
416
0
    }
417
34.8M
  }
418
419
34.8M
  fft(M, pDat, pDat_e);
420
421
34.8M
  {
422
34.8M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
423
34.8M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
424
34.8M
    FIXP_DBL accu1, accu2, accu3, accu4;
425
34.8M
    int idx, i;
426
427
    /* Sin and Cos values are 0.0f and 1.0f */
428
34.8M
    accu1 = pDat_1[0];
429
34.8M
    accu2 = pDat_1[1];
430
431
34.8M
    pDat_1[1] = -pDat_0[1];
432
433
    /* 28 cycles for ARM926 */
434
489M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
435
454M
      FIXP_STP twd = sin_twiddle[idx];
436
454M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
437
454M
      pDat_0[1] = accu3;
438
454M
      pDat_1[0] = accu4;
439
440
454M
      pDat_0 += 2;
441
454M
      pDat_1 -= 2;
442
443
454M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
444
445
454M
      accu1 = pDat_1[0];
446
454M
      accu2 = pDat_1[1];
447
448
454M
      pDat_1[1] = -accu3;
449
454M
      pDat_0[0] = accu4;
450
454M
    }
451
452
34.8M
    if ((M & 1) == 0) {
453
      /* Last Sin and Cos value pair are the same */
454
34.8M
      accu1 = fMult(accu1, WTC(0x5a82799a));
455
34.8M
      accu2 = fMult(accu2, WTC(0x5a82799a));
456
457
34.8M
      pDat_1[0] = accu1 + accu2;
458
34.8M
      pDat_0[1] = accu1 - accu2;
459
34.8M
    }
460
34.8M
  }
461
462
  /* Add twiddeling scale. */
463
34.8M
  *pDat_e += 2;
464
34.8M
}
465
#endif /* defined (FUNCTION_dct_IV) */
466
467
#if !defined(FUNCTION_dst_IV)
468
29.7M
void dst_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
469
29.7M
  int sin_step = 0;
470
29.7M
  int M = L >> 1;
471
472
29.7M
  const FIXP_WTP *twiddle;
473
29.7M
  const FIXP_STP *sin_twiddle;
474
475
29.7M
  FDK_ASSERT(L >= 4);
476
477
29.7M
  FDK_ASSERT(L >= 4);
478
479
29.7M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
480
481
29.7M
  {
482
29.7M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
483
29.7M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
484
29.7M
    int i;
485
486
    /* 34 cycles on ARM926 */
487
364M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
488
334M
      FIXP_DBL accu1, accu2, accu3, accu4;
489
490
334M
      accu1 = pDat_1[1] >> 1;
491
334M
      accu2 = -(pDat_0[0] >> 1);
492
334M
      accu3 = pDat_0[1] >> 1;
493
334M
      accu4 = -(pDat_1[0] >> 1);
494
495
334M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
496
334M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
497
498
334M
      pDat_0[0] = accu2;
499
334M
      pDat_0[1] = accu1;
500
334M
      pDat_1[0] = accu4;
501
334M
      pDat_1[1] = -accu3;
502
334M
    }
503
29.7M
    if (M & 1) {
504
0
      FIXP_DBL accu1, accu2;
505
506
0
      accu1 = pDat_1[1];
507
0
      accu2 = -pDat_0[0];
508
509
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
510
511
0
      pDat_0[0] = accu2 >> 1;
512
0
      pDat_0[1] = accu1 >> 1;
513
0
    }
514
29.7M
  }
515
516
29.7M
  fft(M, pDat, pDat_e);
517
518
29.7M
  {
519
29.7M
    FIXP_DBL *RESTRICT pDat_0;
520
29.7M
    FIXP_DBL *RESTRICT pDat_1;
521
29.7M
    FIXP_DBL accu1, accu2, accu3, accu4;
522
29.7M
    int idx, i;
523
524
29.7M
    pDat_0 = &pDat[0];
525
29.7M
    pDat_1 = &pDat[L - 2];
526
527
    /* Sin and Cos values are 0.0f and 1.0f */
528
29.7M
    accu1 = pDat_1[0];
529
29.7M
    accu2 = pDat_1[1];
530
531
29.7M
    pDat_1[1] = -pDat_0[0];
532
29.7M
    pDat_0[0] = pDat_0[1];
533
534
334M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
535
304M
      FIXP_STP twd = sin_twiddle[idx];
536
537
304M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
538
304M
      pDat_1[0] = -accu3;
539
304M
      pDat_0[1] = -accu4;
540
541
304M
      pDat_0 += 2;
542
304M
      pDat_1 -= 2;
543
544
304M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
545
546
304M
      accu1 = pDat_1[0];
547
304M
      accu2 = pDat_1[1];
548
549
304M
      pDat_0[0] = accu3;
550
304M
      pDat_1[1] = -accu4;
551
304M
    }
552
553
29.7M
    if ((M & 1) == 0) {
554
      /* Last Sin and Cos value pair are the same */
555
29.7M
      accu1 = fMult(accu1, WTC(0x5a82799a));
556
29.7M
      accu2 = fMult(accu2, WTC(0x5a82799a));
557
558
29.7M
      pDat_0[1] = -accu1 - accu2;
559
29.7M
      pDat_1[0] = accu2 - accu1;
560
29.7M
    }
561
29.7M
  }
562
563
  /* Add twiddeling scale. */
564
29.7M
  *pDat_e += 2;
565
29.7M
}
566
#endif /* !defined(FUNCTION_dst_IV) */