Coverage Report

Created: 2025-10-13 06:42

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libFDK/src/dct.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file   dct.cpp
105
  \brief  DCT Implementations
106
  Library functions to calculate standard DCTs. This will most likely be
107
  replaced by hand-optimized functions for the specific target processor.
108
109
  Three different implementations of the dct type II and the dct type III
110
  transforms are provided.
111
112
  By default implementations which are based on a single, standard complex
113
  FFT-kernel are used (dctII_f() and dctIII_f()). These are specifically helpful
114
  in cases where optimized FFT libraries are already available. The FFT used in
115
  these implementation is FFT rad2 from FDK_tools.
116
117
  Of course, one might also use DCT-libraries should they be available. The DCT
118
  and DST type IV implementations are only available in a version based on a
119
  complex FFT kernel.
120
*/
121
122
#include "dct.h"
123
124
#include "FDK_tools_rom.h"
125
#include "fft.h"
126
127
void dct_getTables(const FIXP_WTP **ptwiddle, const FIXP_STP **sin_twiddle,
128
74.3M
                   int *sin_step, int length) {
129
74.3M
  const FIXP_WTP *twiddle;
130
74.3M
  int ld2_length;
131
132
  /* Get ld2 of length - 2 + 1
133
      -2: because first table entry is window of size 4
134
      +1: because we already include +1 because of ceil(log2(length)) */
135
74.3M
  ld2_length = DFRACT_BITS - 1 - fNormz((FIXP_DBL)length) - 1;
136
137
  /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */
138
74.3M
  switch ((length) >> (ld2_length - 1)) {
139
59.0M
    case 0x4: /* radix 2 */
140
59.0M
      *sin_twiddle = SineTable1024;
141
59.0M
      *sin_step = 1 << (10 - ld2_length);
142
59.0M
      twiddle = windowSlopes[0][0][ld2_length - 1];
143
59.0M
      break;
144
436k
    case 0x7: /* 10 ms */
145
436k
      *sin_twiddle = SineTable480;
146
436k
      *sin_step = 1 << (8 - ld2_length);
147
436k
      twiddle = windowSlopes[0][1][ld2_length];
148
436k
      break;
149
14.6M
    case 0x6: /* 3/4 of radix 2 */
150
14.6M
      *sin_twiddle = SineTable384;
151
14.6M
      *sin_step = 1 << (8 - ld2_length);
152
14.6M
      twiddle = windowSlopes[0][2][ld2_length];
153
14.6M
      break;
154
265k
    case 0x5: /* 5/16 of radix 2*/
155
265k
      *sin_twiddle = SineTable80;
156
265k
      *sin_step = 1 << (6 - ld2_length);
157
265k
      twiddle = windowSlopes[0][3][ld2_length];
158
265k
      break;
159
0
    default:
160
0
      *sin_twiddle = NULL;
161
0
      *sin_step = 0;
162
0
      twiddle = NULL;
163
0
      break;
164
74.3M
  }
165
166
74.3M
  if (ptwiddle != NULL) {
167
67.0M
    FDK_ASSERT(twiddle != NULL);
168
67.0M
    *ptwiddle = twiddle;
169
67.0M
  }
170
171
74.3M
  FDK_ASSERT(*sin_step > 0);
172
74.3M
}
173
174
#if !defined(FUNCTION_dct_III)
175
void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */
176
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
177
             int L,          /*!< lenght of transform */
178
1.27M
             int *pDat_e) {
179
1.27M
  const FIXP_WTP *sin_twiddle;
180
1.27M
  int i;
181
1.27M
  FIXP_DBL xr, accu1, accu2;
182
1.27M
  int inc, index;
183
1.27M
  int M = L >> 1;
184
185
1.27M
  FDK_ASSERT(L % 4 == 0);
186
1.27M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
187
1.27M
  inc >>= 1;
188
189
1.27M
  FIXP_DBL *pTmp_0 = &tmp[2];
190
1.27M
  FIXP_DBL *pTmp_1 = &tmp[(M - 1) * 2];
191
192
1.27M
  index = 4 * inc;
193
194
  /* This loop performs multiplication for index i (i*inc) */
195
10.1M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
196
8.92M
    FIXP_DBL accu3, accu4, accu5, accu6;
197
198
8.92M
    cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle[i * inc]);
199
8.92M
    cplxMultDiv2(&accu4, &accu3, pDat[M + i], pDat[M - i],
200
8.92M
                 sin_twiddle[(M - i) * inc]);
201
8.92M
    accu3 >>= 1;
202
8.92M
    accu4 >>= 1;
203
204
    /* This method is better for ARM926, that uses operand2 shifted right by 1
205
     * always */
206
8.92M
    if (2 * i < (M / 2)) {
207
3.82M
      cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1 >> 1)),
208
3.82M
                   ((accu2 >> 1) + accu4), sin_twiddle[index]);
209
5.09M
    } else {
210
5.09M
      cplxMultDiv2(&accu6, &accu5, ((accu2 >> 1) + accu4),
211
5.09M
                   (accu3 - (accu1 >> 1)), sin_twiddle[index]);
212
5.09M
      accu6 = -accu6;
213
5.09M
    }
214
8.92M
    xr = (accu1 >> 1) + accu3;
215
8.92M
    pTmp_0[0] = (xr >> 1) - accu5;
216
8.92M
    pTmp_1[0] = (xr >> 1) + accu5;
217
218
8.92M
    xr = (accu2 >> 1) - accu4;
219
8.92M
    pTmp_0[1] = (xr >> 1) - accu6;
220
8.92M
    pTmp_1[1] = -((xr >> 1) + accu6);
221
222
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
223
     * short tables. */
224
8.92M
    if (2 * i < ((M / 2) - 1)) {
225
3.82M
      index += 4 * inc;
226
5.09M
    } else if (2 * i >= ((M / 2))) {
227
5.09M
      index -= 4 * inc;
228
5.09M
    }
229
8.92M
  }
230
231
1.27M
  xr = fMultDiv2(pDat[M], sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
232
1.27M
  tmp[0] = ((pDat[0] >> 1) + xr) >> 1;
233
1.27M
  tmp[1] = ((pDat[0] >> 1) - xr) >> 1;
234
235
1.27M
  cplxMultDiv2(&accu2, &accu1, pDat[L - (M / 2)], pDat[M / 2],
236
1.27M
               sin_twiddle[M * inc / 2]);
237
1.27M
  tmp[M] = accu1 >> 1;
238
1.27M
  tmp[M + 1] = accu2 >> 1;
239
240
  /* dit_fft expects 1 bit scaled input values */
241
1.27M
  fft(M, tmp, pDat_e);
242
243
  /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */
244
1.27M
  pTmp_1 = &tmp[L];
245
11.4M
  for (i = M >> 1; i--;) {
246
10.1M
    FIXP_DBL tmp1, tmp2, tmp3, tmp4;
247
10.1M
    tmp1 = *tmp++;
248
10.1M
    tmp2 = *tmp++;
249
10.1M
    tmp3 = *--pTmp_1;
250
10.1M
    tmp4 = *--pTmp_1;
251
10.1M
    *pDat++ = tmp1;
252
10.1M
    *pDat++ = tmp3;
253
10.1M
    *pDat++ = tmp2;
254
10.1M
    *pDat++ = tmp4;
255
10.1M
  }
256
257
1.27M
  *pDat_e += 2;
258
1.27M
}
259
260
void dst_III(FIXP_DBL *pDat, /*!< pointer to input/output */
261
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
262
             int L,          /*!< lenght of transform */
263
0
             int *pDat_e) {
264
0
  int L2 = L >> 1;
265
0
  int i;
266
0
  FIXP_DBL t;
267
268
  /* note: DCT III is reused here, direct DST III implementation might be more
269
   * efficient */
270
271
  /* mirror input */
272
0
  for (i = 0; i < L2; i++) {
273
0
    t = pDat[i];
274
0
    pDat[i] = pDat[L - 1 - i];
275
0
    pDat[L - 1 - i] = t;
276
0
  }
277
278
  /* DCT-III */
279
0
  dct_III(pDat, tmp, L, pDat_e);
280
281
  /* flip signs at odd indices */
282
0
  for (i = 1; i < L; i += 2) pDat[i] = -pDat[i];
283
0
}
284
285
#endif
286
287
#if !defined(FUNCTION_dct_II)
288
void dct_II(
289
    FIXP_DBL *pDat, /*!< pointer to input/output */
290
    FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
291
    int L, /*!< lenght of transform (has to be a multiple of 8 (or 4 in case
292
              DCT_II_L_MULTIPLE_OF_4_SUPPORT is defined) */
293
6.05M
    int *pDat_e) {
294
6.05M
  const FIXP_WTP *sin_twiddle;
295
6.05M
  FIXP_DBL accu1, accu2;
296
6.05M
  FIXP_DBL *pTmp_0, *pTmp_1;
297
298
6.05M
  int i;
299
6.05M
  int inc, index = 0;
300
6.05M
  int M = L >> 1;
301
302
6.05M
  FDK_ASSERT(L % 4 == 0);
303
6.05M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
304
6.05M
  inc >>= 1;
305
306
6.05M
  {
307
76.8M
    for (i = 0; i < M; i++) {
308
70.8M
      tmp[i] = pDat[2 * i] >> 2;
309
70.8M
      tmp[L - 1 - i] = pDat[2 * i + 1] >> 2;
310
70.8M
    }
311
6.05M
  }
312
313
6.05M
  fft(M, tmp, pDat_e);
314
315
6.05M
  pTmp_0 = &tmp[2];
316
6.05M
  pTmp_1 = &tmp[(M - 1) * 2];
317
318
6.05M
  index = inc * 4;
319
320
35.4M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
321
29.3M
    FIXP_DBL a1, a2;
322
29.3M
    FIXP_DBL accu3, accu4;
323
324
29.3M
    a1 = ((pTmp_0[1] >> 1) + (pTmp_1[1] >> 1));
325
29.3M
    a2 = ((pTmp_1[0] >> 1) - (pTmp_0[0] >> 1));
326
327
29.3M
    if (2 * i < (M / 2)) {
328
13.1M
      cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle[index]);
329
16.2M
    } else {
330
16.2M
      cplxMultDiv2(&accu1, &accu2, a1, a2, sin_twiddle[index]);
331
16.2M
      accu1 = -accu1;
332
16.2M
    }
333
29.3M
    accu1 <<= 1;
334
29.3M
    accu2 <<= 1;
335
336
29.3M
    a1 = ((pTmp_0[0] >> 1) + (pTmp_1[0] >> 1));
337
29.3M
    a2 = ((pTmp_0[1] >> 1) - (pTmp_1[1] >> 1));
338
339
29.3M
    cplxMult(&accu3, &accu4, (accu1 + a2), (a1 + accu2), sin_twiddle[i * inc]);
340
29.3M
    pDat[L - i] = -accu3;
341
29.3M
    pDat[i] = accu4;
342
343
29.3M
    cplxMult(&accu3, &accu4, (accu1 - a2), (a1 - accu2),
344
29.3M
             sin_twiddle[(M - i) * inc]);
345
29.3M
    pDat[M + i] = -accu3;
346
29.3M
    pDat[M - i] = accu4;
347
348
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
349
     * short tables. */
350
29.3M
    if (2 * i < ((M / 2) - 1)) {
351
10.1M
      index += 4 * inc;
352
19.1M
    } else if (2 * i >= ((M / 2))) {
353
16.2M
      index -= 4 * inc;
354
16.2M
    }
355
29.3M
  }
356
357
6.05M
  cplxMult(&accu1, &accu2, tmp[M], tmp[M + 1], sin_twiddle[(M / 2) * inc]);
358
6.05M
  pDat[L - (M / 2)] = accu2;
359
6.05M
  pDat[M / 2] = accu1;
360
361
6.05M
  pDat[0] = tmp[0] + tmp[1];
362
6.05M
  pDat[M] = fMult(tmp[0] - tmp[1],
363
6.05M
                  sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
364
365
6.05M
  *pDat_e += 2;
366
6.05M
}
367
#endif
368
369
#if !defined(FUNCTION_dct_IV)
370
371
36.0M
void dct_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
372
36.0M
  int sin_step = 0;
373
36.0M
  int M = L >> 1;
374
375
36.0M
  const FIXP_WTP *twiddle;
376
36.0M
  const FIXP_STP *sin_twiddle;
377
378
36.0M
  FDK_ASSERT(L >= 4);
379
380
36.0M
  FDK_ASSERT(L >= 4);
381
382
36.0M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
383
384
36.0M
  {
385
36.0M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
386
36.0M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
387
36.0M
    int i;
388
389
    /* 29 cycles on ARM926 */
390
543M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
391
507M
      FIXP_DBL accu1, accu2, accu3, accu4;
392
393
507M
      accu1 = pDat_1[1];
394
507M
      accu2 = pDat_0[0];
395
507M
      accu3 = pDat_0[1];
396
507M
      accu4 = pDat_1[0];
397
398
507M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
399
507M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
400
401
507M
      pDat_0[0] = accu2 >> 1;
402
507M
      pDat_0[1] = accu1 >> 1;
403
507M
      pDat_1[0] = accu4 >> 1;
404
507M
      pDat_1[1] = -(accu3 >> 1);
405
507M
    }
406
36.0M
    if (M & 1) {
407
0
      FIXP_DBL accu1, accu2;
408
409
0
      accu1 = pDat_1[1];
410
0
      accu2 = pDat_0[0];
411
412
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
413
414
0
      pDat_0[0] = accu2 >> 1;
415
0
      pDat_0[1] = accu1 >> 1;
416
0
    }
417
36.0M
  }
418
419
36.0M
  fft(M, pDat, pDat_e);
420
421
36.0M
  {
422
36.0M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
423
36.0M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
424
36.0M
    FIXP_DBL accu1, accu2, accu3, accu4;
425
36.0M
    int idx, i;
426
427
    /* Sin and Cos values are 0.0f and 1.0f */
428
36.0M
    accu1 = pDat_1[0];
429
36.0M
    accu2 = pDat_1[1];
430
431
36.0M
    pDat_1[1] = -pDat_0[1];
432
433
    /* 28 cycles for ARM926 */
434
507M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
435
471M
      FIXP_STP twd = sin_twiddle[idx];
436
471M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
437
471M
      pDat_0[1] = accu3;
438
471M
      pDat_1[0] = accu4;
439
440
471M
      pDat_0 += 2;
441
471M
      pDat_1 -= 2;
442
443
471M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
444
445
471M
      accu1 = pDat_1[0];
446
471M
      accu2 = pDat_1[1];
447
448
471M
      pDat_1[1] = -accu3;
449
471M
      pDat_0[0] = accu4;
450
471M
    }
451
452
36.0M
    if ((M & 1) == 0) {
453
      /* Last Sin and Cos value pair are the same */
454
36.0M
      accu1 = fMult(accu1, WTC(0x5a82799a));
455
36.0M
      accu2 = fMult(accu2, WTC(0x5a82799a));
456
457
36.0M
      pDat_1[0] = accu1 + accu2;
458
36.0M
      pDat_0[1] = accu1 - accu2;
459
36.0M
    }
460
36.0M
  }
461
462
  /* Add twiddeling scale. */
463
36.0M
  *pDat_e += 2;
464
36.0M
}
465
#endif /* defined (FUNCTION_dct_IV) */
466
467
#if !defined(FUNCTION_dst_IV)
468
31.0M
void dst_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
469
31.0M
  int sin_step = 0;
470
31.0M
  int M = L >> 1;
471
472
31.0M
  const FIXP_WTP *twiddle;
473
31.0M
  const FIXP_STP *sin_twiddle;
474
475
31.0M
  FDK_ASSERT(L >= 4);
476
477
31.0M
  FDK_ASSERT(L >= 4);
478
479
31.0M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
480
481
31.0M
  {
482
31.0M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
483
31.0M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
484
31.0M
    int i;
485
486
    /* 34 cycles on ARM926 */
487
380M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
488
349M
      FIXP_DBL accu1, accu2, accu3, accu4;
489
490
349M
      accu1 = pDat_1[1] >> 1;
491
349M
      accu2 = -(pDat_0[0] >> 1);
492
349M
      accu3 = pDat_0[1] >> 1;
493
349M
      accu4 = -(pDat_1[0] >> 1);
494
495
349M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
496
349M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
497
498
349M
      pDat_0[0] = accu2;
499
349M
      pDat_0[1] = accu1;
500
349M
      pDat_1[0] = accu4;
501
349M
      pDat_1[1] = -accu3;
502
349M
    }
503
31.0M
    if (M & 1) {
504
0
      FIXP_DBL accu1, accu2;
505
506
0
      accu1 = pDat_1[1];
507
0
      accu2 = -pDat_0[0];
508
509
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
510
511
0
      pDat_0[0] = accu2 >> 1;
512
0
      pDat_0[1] = accu1 >> 1;
513
0
    }
514
31.0M
  }
515
516
31.0M
  fft(M, pDat, pDat_e);
517
518
31.0M
  {
519
31.0M
    FIXP_DBL *RESTRICT pDat_0;
520
31.0M
    FIXP_DBL *RESTRICT pDat_1;
521
31.0M
    FIXP_DBL accu1, accu2, accu3, accu4;
522
31.0M
    int idx, i;
523
524
31.0M
    pDat_0 = &pDat[0];
525
31.0M
    pDat_1 = &pDat[L - 2];
526
527
    /* Sin and Cos values are 0.0f and 1.0f */
528
31.0M
    accu1 = pDat_1[0];
529
31.0M
    accu2 = pDat_1[1];
530
531
31.0M
    pDat_1[1] = -pDat_0[0];
532
31.0M
    pDat_0[0] = pDat_0[1];
533
534
349M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
535
318M
      FIXP_STP twd = sin_twiddle[idx];
536
537
318M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
538
318M
      pDat_1[0] = -accu3;
539
318M
      pDat_0[1] = -accu4;
540
541
318M
      pDat_0 += 2;
542
318M
      pDat_1 -= 2;
543
544
318M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
545
546
318M
      accu1 = pDat_1[0];
547
318M
      accu2 = pDat_1[1];
548
549
318M
      pDat_0[0] = accu3;
550
318M
      pDat_1[1] = -accu4;
551
318M
    }
552
553
31.0M
    if ((M & 1) == 0) {
554
      /* Last Sin and Cos value pair are the same */
555
31.0M
      accu1 = fMult(accu1, WTC(0x5a82799a));
556
31.0M
      accu2 = fMult(accu2, WTC(0x5a82799a));
557
558
31.0M
      pDat_0[1] = -accu1 - accu2;
559
31.0M
      pDat_1[0] = accu2 - accu1;
560
31.0M
    }
561
31.0M
  }
562
563
  /* Add twiddeling scale. */
564
31.0M
  *pDat_e += 2;
565
31.0M
}
566
#endif /* !defined(FUNCTION_dst_IV) */