Coverage Report

Created: 2025-11-11 06:41

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libFDK/src/dct.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file   dct.cpp
105
  \brief  DCT Implementations
106
  Library functions to calculate standard DCTs. This will most likely be
107
  replaced by hand-optimized functions for the specific target processor.
108
109
  Three different implementations of the dct type II and the dct type III
110
  transforms are provided.
111
112
  By default implementations which are based on a single, standard complex
113
  FFT-kernel are used (dctII_f() and dctIII_f()). These are specifically helpful
114
  in cases where optimized FFT libraries are already available. The FFT used in
115
  these implementation is FFT rad2 from FDK_tools.
116
117
  Of course, one might also use DCT-libraries should they be available. The DCT
118
  and DST type IV implementations are only available in a version based on a
119
  complex FFT kernel.
120
*/
121
122
#include "dct.h"
123
124
#include "FDK_tools_rom.h"
125
#include "fft.h"
126
127
void dct_getTables(const FIXP_WTP **ptwiddle, const FIXP_STP **sin_twiddle,
128
89.9M
                   int *sin_step, int length) {
129
89.9M
  const FIXP_WTP *twiddle;
130
89.9M
  int ld2_length;
131
132
  /* Get ld2 of length - 2 + 1
133
      -2: because first table entry is window of size 4
134
      +1: because we already include +1 because of ceil(log2(length)) */
135
89.9M
  ld2_length = DFRACT_BITS - 1 - fNormz((FIXP_DBL)length) - 1;
136
137
  /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */
138
89.9M
  switch ((length) >> (ld2_length - 1)) {
139
70.0M
    case 0x4: /* radix 2 */
140
70.0M
      *sin_twiddle = SineTable1024;
141
70.0M
      *sin_step = 1 << (10 - ld2_length);
142
70.0M
      twiddle = windowSlopes[0][0][ld2_length - 1];
143
70.0M
      break;
144
469k
    case 0x7: /* 10 ms */
145
469k
      *sin_twiddle = SineTable480;
146
469k
      *sin_step = 1 << (8 - ld2_length);
147
469k
      twiddle = windowSlopes[0][1][ld2_length];
148
469k
      break;
149
19.0M
    case 0x6: /* 3/4 of radix 2 */
150
19.0M
      *sin_twiddle = SineTable384;
151
19.0M
      *sin_step = 1 << (8 - ld2_length);
152
19.0M
      twiddle = windowSlopes[0][2][ld2_length];
153
19.0M
      break;
154
380k
    case 0x5: /* 5/16 of radix 2*/
155
380k
      *sin_twiddle = SineTable80;
156
380k
      *sin_step = 1 << (6 - ld2_length);
157
380k
      twiddle = windowSlopes[0][3][ld2_length];
158
380k
      break;
159
0
    default:
160
0
      *sin_twiddle = NULL;
161
0
      *sin_step = 0;
162
0
      twiddle = NULL;
163
0
      break;
164
89.9M
  }
165
166
89.9M
  if (ptwiddle != NULL) {
167
81.5M
    FDK_ASSERT(twiddle != NULL);
168
81.5M
    *ptwiddle = twiddle;
169
81.5M
  }
170
171
89.9M
  FDK_ASSERT(*sin_step > 0);
172
89.9M
}
173
174
#if !defined(FUNCTION_dct_III)
175
void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */
176
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
177
             int L,          /*!< lenght of transform */
178
1.21M
             int *pDat_e) {
179
1.21M
  const FIXP_WTP *sin_twiddle;
180
1.21M
  int i;
181
1.21M
  FIXP_DBL xr, accu1, accu2;
182
1.21M
  int inc, index;
183
1.21M
  int M = L >> 1;
184
185
1.21M
  FDK_ASSERT(L % 4 == 0);
186
1.21M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
187
1.21M
  inc >>= 1;
188
189
1.21M
  FIXP_DBL *pTmp_0 = &tmp[2];
190
1.21M
  FIXP_DBL *pTmp_1 = &tmp[(M - 1) * 2];
191
192
1.21M
  index = 4 * inc;
193
194
  /* This loop performs multiplication for index i (i*inc) */
195
9.74M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
196
8.52M
    FIXP_DBL accu3, accu4, accu5, accu6;
197
198
8.52M
    cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle[i * inc]);
199
8.52M
    cplxMultDiv2(&accu4, &accu3, pDat[M + i], pDat[M - i],
200
8.52M
                 sin_twiddle[(M - i) * inc]);
201
8.52M
    accu3 >>= 1;
202
8.52M
    accu4 >>= 1;
203
204
    /* This method is better for ARM926, that uses operand2 shifted right by 1
205
     * always */
206
8.52M
    if (2 * i < (M / 2)) {
207
3.65M
      cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1 >> 1)),
208
3.65M
                   ((accu2 >> 1) + accu4), sin_twiddle[index]);
209
4.87M
    } else {
210
4.87M
      cplxMultDiv2(&accu6, &accu5, ((accu2 >> 1) + accu4),
211
4.87M
                   (accu3 - (accu1 >> 1)), sin_twiddle[index]);
212
4.87M
      accu6 = -accu6;
213
4.87M
    }
214
8.52M
    xr = (accu1 >> 1) + accu3;
215
8.52M
    pTmp_0[0] = (xr >> 1) - accu5;
216
8.52M
    pTmp_1[0] = (xr >> 1) + accu5;
217
218
8.52M
    xr = (accu2 >> 1) - accu4;
219
8.52M
    pTmp_0[1] = (xr >> 1) - accu6;
220
8.52M
    pTmp_1[1] = -((xr >> 1) + accu6);
221
222
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
223
     * short tables. */
224
8.52M
    if (2 * i < ((M / 2) - 1)) {
225
3.65M
      index += 4 * inc;
226
4.87M
    } else if (2 * i >= ((M / 2))) {
227
4.87M
      index -= 4 * inc;
228
4.87M
    }
229
8.52M
  }
230
231
1.21M
  xr = fMultDiv2(pDat[M], sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
232
1.21M
  tmp[0] = ((pDat[0] >> 1) + xr) >> 1;
233
1.21M
  tmp[1] = ((pDat[0] >> 1) - xr) >> 1;
234
235
1.21M
  cplxMultDiv2(&accu2, &accu1, pDat[L - (M / 2)], pDat[M / 2],
236
1.21M
               sin_twiddle[M * inc / 2]);
237
1.21M
  tmp[M] = accu1 >> 1;
238
1.21M
  tmp[M + 1] = accu2 >> 1;
239
240
  /* dit_fft expects 1 bit scaled input values */
241
1.21M
  fft(M, tmp, pDat_e);
242
243
  /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */
244
1.21M
  pTmp_1 = &tmp[L];
245
10.9M
  for (i = M >> 1; i--;) {
246
9.74M
    FIXP_DBL tmp1, tmp2, tmp3, tmp4;
247
9.74M
    tmp1 = *tmp++;
248
9.74M
    tmp2 = *tmp++;
249
9.74M
    tmp3 = *--pTmp_1;
250
9.74M
    tmp4 = *--pTmp_1;
251
9.74M
    *pDat++ = tmp1;
252
9.74M
    *pDat++ = tmp3;
253
9.74M
    *pDat++ = tmp2;
254
9.74M
    *pDat++ = tmp4;
255
9.74M
  }
256
257
1.21M
  *pDat_e += 2;
258
1.21M
}
259
260
void dst_III(FIXP_DBL *pDat, /*!< pointer to input/output */
261
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
262
             int L,          /*!< lenght of transform */
263
0
             int *pDat_e) {
264
0
  int L2 = L >> 1;
265
0
  int i;
266
0
  FIXP_DBL t;
267
268
  /* note: DCT III is reused here, direct DST III implementation might be more
269
   * efficient */
270
271
  /* mirror input */
272
0
  for (i = 0; i < L2; i++) {
273
0
    t = pDat[i];
274
0
    pDat[i] = pDat[L - 1 - i];
275
0
    pDat[L - 1 - i] = t;
276
0
  }
277
278
  /* DCT-III */
279
0
  dct_III(pDat, tmp, L, pDat_e);
280
281
  /* flip signs at odd indices */
282
0
  for (i = 1; i < L; i += 2) pDat[i] = -pDat[i];
283
0
}
284
285
#endif
286
287
#if !defined(FUNCTION_dct_II)
288
void dct_II(
289
    FIXP_DBL *pDat, /*!< pointer to input/output */
290
    FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
291
    int L, /*!< lenght of transform (has to be a multiple of 8 (or 4 in case
292
              DCT_II_L_MULTIPLE_OF_4_SUPPORT is defined) */
293
7.15M
    int *pDat_e) {
294
7.15M
  const FIXP_WTP *sin_twiddle;
295
7.15M
  FIXP_DBL accu1, accu2;
296
7.15M
  FIXP_DBL *pTmp_0, *pTmp_1;
297
298
7.15M
  int i;
299
7.15M
  int inc, index = 0;
300
7.15M
  int M = L >> 1;
301
302
7.15M
  FDK_ASSERT(L % 4 == 0);
303
7.15M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
304
7.15M
  inc >>= 1;
305
306
7.15M
  {
307
83.5M
    for (i = 0; i < M; i++) {
308
76.3M
      tmp[i] = pDat[2 * i] >> 2;
309
76.3M
      tmp[L - 1 - i] = pDat[2 * i + 1] >> 2;
310
76.3M
    }
311
7.15M
  }
312
313
7.15M
  fft(M, tmp, pDat_e);
314
315
7.15M
  pTmp_0 = &tmp[2];
316
7.15M
  pTmp_1 = &tmp[(M - 1) * 2];
317
318
7.15M
  index = inc * 4;
319
320
38.1M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
321
31.0M
    FIXP_DBL a1, a2;
322
31.0M
    FIXP_DBL accu3, accu4;
323
324
31.0M
    a1 = ((pTmp_0[1] >> 1) + (pTmp_1[1] >> 1));
325
31.0M
    a2 = ((pTmp_1[0] >> 1) - (pTmp_0[0] >> 1));
326
327
31.0M
    if (2 * i < (M / 2)) {
328
13.7M
      cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle[index]);
329
17.2M
    } else {
330
17.2M
      cplxMultDiv2(&accu1, &accu2, a1, a2, sin_twiddle[index]);
331
17.2M
      accu1 = -accu1;
332
17.2M
    }
333
31.0M
    accu1 <<= 1;
334
31.0M
    accu2 <<= 1;
335
336
31.0M
    a1 = ((pTmp_0[0] >> 1) + (pTmp_1[0] >> 1));
337
31.0M
    a2 = ((pTmp_0[1] >> 1) - (pTmp_1[1] >> 1));
338
339
31.0M
    cplxMult(&accu3, &accu4, (accu1 + a2), (a1 + accu2), sin_twiddle[i * inc]);
340
31.0M
    pDat[L - i] = -accu3;
341
31.0M
    pDat[i] = accu4;
342
343
31.0M
    cplxMult(&accu3, &accu4, (accu1 - a2), (a1 - accu2),
344
31.0M
             sin_twiddle[(M - i) * inc]);
345
31.0M
    pDat[M + i] = -accu3;
346
31.0M
    pDat[M - i] = accu4;
347
348
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
349
     * short tables. */
350
31.0M
    if (2 * i < ((M / 2) - 1)) {
351
10.1M
      index += 4 * inc;
352
20.8M
    } else if (2 * i >= ((M / 2))) {
353
17.2M
      index -= 4 * inc;
354
17.2M
    }
355
31.0M
  }
356
357
7.15M
  cplxMult(&accu1, &accu2, tmp[M], tmp[M + 1], sin_twiddle[(M / 2) * inc]);
358
7.15M
  pDat[L - (M / 2)] = accu2;
359
7.15M
  pDat[M / 2] = accu1;
360
361
7.15M
  pDat[0] = tmp[0] + tmp[1];
362
7.15M
  pDat[M] = fMult(tmp[0] - tmp[1],
363
7.15M
                  sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
364
365
7.15M
  *pDat_e += 2;
366
7.15M
}
367
#endif
368
369
#if !defined(FUNCTION_dct_IV)
370
371
44.1M
void dct_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
372
44.1M
  int sin_step = 0;
373
44.1M
  int M = L >> 1;
374
375
44.1M
  const FIXP_WTP *twiddle;
376
44.1M
  const FIXP_STP *sin_twiddle;
377
378
44.1M
  FDK_ASSERT(L >= 4);
379
380
44.1M
  FDK_ASSERT(L >= 4);
381
382
44.1M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
383
384
44.1M
  {
385
44.1M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
386
44.1M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
387
44.1M
    int i;
388
389
    /* 29 cycles on ARM926 */
390
658M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
391
614M
      FIXP_DBL accu1, accu2, accu3, accu4;
392
393
614M
      accu1 = pDat_1[1];
394
614M
      accu2 = pDat_0[0];
395
614M
      accu3 = pDat_0[1];
396
614M
      accu4 = pDat_1[0];
397
398
614M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
399
614M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
400
401
614M
      pDat_0[0] = accu2 >> 1;
402
614M
      pDat_0[1] = accu1 >> 1;
403
614M
      pDat_1[0] = accu4 >> 1;
404
614M
      pDat_1[1] = -(accu3 >> 1);
405
614M
    }
406
44.1M
    if (M & 1) {
407
0
      FIXP_DBL accu1, accu2;
408
409
0
      accu1 = pDat_1[1];
410
0
      accu2 = pDat_0[0];
411
412
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
413
414
0
      pDat_0[0] = accu2 >> 1;
415
0
      pDat_0[1] = accu1 >> 1;
416
0
    }
417
44.1M
  }
418
419
44.1M
  fft(M, pDat, pDat_e);
420
421
44.1M
  {
422
44.1M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
423
44.1M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
424
44.1M
    FIXP_DBL accu1, accu2, accu3, accu4;
425
44.1M
    int idx, i;
426
427
    /* Sin and Cos values are 0.0f and 1.0f */
428
44.1M
    accu1 = pDat_1[0];
429
44.1M
    accu2 = pDat_1[1];
430
431
44.1M
    pDat_1[1] = -pDat_0[1];
432
433
    /* 28 cycles for ARM926 */
434
614M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
435
570M
      FIXP_STP twd = sin_twiddle[idx];
436
570M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
437
570M
      pDat_0[1] = accu3;
438
570M
      pDat_1[0] = accu4;
439
440
570M
      pDat_0 += 2;
441
570M
      pDat_1 -= 2;
442
443
570M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
444
445
570M
      accu1 = pDat_1[0];
446
570M
      accu2 = pDat_1[1];
447
448
570M
      pDat_1[1] = -accu3;
449
570M
      pDat_0[0] = accu4;
450
570M
    }
451
452
44.1M
    if ((M & 1) == 0) {
453
      /* Last Sin and Cos value pair are the same */
454
44.1M
      accu1 = fMult(accu1, WTC(0x5a82799a));
455
44.1M
      accu2 = fMult(accu2, WTC(0x5a82799a));
456
457
44.1M
      pDat_1[0] = accu1 + accu2;
458
44.1M
      pDat_0[1] = accu1 - accu2;
459
44.1M
    }
460
44.1M
  }
461
462
  /* Add twiddeling scale. */
463
44.1M
  *pDat_e += 2;
464
44.1M
}
465
#endif /* defined (FUNCTION_dct_IV) */
466
467
#if !defined(FUNCTION_dst_IV)
468
37.3M
void dst_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
469
37.3M
  int sin_step = 0;
470
37.3M
  int M = L >> 1;
471
472
37.3M
  const FIXP_WTP *twiddle;
473
37.3M
  const FIXP_STP *sin_twiddle;
474
475
37.3M
  FDK_ASSERT(L >= 4);
476
477
37.3M
  FDK_ASSERT(L >= 4);
478
479
37.3M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
480
481
37.3M
  {
482
37.3M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
483
37.3M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
484
37.3M
    int i;
485
486
    /* 34 cycles on ARM926 */
487
457M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
488
419M
      FIXP_DBL accu1, accu2, accu3, accu4;
489
490
419M
      accu1 = pDat_1[1] >> 1;
491
419M
      accu2 = -(pDat_0[0] >> 1);
492
419M
      accu3 = pDat_0[1] >> 1;
493
419M
      accu4 = -(pDat_1[0] >> 1);
494
495
419M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
496
419M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
497
498
419M
      pDat_0[0] = accu2;
499
419M
      pDat_0[1] = accu1;
500
419M
      pDat_1[0] = accu4;
501
419M
      pDat_1[1] = -accu3;
502
419M
    }
503
37.3M
    if (M & 1) {
504
0
      FIXP_DBL accu1, accu2;
505
506
0
      accu1 = pDat_1[1];
507
0
      accu2 = -pDat_0[0];
508
509
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
510
511
0
      pDat_0[0] = accu2 >> 1;
512
0
      pDat_0[1] = accu1 >> 1;
513
0
    }
514
37.3M
  }
515
516
37.3M
  fft(M, pDat, pDat_e);
517
518
37.3M
  {
519
37.3M
    FIXP_DBL *RESTRICT pDat_0;
520
37.3M
    FIXP_DBL *RESTRICT pDat_1;
521
37.3M
    FIXP_DBL accu1, accu2, accu3, accu4;
522
37.3M
    int idx, i;
523
524
37.3M
    pDat_0 = &pDat[0];
525
37.3M
    pDat_1 = &pDat[L - 2];
526
527
    /* Sin and Cos values are 0.0f and 1.0f */
528
37.3M
    accu1 = pDat_1[0];
529
37.3M
    accu2 = pDat_1[1];
530
531
37.3M
    pDat_1[1] = -pDat_0[0];
532
37.3M
    pDat_0[0] = pDat_0[1];
533
534
419M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
535
382M
      FIXP_STP twd = sin_twiddle[idx];
536
537
382M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
538
382M
      pDat_1[0] = -accu3;
539
382M
      pDat_0[1] = -accu4;
540
541
382M
      pDat_0 += 2;
542
382M
      pDat_1 -= 2;
543
544
382M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
545
546
382M
      accu1 = pDat_1[0];
547
382M
      accu2 = pDat_1[1];
548
549
382M
      pDat_0[0] = accu3;
550
382M
      pDat_1[1] = -accu4;
551
382M
    }
552
553
37.3M
    if ((M & 1) == 0) {
554
      /* Last Sin and Cos value pair are the same */
555
37.3M
      accu1 = fMult(accu1, WTC(0x5a82799a));
556
37.3M
      accu2 = fMult(accu2, WTC(0x5a82799a));
557
558
37.3M
      pDat_0[1] = -accu1 - accu2;
559
37.3M
      pDat_1[0] = accu2 - accu1;
560
37.3M
    }
561
37.3M
  }
562
563
  /* Add twiddeling scale. */
564
37.3M
  *pDat_e += 2;
565
37.3M
}
566
#endif /* !defined(FUNCTION_dst_IV) */