Coverage Report

Created: 2025-10-13 06:42

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libFDK/src/autocorr2nd.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):   M. Lohwasser
98
99
   Description: auto-correlation functions
100
101
*******************************************************************************/
102
103
#include "autocorr2nd.h"
104
105
/*!
106
 *
107
 * \brief Calculate second order autocorrelation using 2 accumulators
108
 *
109
 */
110
#if !defined(FUNCTION_autoCorr2nd_real)
111
INT autoCorr2nd_real(
112
    ACORR_COEFS *ac,          /*!< Pointer to autocorrelation coeffs */
113
    const FIXP_DBL *reBuffer, /*!< Pointer to to real part of input samples */
114
    const int len             /*!< Number input samples */
115
752k
) {
116
752k
  int j, autoCorrScaling, mScale;
117
118
752k
  FIXP_DBL accu1, accu2, accu3, accu4, accu5;
119
120
752k
  const FIXP_DBL *pReBuf;
121
122
752k
  const FIXP_DBL *realBuf = reBuffer;
123
124
752k
  const int len_scale = fMax(DFRACT_BITS - fNormz((FIXP_DBL)(len / 2)), 1);
125
  /*
126
    r11r,r22r
127
    r01r,r12r
128
    r02r
129
  */
130
752k
  pReBuf = realBuf - 2;
131
752k
  accu5 =
132
752k
      ((fMultDiv2(pReBuf[0], pReBuf[2]) + fMultDiv2(pReBuf[1], pReBuf[3])) >>
133
752k
       len_scale);
134
752k
  pReBuf++;
135
136
  /* len must be even */
137
752k
  accu1 = fPow2Div2(pReBuf[0]) >> len_scale;
138
752k
  accu3 = fMultDiv2(pReBuf[0], pReBuf[1]) >> len_scale;
139
752k
  pReBuf++;
140
141
12.5M
  for (j = (len - 2) >> 1; j != 0; j--, pReBuf += 2) {
142
11.8M
    accu1 += ((fPow2Div2(pReBuf[0]) + fPow2Div2(pReBuf[1])) >> len_scale);
143
144
11.8M
    accu3 +=
145
11.8M
        ((fMultDiv2(pReBuf[0], pReBuf[1]) + fMultDiv2(pReBuf[1], pReBuf[2])) >>
146
11.8M
         len_scale);
147
148
11.8M
    accu5 +=
149
11.8M
        ((fMultDiv2(pReBuf[0], pReBuf[2]) + fMultDiv2(pReBuf[1], pReBuf[3])) >>
150
11.8M
         len_scale);
151
11.8M
  }
152
153
752k
  accu2 = (fPow2Div2(realBuf[-2]) >> len_scale);
154
752k
  accu2 += accu1;
155
156
752k
  accu1 += (fPow2Div2(realBuf[len - 2]) >> len_scale);
157
158
752k
  accu4 = (fMultDiv2(realBuf[-1], realBuf[-2]) >> len_scale);
159
752k
  accu4 += accu3;
160
161
752k
  accu3 += (fMultDiv2(realBuf[len - 1], realBuf[len - 2]) >> len_scale);
162
163
752k
  mScale = CntLeadingZeros(
164
752k
               (accu1 | accu2 | fAbs(accu3) | fAbs(accu4) | fAbs(accu5))) -
165
752k
           1;
166
752k
  autoCorrScaling = mScale - 1 - len_scale; /* -1 because of fMultDiv2*/
167
168
  /* Scale to common scale factor */
169
752k
  ac->r11r = accu1 << mScale;
170
752k
  ac->r22r = accu2 << mScale;
171
752k
  ac->r01r = accu3 << mScale;
172
752k
  ac->r12r = accu4 << mScale;
173
752k
  ac->r02r = accu5 << mScale;
174
175
752k
  ac->det = (fMultDiv2(ac->r11r, ac->r22r) - fMultDiv2(ac->r12r, ac->r12r));
176
752k
  mScale = CountLeadingBits(fAbs(ac->det));
177
178
752k
  ac->det <<= mScale;
179
752k
  ac->det_scale = mScale - 1;
180
181
752k
  return autoCorrScaling;
182
752k
}
183
#endif
184
185
#if !defined(FUNCTION_autoCorr2nd_cplx)
186
INT autoCorr2nd_cplx(
187
    ACORR_COEFS *ac,          /*!< Pointer to autocorrelation coeffs */
188
    const FIXP_DBL *reBuffer, /*!< Pointer to real part of input samples */
189
    const FIXP_DBL *imBuffer, /*!< Pointer to imag part of input samples */
190
    const int len /*!< Number of input samples (should be smaller than 128) */
191
4.14M
) {
192
4.14M
  int j, autoCorrScaling, mScale;
193
194
4.14M
  FIXP_DBL accu0, accu1, accu2, accu3, accu4, accu5, accu6, accu7, accu8;
195
196
4.14M
  const FIXP_DBL *pReBuf, *pImBuf;
197
198
4.14M
  const FIXP_DBL *realBuf = reBuffer;
199
4.14M
  const FIXP_DBL *imagBuf = imBuffer;
200
201
4.14M
  const int len_scale = fMax(DFRACT_BITS - fNormz((FIXP_DBL)len), 1);
202
  /*
203
    r00r,
204
    r11r,r22r
205
    r01r,r12r
206
    r01i,r12i
207
    r02r,r02i
208
  */
209
4.14M
  accu1 = accu3 = accu5 = accu7 = accu8 = FL2FXCONST_DBL(0.0f);
210
211
4.14M
  pReBuf = realBuf - 2, pImBuf = imagBuf - 2;
212
4.14M
  accu7 +=
213
4.14M
      ((fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >>
214
4.14M
       len_scale);
215
4.14M
  accu8 +=
216
4.14M
      ((fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >>
217
4.14M
       len_scale);
218
219
4.14M
  pReBuf = realBuf - 1, pImBuf = imagBuf - 1;
220
181M
  for (j = (len - 1); j != 0; j--, pReBuf++, pImBuf++) {
221
177M
    accu1 += ((fPow2Div2(pReBuf[0]) + fPow2Div2(pImBuf[0])) >> len_scale);
222
177M
    accu3 +=
223
177M
        ((fMultDiv2(pReBuf[0], pReBuf[1]) + fMultDiv2(pImBuf[0], pImBuf[1])) >>
224
177M
         len_scale);
225
177M
    accu5 +=
226
177M
        ((fMultDiv2(pImBuf[1], pReBuf[0]) - fMultDiv2(pReBuf[1], pImBuf[0])) >>
227
177M
         len_scale);
228
177M
    accu7 +=
229
177M
        ((fMultDiv2(pReBuf[2], pReBuf[0]) + fMultDiv2(pImBuf[2], pImBuf[0])) >>
230
177M
         len_scale);
231
177M
    accu8 +=
232
177M
        ((fMultDiv2(pImBuf[2], pReBuf[0]) - fMultDiv2(pReBuf[2], pImBuf[0])) >>
233
177M
         len_scale);
234
177M
  }
235
236
4.14M
  accu2 = ((fPow2Div2(realBuf[-2]) + fPow2Div2(imagBuf[-2])) >> len_scale);
237
4.14M
  accu2 += accu1;
238
239
4.14M
  accu1 += ((fPow2Div2(realBuf[len - 2]) + fPow2Div2(imagBuf[len - 2])) >>
240
4.14M
            len_scale);
241
4.14M
  accu0 = ((fPow2Div2(realBuf[len - 1]) + fPow2Div2(imagBuf[len - 1])) >>
242
4.14M
           len_scale) -
243
4.14M
          ((fPow2Div2(realBuf[-1]) + fPow2Div2(imagBuf[-1])) >> len_scale);
244
4.14M
  accu0 += accu1;
245
246
4.14M
  accu4 = ((fMultDiv2(realBuf[-1], realBuf[-2]) +
247
4.14M
            fMultDiv2(imagBuf[-1], imagBuf[-2])) >>
248
4.14M
           len_scale);
249
4.14M
  accu4 += accu3;
250
251
4.14M
  accu3 += ((fMultDiv2(realBuf[len - 1], realBuf[len - 2]) +
252
4.14M
             fMultDiv2(imagBuf[len - 1], imagBuf[len - 2])) >>
253
4.14M
            len_scale);
254
255
4.14M
  accu6 = ((fMultDiv2(imagBuf[-1], realBuf[-2]) -
256
4.14M
            fMultDiv2(realBuf[-1], imagBuf[-2])) >>
257
4.14M
           len_scale);
258
4.14M
  accu6 += accu5;
259
260
4.14M
  accu5 += ((fMultDiv2(imagBuf[len - 1], realBuf[len - 2]) -
261
4.14M
             fMultDiv2(realBuf[len - 1], imagBuf[len - 2])) >>
262
4.14M
            len_scale);
263
264
4.14M
  mScale =
265
4.14M
      CntLeadingZeros((accu0 | accu1 | accu2 | fAbs(accu3) | fAbs(accu4) |
266
4.14M
                       fAbs(accu5) | fAbs(accu6) | fAbs(accu7) | fAbs(accu8))) -
267
4.14M
      1;
268
4.14M
  autoCorrScaling = mScale - 1 - len_scale; /* -1 because of fMultDiv2*/
269
270
  /* Scale to common scale factor */
271
4.14M
  ac->r00r = (FIXP_DBL)accu0 << mScale;
272
4.14M
  ac->r11r = (FIXP_DBL)accu1 << mScale;
273
4.14M
  ac->r22r = (FIXP_DBL)accu2 << mScale;
274
4.14M
  ac->r01r = (FIXP_DBL)accu3 << mScale;
275
4.14M
  ac->r12r = (FIXP_DBL)accu4 << mScale;
276
4.14M
  ac->r01i = (FIXP_DBL)accu5 << mScale;
277
4.14M
  ac->r12i = (FIXP_DBL)accu6 << mScale;
278
4.14M
  ac->r02r = (FIXP_DBL)accu7 << mScale;
279
4.14M
  ac->r02i = (FIXP_DBL)accu8 << mScale;
280
281
4.14M
  ac->det =
282
4.14M
      (fMultDiv2(ac->r11r, ac->r22r) >> 1) -
283
4.14M
      ((fMultDiv2(ac->r12r, ac->r12r) + fMultDiv2(ac->r12i, ac->r12i)) >> 1);
284
4.14M
  mScale = CntLeadingZeros(fAbs(ac->det)) - 1;
285
286
4.14M
  ac->det <<= mScale;
287
4.14M
  ac->det_scale = mScale - 2;
288
289
4.14M
  return autoCorrScaling;
290
4.14M
}
291
292
#endif /* FUNCTION_autoCorr2nd_cplx */