Coverage Report

Created: 2025-11-11 06:41

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libAACdec/src/rvlcconceal.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  rvlc concealment
106
  \author Josef Hoepfl
107
*/
108
109
#include "rvlcconceal.h"
110
111
#include "block.h"
112
#include "rvlc.h"
113
114
/*---------------------------------------------------------------------------------------------
115
  function:      calcRefValFwd
116
117
  description:   The function determines the scalefactor which is closed to the
118
scalefactorband conceal_min. The same is done for intensity data and noise
119
energies.
120
-----------------------------------------------------------------------------------------------
121
  output:        - reference value scf
122
                 - reference value internsity data
123
                 - reference value noise energy
124
-----------------------------------------------------------------------------------------------
125
  return:        -
126
--------------------------------------------------------------------------------------------
127
*/
128
129
static void calcRefValFwd(CErRvlcInfo *pRvlc,
130
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
131
43.2k
                          int *refIsFwd, int *refNrgFwd, int *refScfFwd) {
132
43.2k
  int band, bnds, group, startBand;
133
43.2k
  int idIs, idNrg, idScf;
134
43.2k
  int conceal_min, conceal_group_min;
135
43.2k
  int MaximumScaleFactorBands;
136
137
43.2k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
138
1.00k
    MaximumScaleFactorBands = 16;
139
42.2k
  else
140
42.2k
    MaximumScaleFactorBands = 64;
141
142
43.2k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
143
43.2k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
144
145
  /* calculate first reference value for approach in forward direction */
146
43.2k
  idIs = idNrg = idScf = 1;
147
148
  /* set reference values */
149
43.2k
  *refIsFwd = -SF_OFFSET;
150
43.2k
  *refNrgFwd = pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain -
151
43.2k
               SF_OFFSET - 90 - 256;
152
43.2k
  *refScfFwd =
153
43.2k
      pAacDecoderChannelInfo->pDynData->RawDataInfo.GlobalGain - SF_OFFSET;
154
155
43.2k
  startBand = conceal_min - 1;
156
87.4k
  for (group = conceal_group_min; group >= 0; group--) {
157
63.8k
    for (band = startBand; band >= 0; band--) {
158
19.6k
      bnds = 16 * group + band;
159
19.6k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
160
2.87k
        case ZERO_HCB:
161
2.87k
          break;
162
1.01k
        case INTENSITY_HCB:
163
1.70k
        case INTENSITY_HCB2:
164
1.70k
          if (idIs) {
165
610
            *refIsFwd =
166
610
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
167
610
            idIs = 0; /* reference value has been set */
168
610
          }
169
1.70k
          break;
170
1.15k
        case NOISE_HCB:
171
1.15k
          if (idNrg) {
172
463
            *refNrgFwd =
173
463
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
174
463
            idNrg = 0; /* reference value has been set */
175
463
          }
176
1.15k
          break;
177
13.8k
        default:
178
13.8k
          if (idScf) {
179
7.72k
            *refScfFwd =
180
7.72k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
181
7.72k
            idScf = 0; /* reference value has been set */
182
7.72k
          }
183
13.8k
          break;
184
19.6k
      }
185
19.6k
    }
186
44.2k
    startBand = pRvlc->maxSfbTransmitted - 1;
187
44.2k
  }
188
43.2k
}
189
190
/*---------------------------------------------------------------------------------------------
191
  function:      calcRefValBwd
192
193
  description:   The function determines the scalefactor which is closed to the
194
scalefactorband conceal_max. The same is done for intensity data and noise
195
energies.
196
-----------------------------------------------------------------------------------------------
197
  output:        - reference value scf
198
                 - reference value internsity data
199
                 - reference value noise energy
200
-----------------------------------------------------------------------------------------------
201
  return:        -
202
--------------------------------------------------------------------------------------------
203
*/
204
205
static void calcRefValBwd(CErRvlcInfo *pRvlc,
206
                          CAacDecoderChannelInfo *pAacDecoderChannelInfo,
207
43.2k
                          int *refIsBwd, int *refNrgBwd, int *refScfBwd) {
208
43.2k
  int band, bnds, group, startBand;
209
43.2k
  int idIs, idNrg, idScf;
210
43.2k
  int conceal_max, conceal_group_max;
211
43.2k
  int MaximumScaleFactorBands;
212
213
43.2k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT)
214
1.00k
    MaximumScaleFactorBands = 16;
215
42.2k
  else
216
42.2k
    MaximumScaleFactorBands = 64;
217
218
43.2k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
219
43.2k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
220
221
  /* calculate first reference value for approach in backward direction */
222
43.2k
  idIs = idNrg = idScf = 1;
223
224
  /* set reference values */
225
43.2k
  *refIsBwd = pRvlc->dpcm_is_last_position - SF_OFFSET;
226
43.2k
  *refNrgBwd = pRvlc->rev_global_gain + pRvlc->dpcm_noise_last_position -
227
43.2k
               SF_OFFSET - 90 - 256 + pRvlc->dpcm_noise_nrg;
228
43.2k
  *refScfBwd = pRvlc->rev_global_gain - SF_OFFSET;
229
230
43.2k
  startBand = conceal_max + 1;
231
232
  /* if needed, re-set reference values */
233
89.0k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
234
77.6k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
235
31.8k
      bnds = 16 * group + band;
236
31.8k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
237
7.52k
        case ZERO_HCB:
238
7.52k
          break;
239
1.04k
        case INTENSITY_HCB:
240
2.51k
        case INTENSITY_HCB2:
241
2.51k
          if (idIs) {
242
629
            *refIsBwd =
243
629
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
244
629
            idIs = 0; /* reference value has been set */
245
629
          }
246
2.51k
          break;
247
992
        case NOISE_HCB:
248
992
          if (idNrg) {
249
226
            *refNrgBwd =
250
226
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
251
226
            idNrg = 0; /* reference value has been set */
252
226
          }
253
992
          break;
254
20.8k
        default:
255
20.8k
          if (idScf) {
256
8.64k
            *refScfBwd =
257
8.64k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
258
8.64k
            idScf = 0; /* reference value has been set */
259
8.64k
          }
260
20.8k
          break;
261
31.8k
      }
262
31.8k
    }
263
45.8k
    startBand = 0;
264
45.8k
  }
265
43.2k
}
266
267
/*---------------------------------------------------------------------------------------------
268
  function:      BidirectionalEstimation_UseLowerScfOfCurrentFrame
269
270
  description:   This approach by means of bidirectional estimation is generally
271
performed when a single bit error has been detected, the bit error can be
272
isolated between 'conceal_min' and 'conceal_max' and the 'sf_concealment' flag
273
is not set. The sets of scalefactors decoded in forward and backward direction
274
are compared with each other. The smaller scalefactor will be considered as the
275
correct one respectively. The reconstruction of the scalefactors with this
276
approach archieve good results in audio quality. The strategy must be applied to
277
scalefactors, intensity data and noise energy seperately.
278
-----------------------------------------------------------------------------------------------
279
  output:        Concealed scalefactor, noise energy and intensity data between
280
conceal_min and conceal_max
281
-----------------------------------------------------------------------------------------------
282
  return:        -
283
--------------------------------------------------------------------------------------------
284
*/
285
286
void BidirectionalEstimation_UseLowerScfOfCurrentFrame(
287
53.1k
    CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
288
53.1k
  CErRvlcInfo *pRvlc =
289
53.1k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
290
53.1k
  int band, bnds, startBand, endBand, group;
291
53.1k
  int conceal_min, conceal_max;
292
53.1k
  int conceal_group_min, conceal_group_max;
293
53.1k
  int MaximumScaleFactorBands;
294
295
53.1k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
296
6.94k
    MaximumScaleFactorBands = 16;
297
46.2k
  } else {
298
46.2k
    MaximumScaleFactorBands = 64;
299
46.2k
  }
300
301
  /* If an error was detected just in forward or backward direction, set the
302
     corresponding border for concealment to a appropriate scalefactor band. The
303
     border is set to first or last sfb respectively, because the error will
304
     possibly not follow directly after the corrupt bit but just after decoding
305
     some more (wrong) scalefactors. */
306
53.1k
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
307
308
53.1k
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
309
4.34k
    pRvlc->conceal_max =
310
4.34k
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
311
312
53.1k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
313
53.1k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
314
53.1k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
315
53.1k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
316
317
53.1k
  if (pRvlc->conceal_min == pRvlc->conceal_max) {
318
43.2k
    int refIsFwd, refNrgFwd, refScfFwd;
319
43.2k
    int refIsBwd, refNrgBwd, refScfBwd;
320
321
43.2k
    bnds = pRvlc->conceal_min;
322
43.2k
    calcRefValFwd(pRvlc, pAacDecoderChannelInfo, &refIsFwd, &refNrgFwd,
323
43.2k
                  &refScfFwd);
324
43.2k
    calcRefValBwd(pRvlc, pAacDecoderChannelInfo, &refIsBwd, &refNrgBwd,
325
43.2k
                  &refScfBwd);
326
327
43.2k
    switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
328
30.4k
      case ZERO_HCB:
329
30.4k
        break;
330
777
      case INTENSITY_HCB:
331
965
      case INTENSITY_HCB2:
332
965
        if (refIsFwd < refIsBwd)
333
156
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsFwd;
334
809
        else
335
809
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refIsBwd;
336
965
        break;
337
520
      case NOISE_HCB:
338
520
        if (refNrgFwd < refNrgBwd)
339
206
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgFwd;
340
314
        else
341
314
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refNrgBwd;
342
520
        break;
343
11.3k
      default:
344
11.3k
        if (refScfFwd < refScfBwd)
345
9.35k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfFwd;
346
1.96k
        else
347
1.96k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = refScfBwd;
348
11.3k
        break;
349
43.2k
    }
350
43.2k
  } else {
351
9.91k
    pAacDecoderChannelInfo->pComData->overlay.aac
352
9.91k
        .aRvlcScfFwd[pRvlc->conceal_max] =
353
9.91k
        pAacDecoderChannelInfo->pComData->overlay.aac
354
9.91k
            .aRvlcScfBwd[pRvlc->conceal_max];
355
9.91k
    pAacDecoderChannelInfo->pComData->overlay.aac
356
9.91k
        .aRvlcScfBwd[pRvlc->conceal_min] =
357
9.91k
        pAacDecoderChannelInfo->pComData->overlay.aac
358
9.91k
            .aRvlcScfFwd[pRvlc->conceal_min];
359
360
    /* consider the smaller of the forward and backward decoded value as the
361
     * correct one */
362
9.91k
    startBand = conceal_min;
363
9.91k
    if (conceal_group_min == conceal_group_max)
364
5.89k
      endBand = conceal_max;
365
4.02k
    else
366
4.02k
      endBand = pRvlc->maxSfbTransmitted - 1;
367
368
26.9k
    for (group = conceal_group_min; group <= conceal_group_max; group++) {
369
71.6k
      for (band = startBand; band <= endBand; band++) {
370
54.6k
        bnds = 16 * group + band;
371
54.6k
        if (pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds] <
372
54.6k
            pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds])
373
21.6k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
374
21.6k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
375
33.0k
        else
376
33.0k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
377
33.0k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
378
54.6k
      }
379
17.0k
      startBand = 0;
380
17.0k
      if ((group + 1) == conceal_group_max) endBand = conceal_max;
381
17.0k
    }
382
9.91k
  }
383
384
  /* now copy all data to the output buffer which needs not to be concealed */
385
53.1k
  if (conceal_group_min == 0)
386
49.6k
    endBand = conceal_min;
387
3.56k
  else
388
3.56k
    endBand = pRvlc->maxSfbTransmitted;
389
119k
  for (group = 0; group <= conceal_group_min; group++) {
390
141k
    for (band = 0; band < endBand; band++) {
391
74.7k
      bnds = 16 * group + band;
392
74.7k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
393
74.7k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
394
74.7k
    }
395
66.3k
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
396
66.3k
  }
397
398
53.1k
  startBand = conceal_max + 1;
399
119k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
400
140k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
401
74.2k
      bnds = 16 * group + band;
402
74.2k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
403
74.2k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
404
74.2k
    }
405
65.8k
    startBand = 0;
406
65.8k
  }
407
53.1k
}
408
409
/*---------------------------------------------------------------------------------------------
410
  function:      BidirectionalEstimation_UseScfOfPrevFrameAsReference
411
412
  description:   This approach by means of bidirectional estimation is generally
413
performed when a single bit error has been detected, the bit error can be
414
isolated between 'conceal_min' and 'conceal_max', the 'sf_concealment' flag is
415
set and the previous frame has the same block type as the current frame. The
416
scalefactor decoded in forward and backward direction and the scalefactor of the
417
previous frame are compared with each other. The smaller scalefactor will be
418
considered as the correct one. At this the codebook of the previous and current
419
frame must be of the same set (scf, nrg, is) in each scalefactorband. Otherwise
420
the scalefactor of the previous frame is not considered in the minimum
421
calculation. The reconstruction of the scalefactors with this approach archieve
422
good results in audio quality. The strategy must be applied to scalefactors,
423
intensity data and noise energy seperately.
424
-----------------------------------------------------------------------------------------------
425
  output:        Concealed scalefactor, noise energy and intensity data between
426
conceal_min and conceal_max
427
-----------------------------------------------------------------------------------------------
428
  return:        -
429
--------------------------------------------------------------------------------------------
430
*/
431
432
void BidirectionalEstimation_UseScfOfPrevFrameAsReference(
433
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
434
36.3k
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
435
36.3k
  CErRvlcInfo *pRvlc =
436
36.3k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
437
36.3k
  int band, bnds, startBand, endBand, group;
438
36.3k
  int conceal_min, conceal_max;
439
36.3k
  int conceal_group_min, conceal_group_max;
440
36.3k
  int MaximumScaleFactorBands;
441
36.3k
  SHORT commonMin;
442
443
36.3k
  if (GetWindowSequence(&pAacDecoderChannelInfo->icsInfo) == BLOCK_SHORT) {
444
4.80k
    MaximumScaleFactorBands = 16;
445
31.5k
  } else {
446
31.5k
    MaximumScaleFactorBands = 64;
447
31.5k
  }
448
449
  /* If an error was detected just in forward or backward direction, set the
450
     corresponding border for concealment to a appropriate scalefactor band. The
451
     border is set to first or last sfb respectively, because the error will
452
     possibly not follow directly after the corrupt bit but just after decoding
453
     some more (wrong) scalefactors. */
454
36.3k
  if (pRvlc->conceal_min == CONCEAL_MIN_INIT) pRvlc->conceal_min = 0;
455
456
36.3k
  if (pRvlc->conceal_max == CONCEAL_MAX_INIT)
457
3.45k
    pRvlc->conceal_max =
458
3.45k
        (pRvlc->numWindowGroups - 1) * 16 + pRvlc->maxSfbTransmitted - 1;
459
460
36.3k
  conceal_min = pRvlc->conceal_min % MaximumScaleFactorBands;
461
36.3k
  conceal_group_min = pRvlc->conceal_min / MaximumScaleFactorBands;
462
36.3k
  conceal_max = pRvlc->conceal_max % MaximumScaleFactorBands;
463
36.3k
  conceal_group_max = pRvlc->conceal_max / MaximumScaleFactorBands;
464
465
36.3k
  pAacDecoderChannelInfo->pComData->overlay.aac
466
36.3k
      .aRvlcScfFwd[pRvlc->conceal_max] =
467
36.3k
      pAacDecoderChannelInfo->pComData->overlay.aac
468
36.3k
          .aRvlcScfBwd[pRvlc->conceal_max];
469
36.3k
  pAacDecoderChannelInfo->pComData->overlay.aac
470
36.3k
      .aRvlcScfBwd[pRvlc->conceal_min] =
471
36.3k
      pAacDecoderChannelInfo->pComData->overlay.aac
472
36.3k
          .aRvlcScfFwd[pRvlc->conceal_min];
473
474
  /* consider the smaller of the forward and backward decoded value as the
475
   * correct one */
476
36.3k
  startBand = conceal_min;
477
36.3k
  if (conceal_group_min == conceal_group_max)
478
32.3k
    endBand = conceal_max;
479
4.02k
  else
480
4.02k
    endBand = pRvlc->maxSfbTransmitted - 1;
481
482
80.0k
  for (group = conceal_group_min; group <= conceal_group_max; group++) {
483
132k
    for (band = startBand; band <= endBand; band++) {
484
88.6k
      bnds = 16 * group + band;
485
88.6k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
486
25.8k
        case ZERO_HCB:
487
25.8k
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
488
25.8k
          break;
489
490
4.15k
        case INTENSITY_HCB:
491
22.5k
        case INTENSITY_HCB2:
492
22.5k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
493
22.5k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
494
22.5k
              (pAacDecoderStaticChannelInfo->concealmentInfo
495
22.5k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
496
11.7k
            commonMin = fMin(
497
11.7k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
498
11.7k
                pAacDecoderChannelInfo->pComData->overlay.aac
499
11.7k
                    .aRvlcScfBwd[bnds]);
500
11.7k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
501
11.7k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
502
11.7k
                                    .aRvlcPreviousScaleFactor[bnds]);
503
11.7k
          } else {
504
10.8k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
505
10.8k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
506
10.8k
                pAacDecoderChannelInfo->pComData->overlay.aac
507
10.8k
                    .aRvlcScfBwd[bnds]);
508
10.8k
          }
509
22.5k
          break;
510
511
3.51k
        case NOISE_HCB:
512
3.51k
          if (pAacDecoderStaticChannelInfo->concealmentInfo
513
3.51k
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
514
360
            commonMin = fMin(
515
360
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
516
360
                pAacDecoderChannelInfo->pComData->overlay.aac
517
360
                    .aRvlcScfBwd[bnds]);
518
360
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
519
360
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
520
360
                                    .aRvlcPreviousScaleFactor[bnds]);
521
3.15k
          } else {
522
3.15k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
523
3.15k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
524
3.15k
                pAacDecoderChannelInfo->pComData->overlay.aac
525
3.15k
                    .aRvlcScfBwd[bnds]);
526
3.15k
          }
527
3.51k
          break;
528
529
36.6k
        default:
530
36.6k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
531
36.6k
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
532
7.51k
              (pAacDecoderStaticChannelInfo->concealmentInfo
533
7.51k
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
534
7.41k
              (pAacDecoderStaticChannelInfo->concealmentInfo
535
7.41k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
536
7.32k
              (pAacDecoderStaticChannelInfo->concealmentInfo
537
7.32k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
538
7.24k
            commonMin = fMin(
539
7.24k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
540
7.24k
                pAacDecoderChannelInfo->pComData->overlay.aac
541
7.24k
                    .aRvlcScfBwd[bnds]);
542
7.24k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
543
7.24k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
544
7.24k
                                    .aRvlcPreviousScaleFactor[bnds]);
545
29.4k
          } else {
546
29.4k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = fMin(
547
29.4k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
548
29.4k
                pAacDecoderChannelInfo->pComData->overlay.aac
549
29.4k
                    .aRvlcScfBwd[bnds]);
550
29.4k
          }
551
36.6k
          break;
552
88.6k
      }
553
88.6k
    }
554
43.7k
    startBand = 0;
555
43.7k
    if ((group + 1) == conceal_group_max) endBand = conceal_max;
556
43.7k
  }
557
558
  /* now copy all data to the output buffer which needs not to be concealed */
559
36.3k
  if (conceal_group_min == 0)
560
31.6k
    endBand = conceal_min;
561
4.74k
  else
562
4.74k
    endBand = pRvlc->maxSfbTransmitted;
563
84.6k
  for (group = 0; group <= conceal_group_min; group++) {
564
90.4k
    for (band = 0; band < endBand; band++) {
565
42.2k
      bnds = 16 * group + band;
566
42.2k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
567
42.2k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
568
42.2k
    }
569
48.2k
    if ((group + 1) == conceal_group_min) endBand = conceal_min;
570
48.2k
  }
571
572
36.3k
  startBand = conceal_max + 1;
573
77.2k
  for (group = conceal_group_max; group < pRvlc->numWindowGroups; group++) {
574
63.9k
    for (band = startBand; band < pRvlc->maxSfbTransmitted; band++) {
575
23.0k
      bnds = 16 * group + band;
576
23.0k
      pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
577
23.0k
          pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
578
23.0k
    }
579
40.8k
    startBand = 0;
580
40.8k
  }
581
36.3k
}
582
583
/*---------------------------------------------------------------------------------------------
584
  function:      StatisticalEstimation
585
586
  description:   This approach by means of statistical estimation is generally
587
performed when both the start value and the end value are different and no
588
further errors have been detected. Considering the forward and backward decoded
589
scalefactors, the set with the lower scalefactors in sum will be considered as
590
the correct one. The scalefactors are differentially encoded. Normally it would
591
reach to compare one pair of the forward and backward decoded scalefactors to
592
specify the lower set. But having detected no further errors does not
593
necessarily mean the absence of errors. Therefore all scalefactors decoded in
594
forward and backward direction are summed up seperately. The set with the lower
595
sum will be used. The strategy must be applied to scalefactors, intensity data
596
and noise energy seperately.
597
-----------------------------------------------------------------------------------------------
598
  output:        Concealed scalefactor, noise energy and intensity data
599
-----------------------------------------------------------------------------------------------
600
  return:        -
601
--------------------------------------------------------------------------------------------
602
*/
603
604
3.80k
void StatisticalEstimation(CAacDecoderChannelInfo *pAacDecoderChannelInfo) {
605
3.80k
  CErRvlcInfo *pRvlc =
606
3.80k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
607
3.80k
  int band, bnds, group;
608
3.80k
  int sumIsFwd, sumIsBwd;   /* sum of intensity data forward/backward */
609
3.80k
  int sumNrgFwd, sumNrgBwd; /* sum of noise energy data forward/backward */
610
3.80k
  int sumScfFwd, sumScfBwd; /* sum of scalefactor data forward/backward */
611
3.80k
  int useIsFwd, useNrgFwd, useScfFwd; /* the flags signals the elements which
612
                                         are used for the final result */
613
614
3.80k
  sumIsFwd = sumIsBwd = sumNrgFwd = sumNrgBwd = sumScfFwd = sumScfBwd = 0;
615
3.80k
  useIsFwd = useNrgFwd = useScfFwd = 0;
616
617
  /* calculate sum of each group (scf,nrg,is) of forward and backward direction
618
   */
619
8.26k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
620
32.3k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
621
27.9k
      bnds = 16 * group + band;
622
27.9k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
623
9.41k
        case ZERO_HCB:
624
9.41k
          break;
625
626
498
        case INTENSITY_HCB:
627
1.45k
        case INTENSITY_HCB2:
628
1.45k
          sumIsFwd +=
629
1.45k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
630
1.45k
          sumIsBwd +=
631
1.45k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
632
1.45k
          break;
633
634
1.16k
        case NOISE_HCB:
635
1.16k
          sumNrgFwd +=
636
1.16k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
637
1.16k
          sumNrgBwd +=
638
1.16k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
639
1.16k
          break;
640
641
15.8k
        default:
642
15.8k
          sumScfFwd +=
643
15.8k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
644
15.8k
          sumScfBwd +=
645
15.8k
              pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
646
15.8k
          break;
647
27.9k
      }
648
27.9k
    }
649
4.46k
  }
650
651
  /* find for each group (scf,nrg,is) the correct direction */
652
3.80k
  if (sumIsFwd < sumIsBwd) useIsFwd = 1;
653
654
3.80k
  if (sumNrgFwd < sumNrgBwd) useNrgFwd = 1;
655
656
3.80k
  if (sumScfFwd < sumScfBwd) useScfFwd = 1;
657
658
  /* conceal each group (scf,nrg,is) */
659
8.26k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
660
32.3k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
661
27.9k
      bnds = 16 * group + band;
662
27.9k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
663
9.41k
        case ZERO_HCB:
664
9.41k
          break;
665
666
498
        case INTENSITY_HCB:
667
1.45k
        case INTENSITY_HCB2:
668
1.45k
          if (useIsFwd)
669
390
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
670
390
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
671
1.06k
          else
672
1.06k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
673
1.06k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
674
1.45k
          break;
675
676
1.16k
        case NOISE_HCB:
677
1.16k
          if (useNrgFwd)
678
440
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
679
440
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
680
722
          else
681
722
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
682
722
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
683
1.16k
          break;
684
685
15.8k
        default:
686
15.8k
          if (useScfFwd)
687
5.46k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
688
5.46k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds];
689
10.4k
          else
690
10.4k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
691
10.4k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfBwd[bnds];
692
15.8k
          break;
693
27.9k
      }
694
27.9k
    }
695
4.46k
  }
696
3.80k
}
697
698
/*---------------------------------------------------------------------------------------------
699
  description:   Approach by means of predictive interpolation
700
                 This approach by means of predictive estimation is generally
701
performed when the error cannot be isolated between 'conceal_min' and
702
'conceal_max', the 'sf_concealment' flag is set and the previous frame has the
703
same block type as the current frame. Check for each scalefactorband if the same
704
type of data (scalefactor, internsity data, noise energies) is transmitted. If
705
so use the scalefactor (intensity data, noise energy) in the current frame.
706
Otherwise set the scalefactor (intensity data, noise energy) for this
707
scalefactorband to zero.
708
-----------------------------------------------------------------------------------------------
709
  output:        Concealed scalefactor, noise energy and intensity data
710
-----------------------------------------------------------------------------------------------
711
  return:        -
712
--------------------------------------------------------------------------------------------
713
*/
714
715
void PredictiveInterpolation(
716
    CAacDecoderChannelInfo *pAacDecoderChannelInfo,
717
7.26k
    CAacDecoderStaticChannelInfo *pAacDecoderStaticChannelInfo) {
718
7.26k
  CErRvlcInfo *pRvlc =
719
7.26k
      &pAacDecoderChannelInfo->pComData->overlay.aac.erRvlcInfo;
720
7.26k
  int band, bnds, group;
721
7.26k
  SHORT commonMin;
722
723
14.7k
  for (group = 0; group < pRvlc->numWindowGroups; group++) {
724
34.0k
    for (band = 0; band < pRvlc->maxSfbTransmitted; band++) {
725
26.5k
      bnds = 16 * group + band;
726
26.5k
      switch (pAacDecoderChannelInfo->pDynData->aCodeBook[bnds]) {
727
125
        case ZERO_HCB:
728
125
          pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
729
125
          break;
730
731
110
        case INTENSITY_HCB:
732
13.6k
        case INTENSITY_HCB2:
733
13.6k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
734
13.6k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB) ||
735
13.6k
              (pAacDecoderStaticChannelInfo->concealmentInfo
736
13.6k
                   .aRvlcPreviousCodebook[bnds] == INTENSITY_HCB2)) {
737
12.1k
            commonMin = fMin(
738
12.1k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
739
12.1k
                pAacDecoderChannelInfo->pComData->overlay.aac
740
12.1k
                    .aRvlcScfBwd[bnds]);
741
12.1k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
742
12.1k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
743
12.1k
                                    .aRvlcPreviousScaleFactor[bnds]);
744
12.1k
          } else {
745
1.51k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
746
1.51k
          }
747
13.6k
          break;
748
749
1.40k
        case NOISE_HCB:
750
1.40k
          if (pAacDecoderStaticChannelInfo->concealmentInfo
751
1.40k
                  .aRvlcPreviousCodebook[bnds] == NOISE_HCB) {
752
659
            commonMin = fMin(
753
659
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
754
659
                pAacDecoderChannelInfo->pComData->overlay.aac
755
659
                    .aRvlcScfBwd[bnds]);
756
659
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
757
659
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
758
659
                                    .aRvlcPreviousScaleFactor[bnds]);
759
747
          } else {
760
747
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = -110;
761
747
          }
762
1.40k
          break;
763
764
11.3k
        default:
765
11.3k
          if ((pAacDecoderStaticChannelInfo->concealmentInfo
766
11.3k
                   .aRvlcPreviousCodebook[bnds] != ZERO_HCB) &&
767
9.74k
              (pAacDecoderStaticChannelInfo->concealmentInfo
768
9.74k
                   .aRvlcPreviousCodebook[bnds] != NOISE_HCB) &&
769
9.27k
              (pAacDecoderStaticChannelInfo->concealmentInfo
770
9.27k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB) &&
771
9.19k
              (pAacDecoderStaticChannelInfo->concealmentInfo
772
9.19k
                   .aRvlcPreviousCodebook[bnds] != INTENSITY_HCB2)) {
773
9.11k
            commonMin = fMin(
774
9.11k
                pAacDecoderChannelInfo->pComData->overlay.aac.aRvlcScfFwd[bnds],
775
9.11k
                pAacDecoderChannelInfo->pComData->overlay.aac
776
9.11k
                    .aRvlcScfBwd[bnds]);
777
9.11k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] =
778
9.11k
                fMin(commonMin, pAacDecoderStaticChannelInfo->concealmentInfo
779
9.11k
                                    .aRvlcPreviousScaleFactor[bnds]);
780
9.11k
          } else {
781
2.26k
            pAacDecoderChannelInfo->pDynData->aScaleFactor[bnds] = 0;
782
2.26k
          }
783
11.3k
          break;
784
26.5k
      }
785
26.5k
    }
786
7.48k
  }
787
7.26k
}