Coverage Report

Created: 2025-11-11 06:41

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libAACdec/src/usacdec_fac.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):   Manuel Jander
98
99
   Description: USAC FAC
100
101
*******************************************************************************/
102
103
#include "usacdec_fac.h"
104
105
#include "usacdec_const.h"
106
#include "usacdec_lpc.h"
107
#include "usacdec_acelp.h"
108
#include "usacdec_rom.h"
109
#include "dct.h"
110
#include "FDK_tools_rom.h"
111
#include "mdct.h"
112
113
52.3k
#define SPEC_FAC(ptr, i, gl) ((ptr) + ((i) * (gl)))
114
115
FIXP_DBL *CLpd_FAC_GetMemory(CAacDecoderChannelInfo *pAacDecoderChannelInfo,
116
53.7k
                             UCHAR mod[NB_DIV], int *pState) {
117
53.7k
  FIXP_DBL *ptr;
118
53.7k
  int i;
119
53.7k
  int k = 0;
120
53.7k
  int max_windows = 8;
121
122
53.7k
  FDK_ASSERT(*pState >= 0 && *pState < max_windows);
123
124
  /* Look for free space to store FAC data. 2 FAC data blocks fit into each TCX
125
   * spectral data block. */
126
156k
  for (i = *pState; i < max_windows; i++) {
127
154k
    if (mod[i >> 1] == 0) {
128
52.3k
      break;
129
52.3k
    }
130
154k
  }
131
132
53.7k
  *pState = i + 1;
133
134
53.7k
  if (i == max_windows) {
135
1.39k
    ptr = pAacDecoderChannelInfo->data.usac.fac_data0;
136
52.3k
  } else {
137
52.3k
    FDK_ASSERT(mod[(i >> 1)] == 0);
138
52.3k
    ptr = SPEC_FAC(pAacDecoderChannelInfo->pSpectralCoefficient, i,
139
52.3k
                   pAacDecoderChannelInfo->granuleLength << k);
140
52.3k
  }
141
142
53.7k
  return ptr;
143
53.7k
}
144
145
int CLpd_FAC_Read(HANDLE_FDK_BITSTREAM hBs, FIXP_DBL *pFac, SCHAR *pFacScale,
146
101k
                  int length, int use_gain, int frame) {
147
101k
  FIXP_DBL fac_gain;
148
101k
  int fac_gain_e = 0;
149
150
101k
  if (use_gain) {
151
50.8k
    CLpd_DecodeGain(&fac_gain, &fac_gain_e, FDKreadBits(hBs, 7));
152
50.8k
  }
153
154
101k
  if (CLpc_DecodeAVQ(hBs, pFac, 1, 1, length) != 0) {
155
395
    return -1;
156
395
  }
157
158
101k
  {
159
101k
    int scale;
160
161
101k
    scale = getScalefactor(pFac, length);
162
101k
    scaleValues(pFac, length, scale);
163
101k
    pFacScale[frame] = DFRACT_BITS - 1 - scale;
164
101k
  }
165
166
101k
  if (use_gain) {
167
50.4k
    int i;
168
169
50.4k
    pFacScale[frame] += fac_gain_e;
170
171
3.39M
    for (i = 0; i < length; i++) {
172
3.34M
      pFac[i] = fMult(pFac[i], fac_gain);
173
3.34M
    }
174
50.4k
  }
175
101k
  return 0;
176
101k
}
177
178
/**
179
 * \brief Apply synthesis filter with zero input to x. The overall filter gain
180
 * is 1.0.
181
 * \param a LPC filter coefficients.
182
 * \param length length of the input/output data vector x.
183
 * \param x input/output vector, where the synthesis filter is applied in place.
184
 */
185
static void Syn_filt_zero(const FIXP_LPC a[], const INT a_exp, INT length,
186
80.0k
                          FIXP_DBL x[]) {
187
80.0k
  int i, j;
188
80.0k
  FIXP_DBL L_tmp;
189
190
15.3M
  for (i = 0; i < length; i++) {
191
15.3M
    L_tmp = (FIXP_DBL)0;
192
193
249M
    for (j = 0; j < fMin(i, M_LP_FILTER_ORDER); j++) {
194
234M
      L_tmp -= fMultDiv2(a[j], x[i - (j + 1)]) >> (LP_FILTER_SCALE - 1);
195
234M
    }
196
197
15.3M
    L_tmp = scaleValue(L_tmp, a_exp + LP_FILTER_SCALE);
198
15.3M
    x[i] = fAddSaturate(x[i], L_tmp);
199
15.3M
  }
200
80.0k
}
201
202
/* Table is also correct for coreCoderFrameLength = 768. Factor 3/4 is canceled
203
   out: gainFac = 0.5 * sqrt(fac_length/lFrame)
204
*/
205
static const FIXP_DBL gainFac[4] = {0x40000000, 0x2d413ccd, 0x20000000,
206
                                    0x16a09e66};
207
208
void CFac_ApplyGains(FIXP_DBL fac_data[LFAC], const INT fac_length,
209
                     const FIXP_DBL tcx_gain, const FIXP_DBL alfd_gains[],
210
44.3k
                     const INT mod) {
211
44.3k
  FIXP_DBL facFactor;
212
44.3k
  int i;
213
214
44.3k
  FDK_ASSERT((fac_length == 128) || (fac_length == 96));
215
216
  /* 2) Apply gain factor to FAC data */
217
44.3k
  facFactor = fMult(gainFac[mod], tcx_gain);
218
4.89M
  for (i = 0; i < fac_length; i++) {
219
4.85M
    fac_data[i] = fMult(fac_data[i], facFactor);
220
4.85M
  }
221
222
  /* 3) Apply spectrum deshaping using alfd_gains */
223
1.25M
  for (i = 0; i < fac_length / 4; i++) {
224
1.21M
    int k;
225
226
1.21M
    k = i >> (3 - mod);
227
1.21M
    fac_data[i] = fMult(fac_data[i], alfd_gains[k])
228
1.21M
                  << 1; /* alfd_gains is scaled by one bit. */
229
1.21M
  }
230
44.3k
}
231
232
static void CFac_CalcFacSignal(FIXP_DBL *pOut, FIXP_DBL *pFac,
233
                               const int fac_scale, const int fac_length,
234
                               const FIXP_LPC A[M_LP_FILTER_ORDER],
235
                               const INT A_exp, const int fAddZir,
236
80.0k
                               const int isFdFac) {
237
80.0k
  FIXP_LPC wA[M_LP_FILTER_ORDER];
238
80.0k
  FIXP_DBL tf_gain = (FIXP_DBL)0;
239
80.0k
  int wlength;
240
80.0k
  int scale = fac_scale;
241
242
  /* obtain tranform gain. */
243
80.0k
  imdct_gain(&tf_gain, &scale, isFdFac ? 0 : fac_length);
244
245
  /* 4) Compute inverse DCT-IV of FAC data. Output scale of DCT IV is 16 bits.
246
   */
247
80.0k
  dct_IV(pFac, fac_length, &scale);
248
  /* dct_IV scale = log2(fac_length). "- 7" is a factor of 2/128 */
249
80.0k
  if (tf_gain != (FIXP_DBL)0) { /* non-radix 2 transform gain */
250
32.8k
    int i;
251
252
3.18M
    for (i = 0; i < fac_length; i++) {
253
3.15M
      pFac[i] = fMult(tf_gain, pFac[i]);
254
3.15M
    }
255
32.8k
  }
256
80.0k
  scaleValuesSaturate(pOut, pFac, fac_length,
257
80.0k
                      scale); /* Avoid overflow issues and saturate. */
258
259
80.0k
  E_LPC_a_weight(wA, A, M_LP_FILTER_ORDER);
260
261
  /* We need the output of the IIR filter to be longer than "fac_length".
262
  For this reason we run it with zero input appended to the end of the input
263
  sequence, i.e. we generate its ZIR and extend the output signal.*/
264
80.0k
  FDKmemclear(pOut + fac_length, fac_length * sizeof(FIXP_DBL));
265
80.0k
  wlength = 2 * fac_length;
266
267
  /* 5) Apply weighted synthesis filter to FAC data, including optional Zir (5.
268
   * item 4). */
269
80.0k
  Syn_filt_zero(wA, A_exp, wlength, pOut);
270
80.0k
}
271
272
INT CLpd_FAC_Mdct2Acelp(H_MDCT hMdct, FIXP_DBL *output, FIXP_DBL *pFac,
273
                        const int fac_scale, FIXP_LPC *A, INT A_exp,
274
                        INT nrOutSamples, const INT fac_length,
275
50.7k
                        const INT isFdFac, UCHAR prevWindowShape) {
276
50.7k
  FIXP_DBL *pOvl;
277
50.7k
  FIXP_DBL *pOut0;
278
50.7k
  const FIXP_WTP *pWindow;
279
50.7k
  int i, fl, nrSamples = 0;
280
281
50.7k
  FDK_ASSERT(fac_length <= 1024 / (4 * 2));
282
283
50.7k
  fl = fac_length * 2;
284
285
50.7k
  pWindow = FDKgetWindowSlope(fl, prevWindowShape);
286
287
  /* Adapt window slope length in case of frame loss. */
288
50.7k
  if (hMdct->prev_fr != fl) {
289
12.2k
    int nl = 0;
290
12.2k
    imdct_adapt_parameters(hMdct, &fl, &nl, fac_length, pWindow, nrOutSamples);
291
12.2k
    FDK_ASSERT(nl == 0);
292
12.2k
  }
293
294
50.7k
  if (nrSamples < nrOutSamples) {
295
37.4k
    pOut0 = output;
296
37.4k
    nrSamples += hMdct->ov_offset;
297
    /* Purge buffered output. */
298
37.4k
    FDKmemcpy(pOut0, hMdct->overlap.time, hMdct->ov_offset * sizeof(pOut0[0]));
299
37.4k
    hMdct->ov_offset = 0;
300
37.4k
  }
301
302
50.7k
  pOvl = hMdct->overlap.freq + hMdct->ov_size - 1;
303
304
50.7k
  if (nrSamples >= nrOutSamples) {
305
13.3k
    pOut0 = hMdct->overlap.time + hMdct->ov_offset;
306
13.3k
    hMdct->ov_offset += hMdct->prev_nr + fl / 2;
307
37.4k
  } else {
308
37.4k
    pOut0 = output + nrSamples;
309
37.4k
    nrSamples += hMdct->prev_nr + fl / 2;
310
37.4k
  }
311
50.7k
  if (hMdct->prevPrevAliasSymmetry == 0) {
312
4.79M
    for (i = 0; i < hMdct->prev_nr; i++) {
313
4.74M
      FIXP_DBL x = -(*pOvl--);
314
4.74M
      *pOut0 = IMDCT_SCALE_DBL(x);
315
4.74M
      pOut0++;
316
4.74M
    }
317
50.7k
  } else {
318
0
    for (i = 0; i < hMdct->prev_nr; i++) {
319
0
      FIXP_DBL x = (*pOvl--);
320
0
      *pOut0 = IMDCT_SCALE_DBL(x);
321
0
      pOut0++;
322
0
    }
323
0
  }
324
50.7k
  hMdct->prev_nr = 0;
325
326
50.7k
  {
327
50.7k
    if (pFac != NULL) {
328
      /* Note: The FAC gain might have been applied directly after bit stream
329
       * parse in this case. */
330
33.4k
      CFac_CalcFacSignal(pOut0, pFac, fac_scale, fac_length, A, A_exp, 0,
331
33.4k
                         isFdFac);
332
33.4k
    } else {
333
      /* Clear buffer because of the overlap and ADD! */
334
17.2k
      FDKmemclear(pOut0, fac_length * sizeof(FIXP_DBL));
335
17.2k
    }
336
50.7k
  }
337
338
50.7k
  i = 0;
339
340
50.7k
  if (hMdct->prevPrevAliasSymmetry == 0) {
341
5.06M
    for (; i < fl / 2; i++) {
342
5.01M
      FIXP_DBL x0;
343
344
      /* Overlap Add */
345
5.01M
      x0 = -fMult(*pOvl--, pWindow[i].v.re);
346
347
5.01M
      *pOut0 = fAddSaturate(*pOut0, IMDCT_SCALE_DBL(x0));
348
5.01M
      pOut0++;
349
5.01M
    }
350
50.7k
  } else {
351
0
    for (; i < fl / 2; i++) {
352
0
      FIXP_DBL x0;
353
354
      /* Overlap Add */
355
0
      x0 = fMult(*pOvl--, pWindow[i].v.re);
356
357
0
      *pOut0 = fAddSaturate(*pOut0, IMDCT_SCALE_DBL(x0));
358
0
      pOut0++;
359
0
    }
360
0
  }
361
50.7k
  if (hMdct->pFacZir !=
362
50.7k
      0) { /* this should only happen for ACELP -> TCX20 -> ACELP transition */
363
9.04k
    FIXP_DBL *pOut = pOut0 - fl / 2; /* fl/2 == fac_length */
364
961k
    for (i = 0; i < fl / 2; i++) {
365
952k
      pOut[i] = fAddSaturate(pOut[i], IMDCT_SCALE_DBL(hMdct->pFacZir[i]));
366
952k
    }
367
9.04k
    hMdct->pFacZir = NULL;
368
9.04k
  }
369
370
50.7k
  hMdct->prev_fr = 0;
371
50.7k
  hMdct->prev_nr = 0;
372
50.7k
  hMdct->prev_tl = 0;
373
50.7k
  hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
374
375
50.7k
  return nrSamples;
376
50.7k
}
377
378
INT CLpd_FAC_Acelp2Mdct(H_MDCT hMdct, FIXP_DBL *output, FIXP_DBL *_pSpec,
379
                        const SHORT spec_scale[], const int nSpec,
380
                        FIXP_DBL *pFac, const int fac_scale,
381
                        const INT fac_length, INT noOutSamples, const INT tl,
382
                        const FIXP_WTP *wrs, const INT fr, FIXP_LPC A[16],
383
                        INT A_exp, CAcelpStaticMem *acelp_mem,
384
                        const FIXP_DBL gain, const int last_frame_lost,
385
                        const int isFdFac, const UCHAR last_lpd_mode,
386
46.6k
                        const int k, int currAliasingSymmetry) {
387
46.6k
  FIXP_DBL *pCurr, *pOvl, *pSpec;
388
46.6k
  const FIXP_WTP *pWindow;
389
46.6k
  const FIXP_WTB *FacWindowZir_conceal;
390
46.6k
  UCHAR doFacZirConceal = 0;
391
46.6k
  int doDeemph = 1;
392
46.6k
  const FIXP_WTB *FacWindowZir, *FacWindowSynth;
393
46.6k
  FIXP_DBL *pOut0 = output, *pOut1;
394
46.6k
  int w, i, fl, nl, nr, f_len, nrSamples = 0, s = 0, scale, total_gain_e;
395
46.6k
  FIXP_DBL *pF, *pFAC_and_FAC_ZIR = NULL;
396
46.6k
  FIXP_DBL total_gain = gain;
397
398
46.6k
  FDK_ASSERT(fac_length <= 1024 / (4 * 2));
399
46.6k
  switch (fac_length) {
400
    /* coreCoderFrameLength = 1024 */
401
12.1k
    case 128:
402
12.1k
      pWindow = SineWindow256;
403
12.1k
      FacWindowZir = FacWindowZir128;
404
12.1k
      FacWindowSynth = FacWindowSynth128;
405
12.1k
      break;
406
5.87k
    case 64:
407
5.87k
      pWindow = SineWindow128;
408
5.87k
      FacWindowZir = FacWindowZir64;
409
5.87k
      FacWindowSynth = FacWindowSynth64;
410
5.87k
      break;
411
0
    case 32:
412
0
      pWindow = SineWindow64;
413
0
      FacWindowZir = FacWindowZir32;
414
0
      FacWindowSynth = FacWindowSynth32;
415
0
      break;
416
    /* coreCoderFrameLength = 768 */
417
17.0k
    case 96:
418
17.0k
      pWindow = SineWindow192;
419
17.0k
      FacWindowZir = FacWindowZir96;
420
17.0k
      FacWindowSynth = FacWindowSynth96;
421
17.0k
      break;
422
11.4k
    case 48:
423
11.4k
      pWindow = SineWindow96;
424
11.4k
      FacWindowZir = FacWindowZir48;
425
11.4k
      FacWindowSynth = FacWindowSynth48;
426
11.4k
      break;
427
0
    default:
428
0
      FDK_ASSERT(0);
429
0
      return 0;
430
46.6k
  }
431
432
46.6k
  FacWindowZir_conceal = FacWindowSynth;
433
  /* Derive NR and NL */
434
46.6k
  fl = fac_length * 2;
435
46.6k
  nl = (tl - fl) >> 1;
436
46.6k
  nr = (tl - fr) >> 1;
437
438
46.6k
  if (noOutSamples > nrSamples) {
439
    /* Purge buffered output. */
440
36.2k
    FDKmemcpy(pOut0, hMdct->overlap.time, hMdct->ov_offset * sizeof(pOut0[0]));
441
36.2k
    nrSamples = hMdct->ov_offset;
442
36.2k
    hMdct->ov_offset = 0;
443
36.2k
  }
444
445
46.6k
  if (nrSamples >= noOutSamples) {
446
10.3k
    pOut1 = hMdct->overlap.time + hMdct->ov_offset;
447
10.3k
    if (hMdct->ov_offset < fac_length) {
448
7.39k
      pOut0 = output + nrSamples;
449
7.39k
    } else {
450
2.95k
      pOut0 = pOut1;
451
2.95k
    }
452
10.3k
    hMdct->ov_offset += fac_length + nl;
453
36.2k
  } else {
454
36.2k
    pOut1 = output + nrSamples;
455
36.2k
    pOut0 = output + nrSamples;
456
36.2k
  }
457
458
46.6k
  {
459
46.6k
    pFAC_and_FAC_ZIR = CLpd_ACELP_GetFreeExcMem(acelp_mem, 2 * fac_length);
460
46.6k
    {
461
46.6k
      const FIXP_DBL *pTmp1, *pTmp2;
462
463
46.6k
      doFacZirConceal |= ((last_frame_lost != 0) && (k == 0));
464
46.6k
      doDeemph &= (last_lpd_mode != 4);
465
46.6k
      if (doFacZirConceal) {
466
        /* ACELP contribution in concealment case:
467
           Use ZIR with a modified ZIR window to preserve some more energy.
468
           Dont use FAC, which contains wrong information for concealed frame
469
           Dont use last ACELP samples, but double ZIR, instead (afterwards) */
470
9
        FDKmemclear(pFAC_and_FAC_ZIR, 2 * fac_length * sizeof(FIXP_DBL));
471
9
        FacWindowSynth = (FIXP_WTB *)pFAC_and_FAC_ZIR;
472
9
        FacWindowZir = FacWindowZir_conceal;
473
46.5k
      } else {
474
46.5k
        CFac_CalcFacSignal(pFAC_and_FAC_ZIR, pFac, fac_scale + s, fac_length, A,
475
46.5k
                           A_exp, 1, isFdFac);
476
46.5k
      }
477
      /* 6) Get windowed past ACELP samples and ACELP ZIR signal */
478
479
      /*
480
       * Get ACELP ZIR (pFac[]) and ACELP past samples (pOut0[]) and add them
481
       * to the FAC synth signal contribution on pOut1[].
482
       */
483
46.6k
      {
484
46.6k
        {
485
46.6k
          CLpd_Acelp_Zir(A, A_exp, acelp_mem, fac_length, pFac, doDeemph);
486
487
46.6k
          pTmp1 = pOut0;
488
46.6k
          pTmp2 = pFac;
489
46.6k
        }
490
491
4.17M
        for (i = 0, w = 0; i < fac_length; i++) {
492
4.12M
          FIXP_DBL x;
493
          /* Div2 is compensated by table scaling */
494
4.12M
          x = fMultDiv2(pTmp2[i], FacWindowZir[w]);
495
4.12M
          x += fMultDiv2(pTmp1[-i - 1], FacWindowSynth[w]);
496
4.12M
          pOut1[i] = fAddSaturate(x, pFAC_and_FAC_ZIR[i]);
497
4.12M
          w++;
498
4.12M
        }
499
46.6k
      }
500
501
46.6k
      if (doFacZirConceal) {
502
        /* ZIR is the only ACELP contribution, so double it */
503
9
        scaleValues(pOut1, fac_length, 1);
504
9
      }
505
46.6k
    }
506
46.6k
  }
507
508
46.6k
  if (nrSamples < noOutSamples) {
509
36.2k
    nrSamples += fac_length + nl;
510
36.2k
  }
511
512
  /* Obtain transform gain */
513
46.6k
  total_gain = gain;
514
46.6k
  total_gain_e = 0;
515
46.6k
  imdct_gain(&total_gain, &total_gain_e, tl);
516
517
  /* IMDCT overlap add */
518
46.6k
  scale = total_gain_e;
519
46.6k
  pSpec = _pSpec;
520
521
  /* Note:when comming from an LPD frame (TCX/ACELP) the previous alisaing
522
   * symmetry must always be 0 */
523
46.6k
  if (currAliasingSymmetry == 0) {
524
46.6k
    dct_IV(pSpec, tl, &scale);
525
46.6k
  } else {
526
0
    FIXP_DBL _tmp[1024 + ALIGNMENT_DEFAULT / sizeof(FIXP_DBL)];
527
0
    FIXP_DBL *tmp = (FIXP_DBL *)ALIGN_PTR(_tmp);
528
0
    C_ALLOC_ALIGNED_REGISTER(tmp, sizeof(_tmp));
529
0
    dst_III(pSpec, tmp, tl, &scale);
530
0
    C_ALLOC_ALIGNED_UNREGISTER(tmp);
531
0
  }
532
533
  /* Optional scaling of time domain - no yet windowed - of current spectrum */
534
46.6k
  if (total_gain != (FIXP_DBL)0) {
535
9.41M
    for (i = 0; i < tl; i++) {
536
9.37M
      pSpec[i] = fMult(pSpec[i], total_gain);
537
9.37M
    }
538
36.6k
  }
539
46.6k
  int loc_scale = fixmin_I(spec_scale[0] + scale, (INT)DFRACT_BITS - 1);
540
46.6k
  scaleValuesSaturate(pSpec, tl, loc_scale);
541
542
46.6k
  pOut1 += fl / 2 - 1;
543
46.6k
  pCurr = pSpec + tl - fl / 2;
544
545
4.17M
  for (i = 0; i < fl / 2; i++) {
546
4.12M
    FIXP_DBL x1;
547
548
    /* FAC signal is already on pOut1, because of that the += operator. */
549
4.12M
    x1 = fMult(*pCurr++, pWindow[i].v.re);
550
4.12M
    FDK_ASSERT((pOut1 >= hMdct->overlap.time &&
551
4.12M
                pOut1 < hMdct->overlap.time + hMdct->ov_size) ||
552
4.12M
               (pOut1 >= output && pOut1 < output + 1024));
553
4.12M
    *pOut1 = fAddSaturate(*pOut1, IMDCT_SCALE_DBL(-x1));
554
4.12M
    pOut1--;
555
4.12M
  }
556
557
  /* NL output samples TL/2+FL/2..TL. - current[FL/2..0] */
558
46.6k
  pOut1 += (fl / 2) + 1;
559
560
46.6k
  pFAC_and_FAC_ZIR += fac_length; /* set pointer to beginning of FAC ZIR */
561
562
46.6k
  if (nl == 0) {
563
    /* save pointer to write FAC ZIR data later */
564
30.2k
    hMdct->pFacZir = pFAC_and_FAC_ZIR;
565
30.2k
  } else {
566
16.3k
    FDK_ASSERT(nl >= fac_length);
567
    /* FAC ZIR will be added now ... */
568
16.3k
    hMdct->pFacZir = NULL;
569
16.3k
  }
570
571
46.6k
  pF = pFAC_and_FAC_ZIR;
572
46.6k
  f_len = fac_length;
573
574
46.6k
  pCurr = pSpec + tl - fl / 2 - 1;
575
3.09M
  for (i = 0; i < nl; i++) {
576
3.05M
    FIXP_DBL x = -(*pCurr--);
577
    /* 5) (item 4) Synthesis filter Zir component, FAC ZIR (another one). */
578
3.05M
    if (i < f_len) {
579
1.79M
      x = fAddSaturate(x, *pF++);
580
1.79M
    }
581
582
3.05M
    FDK_ASSERT((pOut1 >= hMdct->overlap.time &&
583
3.05M
                pOut1 < hMdct->overlap.time + hMdct->ov_size) ||
584
3.05M
               (pOut1 >= output && pOut1 < output + 1024));
585
3.05M
    *pOut1 = IMDCT_SCALE_DBL(x);
586
3.05M
    pOut1++;
587
3.05M
  }
588
589
46.6k
  hMdct->prev_nr = nr;
590
46.6k
  hMdct->prev_fr = fr;
591
46.6k
  hMdct->prev_wrs = wrs;
592
46.6k
  hMdct->prev_tl = tl;
593
46.6k
  hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
594
46.6k
  hMdct->prevAliasSymmetry = currAliasingSymmetry;
595
46.6k
  fl = fr;
596
46.6k
  nl = nr;
597
598
46.6k
  pOvl = pSpec + tl / 2 - 1;
599
46.6k
  pOut0 = pOut1;
600
601
168k
  for (w = 1; w < nSpec; w++) /* for ACELP -> FD short */
602
121k
  {
603
121k
    const FIXP_WTP *pWindow_prev;
604
605
    /* Setup window pointers */
606
121k
    pWindow_prev = hMdct->prev_wrs;
607
608
    /* Current spectrum */
609
121k
    pSpec = _pSpec + w * tl;
610
611
121k
    scale = total_gain_e;
612
613
    /* For the second, third, etc. short frames the alisaing symmetry is equal,
614
     * either (0,0) or (1,1) */
615
121k
    if (currAliasingSymmetry == 0) {
616
      /* DCT IV of current spectrum */
617
121k
      dct_IV(pSpec, tl, &scale);
618
121k
    } else {
619
0
      dst_IV(pSpec, tl, &scale);
620
0
    }
621
622
    /* Optional scaling of time domain - no yet windowed - of current spectrum
623
     */
624
    /* and de-scale current spectrum signal (time domain, no yet windowed) */
625
121k
    if (total_gain != (FIXP_DBL)0) {
626
7.79M
      for (i = 0; i < tl; i++) {
627
7.71M
        pSpec[i] = fMult(pSpec[i], total_gain);
628
7.71M
      }
629
80.3k
    }
630
121k
    loc_scale = fixmin_I(spec_scale[w] + scale, (INT)DFRACT_BITS - 1);
631
121k
    scaleValuesSaturate(pSpec, tl, loc_scale);
632
633
121k
    if (noOutSamples <= nrSamples) {
634
      /* Divert output first half to overlap buffer if we already got enough
635
       * output samples. */
636
52.0k
      pOut0 = hMdct->overlap.time + hMdct->ov_offset;
637
52.0k
      hMdct->ov_offset += hMdct->prev_nr + fl / 2;
638
69.3k
    } else {
639
      /* Account output samples */
640
69.3k
      nrSamples += hMdct->prev_nr + fl / 2;
641
69.3k
    }
642
643
    /* NR output samples 0 .. NR. -overlap[TL/2..TL/2-NR] */
644
121k
    for (i = 0; i < hMdct->prev_nr; i++) {
645
0
      FIXP_DBL x = -(*pOvl--);
646
0
      *pOut0 = IMDCT_SCALE_DBL(x);
647
0
      pOut0++;
648
0
    }
649
650
121k
    if (noOutSamples <= nrSamples) {
651
      /* Divert output second half to overlap buffer if we already got enough
652
       * output samples. */
653
69.3k
      pOut1 = hMdct->overlap.time + hMdct->ov_offset + fl / 2 - 1;
654
69.3k
      hMdct->ov_offset += fl / 2 + nl;
655
69.3k
    } else {
656
52.0k
      pOut1 = pOut0 + (fl - 1);
657
52.0k
      nrSamples += fl / 2 + nl;
658
52.0k
    }
659
660
    /* output samples before window crossing point NR .. TL/2.
661
     * -overlap[TL/2-NR..TL/2-NR-FL/2] + current[NR..TL/2] */
662
    /* output samples after window crossing point TL/2 .. TL/2+FL/2.
663
     * -overlap[0..FL/2] - current[TL/2..FL/2] */
664
121k
    pCurr = pSpec + tl - fl / 2;
665
121k
    if (currAliasingSymmetry == 0) {
666
6.60M
      for (i = 0; i < fl / 2; i++) {
667
6.48M
        FIXP_DBL x0, x1;
668
669
6.48M
        cplxMultDiv2(&x1, &x0, *pCurr++, -*pOvl--, pWindow_prev[i]);
670
6.48M
        *pOut0 = IMDCT_SCALE_DBL_LSH1(x0);
671
6.48M
        *pOut1 = IMDCT_SCALE_DBL_LSH1(-x1);
672
6.48M
        pOut0++;
673
6.48M
        pOut1--;
674
6.48M
      }
675
121k
    } else {
676
0
      if (hMdct->prevPrevAliasSymmetry == 0) {
677
        /* Jump DST II -> DST IV for the second window */
678
0
        for (i = 0; i < fl / 2; i++) {
679
0
          FIXP_DBL x0, x1;
680
681
0
          cplxMultDiv2(&x1, &x0, *pCurr++, -*pOvl--, pWindow_prev[i]);
682
0
          *pOut0 = IMDCT_SCALE_DBL_LSH1(x0);
683
0
          *pOut1 = IMDCT_SCALE_DBL_LSH1(x1);
684
0
          pOut0++;
685
0
          pOut1--;
686
0
        }
687
0
      } else {
688
        /* Jump DST IV -> DST IV from the second window on */
689
0
        for (i = 0; i < fl / 2; i++) {
690
0
          FIXP_DBL x0, x1;
691
692
0
          cplxMultDiv2(&x1, &x0, *pCurr++, *pOvl--, pWindow_prev[i]);
693
0
          *pOut0 = IMDCT_SCALE_DBL_LSH1(x0);
694
0
          *pOut1 = IMDCT_SCALE_DBL_LSH1(x1);
695
0
          pOut0++;
696
0
          pOut1--;
697
0
        }
698
0
      }
699
0
    }
700
701
121k
    if (hMdct->pFacZir != 0) {
702
      /* add FAC ZIR of previous ACELP -> mdct transition */
703
17.3k
      FIXP_DBL *pOut = pOut0 - fl / 2;
704
17.3k
      FDK_ASSERT(fl / 2 <= 128);
705
943k
      for (i = 0; i < fl / 2; i++) {
706
926k
        pOut[i] = fAddSaturate(pOut[i], IMDCT_SCALE_DBL(hMdct->pFacZir[i]));
707
926k
      }
708
17.3k
      hMdct->pFacZir = NULL;
709
17.3k
    }
710
121k
    pOut0 += (fl / 2);
711
712
    /* NL output samples TL/2+FL/2..TL. - current[FL/2..0] */
713
121k
    pOut1 += (fl / 2) + 1;
714
121k
    pCurr = pSpec + tl - fl / 2 - 1;
715
121k
    for (i = 0; i < nl; i++) {
716
0
      FIXP_DBL x = -(*pCurr--);
717
0
      *pOut1 = IMDCT_SCALE_DBL(x);
718
0
      pOut1++;
719
0
    }
720
721
    /* Set overlap source pointer for next window pOvl = pSpec + tl/2 - 1; */
722
121k
    pOvl = pSpec + tl / 2 - 1;
723
724
    /* Previous window values. */
725
121k
    hMdct->prev_nr = nr;
726
121k
    hMdct->prev_fr = fr;
727
121k
    hMdct->prev_tl = tl;
728
121k
    hMdct->prev_wrs = pWindow_prev;
729
121k
    hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
730
121k
    hMdct->prevAliasSymmetry = currAliasingSymmetry;
731
121k
  }
732
733
  /* Save overlap */
734
735
46.6k
  pOvl = hMdct->overlap.freq + hMdct->ov_size - tl / 2;
736
46.6k
  FDK_ASSERT(pOvl >= hMdct->overlap.time + hMdct->ov_offset);
737
46.6k
  FDK_ASSERT(tl / 2 <= hMdct->ov_size);
738
7.22M
  for (i = 0; i < tl / 2; i++) {
739
7.17M
    pOvl[i] = _pSpec[i + (w - 1) * tl];
740
7.17M
  }
741
742
46.6k
  return nrSamples;
743
46.6k
}